SD8002A 3W 单声道带关断模式音频功率放大器

SD8002A 3W 单声道带关断模式音频功率放大器
SD8002A 3W 单声道带关断模式音频功率放大器

SD8002A

3W 单声道带关断模式音频功率放大器

Datasheet

Version 1.0

Shouding

3W 单声道带关断模式音频功率放大器

SD8002A SD8002A SD8002A SD8002A SD8002A

3W 单声道带关断模式音频功率放大器

一.概述

是一种桥工音频功率放大器,使用5V 电源,且THD+N≤1.0%时,能给一个4Ω的负载提

供2W 的平均功率。

音频功率放大器是为提供高质量的输出功率而设计的,需要很少的外围设备,便可以提供高品质的输出功率。

不需要输出耦合电容,具有高电平关断模式,非常适合低功耗的便携式系统。可以通过外部电阻控制增益,并有补偿器件保证芯片的正常工作。

二. 重要规格

1.1KHz ,接4Ω负载(),平均输出功率为2W ,THD+N 1%(典型) 2.1kHz ,接4Ω负载,平均输出功率为3W ,THD +N 10%(典型) 3.关断电流 0.6 μA (典型) 4.输入电压范围 2.0~5.5V

三.特征

1. 无输出耦合电容

2. 外部电阻可调增益

3. 整体增益稳定

4. 热敏关断保护电路

5. 小尺寸 (SOP-8)封装形式

四.应用

1. 个人电脑

2. 便携式消费类电子产品

3. 无源扬声器

4. 玩具及游戏机

3W 单声道带关断模式音频功率放大器Shouding

五.芯片封装引脚分布

六.典型应用

3W 单声道带关断模式音频功率放大器Shouding

七.绝对最大额定值

电源电压 6.0V 焊接信息

存储温度 -65℃~+ 150℃ 气化态(60秒) 215 ℃

输入电压 -0.3V ~V DD +0.3V 红外线(15秒) 220℃ 功耗 内部限制 热阻

ESD 磁化系数(人体模型) 3000V θJC (典型) 35°C/W ESD 磁化系数(机器模型) 250V θJA (典型) 140°C/W 结温 150℃

八.工作额定值

温度范围:T MIN ≤T A ≤T MAX -40 ℃≤T A ≤+ 85℃ 电源电压 2.0V ≤V DD ≤5.5V

3W 单声道带关断模式音频功率放大器Shouding

九.电学特性

1、除非另外指明,以下都是V DD =5V ,R L =8Ω, 限制应用在TA =25℃

MD4871 符号 参数 条件 标准 限制

单位 (限制)

2.0 V (最小) V DD 电源电压

2.5 V (最大)

I DD 静态电流 V IN = 0V , I O =0A 3.5 8 mA (最大) I SD 关断电流 V SD =V DD , V IN =0V 0.6 2 μA

V OS

输出失调电压

V IN = 0V

5.0 50.0

mV (最大)

THD=1%(最大);f=1KHz

R L =4Ω R L =8Ω 2 1.2 W

P O

输出功率

THD=10%(最大);f=1KHz

R L =4Ω R L =8Ω

3 2

W

PSRR 电源抑制比 V DD =4.9V ~5.1V 65 dB

THD+N 总谐波失真 20Hz ≤f ≤20KHz R L =4Ω,P O =1.6W R L=8Ω, P O =1W

0.1

0.1

十、外围元器件描述

器件 功能描述

1.R i 与R f 一起设置闭环增益的输入电阻,同时还与C I 形成了高通滤波器,且f C =1/(2πR I C I )。 2.C i 输入耦合电容,主要用于隔离运放输入端的直流电压,同时还与输入电阻R I 构成高通滤波器,f C =1/(2πR I C I )。

3.R f 与R i 共同设置闭环增益的反馈电阻。

4.C s 提供电源滤波器的电源旁路电容,参照“应用信息”部分设置和选取恰当的旁路电容。 5.C B

V DD /2参考电压Bypass 引脚的滤波电容,参照“应用信息”部分设置和选取恰当的旁路电容

3W 单声道带关断模式音频功率放大器Shouding

SD8002A SD8002A SD8002A

1. 桥式输出结构说明

由电路原理图中可知,有两对放大器组成,且其结构有稍微的差异。前级输入运放 的增益可在芯片外部进行设置,而后级输出运放在芯片内部已经设置了反向的单位增益。芯片输入运放的闭环增益由Rf 和RI 进行设置,而输出运放的增益则由芯片内部的两个20k Ω的电阻所 固定。图2所示前级运放的输出作为下级运放的输入,导致两级运放的输出信号大小保持一致,仅相位相差1800,因此,芯的增益应为:

A VD = 2 ? (R f / R i )

当在输出端V O1和V O2之间接上不同的负载时,运放就建立了“桥式模式”。桥式模式工作方 式与通常应用时负载一端接地的单端模式不同。桥式运放在设计上也与单端模式有所差异,例 如在对负载提供驱动能力上,其输出幅度是输入电压的两倍。从而,在相同条件下与单端模式 相比可提供四倍的输出功率。这就在不限制电流和发音清晰的情况下提高了输出功率。为了选 择合适的闭环增益而不试用额外的喇叭系统所使用的高频传感器回路,请参考“音频功放设计”部分。

应用与耳机音频功放中的桥式结构,同样优于单端运放。因为不同的输出信号V O1和V O2 的中心电平为V DD /2,不存在与地之间的直流电压。还省掉了在单端单电源 (单端输出)模式结构中 需要的输出耦合电容。如果在单端输出运放中不加入输出耦合电容,其V DD /2电压就直接通过负 载到地将导致芯片内部功耗增大,同时还会损坏喇叭。较大输出耦合电容(如470uF )与负载 (8Ω)构成了一个高通滤波器来防止低频响应。这种结构不会对小于20Hz 以下的信号产生响应,但是要在PCB 板的尺寸和系统成本,低频响应之间进行折中考虑。

2. 功率损耗

功率损耗是在设计一个成功的运放(不管是桥式还是单端)时所主要关心的。桥式运放提 升功率的一个直接的结果就是芯片内部功耗的增加。式(1)中示出了一个桥式运放在给定的电 源电压下驱动一个指定的输出负载时的最大功耗。

P DMAX =4?(V DD )2/(2π2R L ) (1)

因为在同一个芯片封装中有两个运放工作,其内部最大功耗是单个运放的4倍。即使随着

功耗的增加,也不需要散热片。由式(1),假设使用5V 电源和8Ω负载,其最大功耗为 625mW 。

从式(1)计算所得的最大功耗不能高于式 (2)所得的功耗

3W 单声道带关断模式音频功率放大器Shouding

SD8002A SD8002A SD8002A SD8002A

P DMAX =(T JMA X -T A )/θJA (2)

对于的表面级封装,θJA =140℃/W ,T JMAX =150℃。依赖于系统工作的环境温度T A ,(2)可用于计算由芯片封装所能承受的内部最大功耗。如果式 (1)的结果比式(2)大,此时就需 要降低电源电压或者提高负载阻值。在5V 电源和8Ω负载的典型应用下,没有其它因素影响最大 结温,器件工作于最大功耗时最大的环境温度可接近62.5℃。由于功耗是输出功率的函数,因 此如果典型工作时不工作在最大功率附近,故环境温度还可以适当提高。

3. 电源旁路

对于任何功放,恰当的电源旁路选择是低噪声性能和过高电源过滤至关重要的。BYPASS 和 电源管脚电容的位置应尽量接近芯片。大的电源旁路电容的增加可以提升低频时的THD+N ,这也 应归咎于电容的增加提高了电源的稳定性。典型应用10uF 和0.1uF 的旁路电容于5V 电源,来提高 电源的稳定性,但不仅仅局限于的电源旁路。旁路电容尤其是C 的选择,依赖于低频THD+N ,系统成本和尺寸的折中考虑。

4. 关断功能

为了在不使用芯片时降低功耗,带有SHUTDOWN 引脚来关断运放的偏置电路。当逻辑 高电平加于SHUTDOWN 引脚上时,SHUTDOWN 就启动使运放关断,输出与扬声器立即断开。当电源 电压作用于SHUTDOWN 引脚上时,典型的关断静态电流为0.6uA 。在多数应用中,外部输入信号一 般通过一个微处理器的管脚控制,它可以提供一个快速平滑的转换。另外一个方法是通过单极 点、单向开关和一个上拉电阻实现,当开关闭合后,信号SHUTDOWN 接地,芯片可以正常工作; 当开关打开后,信号SHUTDOWN 通过47k Ω的上拉电阻接到电源,将会使芯片关断。在内部 没有上拉电阻,故SHUTDOWN 引脚电压由外部设置,或者将内部逻辑门悬空,以防导致运放不能正常工作。

5.音频功率放大器的设计

设计一个双通道8Ω负载1W 功率的音频放大器 给定条件 :

输出功率 1Wrms 负载阻抗 8Ω

输入电平 1Vrms (最大) 输入阻抗 20k Ω (最小)

带 宽 100Hz-20kHz ±0.25dB

3W 单声道带关断模式音频功率放大器Shouding

SD8002A SD8002A SD8002A

设计者必须首先确定所需的电源范围,以获得规定的输出功率。一种方法是从“典型性能特性”部

分中的“输出功率-电源电压”曲线图,可以很容易推出电源范围。确定所需电源范围的第 二种方式是给定负载阻抗时用等式(3)计算所需的V OPEAK 。为了估算放大器的内部消耗电压, 基于特征性“消耗电压- 电源电压”曲线图,根据等式 (3 )得到的结果必须外加两个电源电压 以补偿。这样工作电压如等式(4)的所示结果。

V 2OPEAK =(2R L P O ) (3)

V DD ≥(V OPEAK +(V ODTOP +V ODBOG )) (4)

从“输出功率-电源电压”曲线图中可见负载为8Ω时最小工作电源电压为4.6V ,通常电源电压为 5V 即这个条件很容易满足。额外的电源电压产生动态空间,允许产生一个输出功率超过 1W 非失真信号。同时设计者必须选定电源电压的和输出阻抗不能超过在“功耗”部分所阐述的条件。

在满足的功耗要求后,最小的差分增益需要在8Ω的负载上得到1W 的损耗有(5)式 获得

)(L O R P A VD ≥/(V IN )=V orms / V inrms (5)

因此,2.83的最小增益允许得到全输出摆动和保持低噪声和低的THD+N 工作。例如,设 置A VD =3,放大器的全增益由Ri 和Rf 来设置,输入电阻设为20K Ω,由(6)式的反馈电阻

R f / R i =A VD / 2 (6)

得Rf=30K Ω。

最后的设计是确定-3dB 频率带宽规格。要达到放大±0.25dB 的大量音频信号,则要求低频响应 至少扩充了最低带宽频率限制点的1/5或最高带宽频率限制点的5倍,当带宽限制为0. 17dB 时, 能满足这两个要求,这比所要求的±0.25dB 要好。结果得到:

f L = 100Hz / 5 = 20Hz (7)

f H =20KH z×5=100KHz (8)

如在“选择适当的外围器件”部分所描述的,R i 和C i 构成的高通滤波器设定了截止低频率。下式可以得到耦合电容的值

C i ≥1 /( 2πR i f L ) (9)

结果是

3W 单声道带关断模式音频功率放大器Shouding

1/(2π*20K Ω*20Hz)=0.397μF (10)

采用0.39μF 的电容,该值最接近标准值。

十二.封装信息(SOP-8)

3W 单声道带关断模式音频功率放大器Shouding

3W 单声道带关断模式音频功率放大器Shouding

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

3W单声道AB类音频功率放大器

3W单声道AB类音频功率放大器 概述 LPA4871是一款3W、单声道AB类音频功率放大器。工作电压2.5-5.5V,以BTL桥接方式,在5V电源供电情况下,可以给4Ω负载提供THD小于10%、平均3.0W的输出功率。在关断模式下,电流典型值小于0.5μA。 LPA4871是为提供足功率、高保真音频输出而专门设计的,它仅需少量的外围器件,输出不需要外接耦合电容或上举电容,采用SOP-8封装,节约电路面积,非常适合移动电话及各种移动设备等使用低电压、低功耗应用方案上使用。 应用 ◆移动电话(手机等) ◆扩音器,蓝牙音响等 ◆收音机 ◆GPS,电子狗,行车记录仪 ◆语音玩具等特征 ◆工作电压:2.5 - 5.5V ◆创新的“开关/切换噪声”抑制技术,杜绝了上电、 掉电出现的噪声 ◆10% THD+N,VDD=5V,4Ω负载下,提供高达 2.9W的输出功率 ◆10% THD+N,VDD=5V,8Ω负载下,提供高达 1.8W的输出功率 ◆关断电流< 0.5μA ◆过温保护 ◆SOP-8封装 订购信息 LPA4871□□□ F: 无铅 封装类型 SO: SOP-8

封装及引脚配置 Bypass +IN -IN GND VDD VO1 VO2 图1. LPA4871的管脚定义图 典型应用电路 音频输入

音频输入 图3. LPA4871差分输入模式电路图 最大额定值 附注1:最大功耗取决于三个因素:T JMAX ,T A ,θJA ,它的计算公式P DMAX =(T JMAX -T A )/θJA ,LPA4871的T JMAX =150℃。T A 为外部环境的温度,θJA 取决于不同的封装形式。(SOP 封装形式为140℃/W )

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

双声道音频功放的设计

双声道音频功放的设计 1引言 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程。1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术 的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发 展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电 子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。 音频放大器的目的是在产生声音的输出元件上重建输入的音频 信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响 应(驱动频带受限的扬声器时要小一些,如低音喇叭或(高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常

很高(至少40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪音,所以经常采用反馈。 高频功率放大器用于发射级的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经将其辐射到空间,保证在一定区域内的接收级可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或;宽带高频功率放大器的输出电路则是或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于

高效率音频功率放大器设计文献综述【文献综述】

文献综述 电子信息工程 高效率音频功率放大器设计文献综述 一、前言 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高 效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D 类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获 得了良好的效果。 二、主题 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的 不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放 而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。 (一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。  早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还

双声道音频功率放大电路

唐 山 学 院 Protel DXP 课 程 设 计 题 目 系 (部) 班 级 姓 名 学 号 指导教师 张雅静 2016 年1 月 18 日 至 2016 年 1 月 29 日 共 2 周 2016年 1 月 30 日 双声道音频功率放大电路 智能与信息工程学院 12电信一班

1前言 (1) 2 Protel DXP 2004的简介 (2) 2.1 Protel DXP的简介 (2) 2.2 DXP的主要工作界面 (2) 2.3原理图设计基本操作 (4) 2.3.1项目文件和原理图文件的创建 (4) 2.3.2 工作环境设置 (4) 2.3.3 放置元件 (5) 2.3.4 原理图连线 (5) 3 功率放大器简介 (6) 3.1 功率放大器原理 (6) 3.2功率放大器的性能指标 (7) 3.3 TDA 2030简介 (7) 4 双声道音频功放电路的设计 (9) 4.1 系统总体流程图 (9) 4.2 直流稳压电源的设计 (9) 4.3 前置放大电路设计 (10) 4.4 音量控制电路设计 (10) 4.5 功率放大电路设计 (12) 4.6 总体设计图 (13) 5 PCB电路板制作 (13) 5.1原理图的绘制 (13) 5.2 PCB图的绘制 (14) 6 总结 (15) 参考文献 (16)

在当代生活中,人们因生活层次、文化习俗、音乐修养、欣赏口味的提高,人们对音响的性能要求也越来越高。所以,制作出完美音响也成了人们追求的目标。音频功率放大器作为音响设备的重要器件,完美的音频功率放大器是做出完美音响的必要条件。音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力。无论是从线路技术还是元器件方面,乃至思想认识上都获得了长足的进步。回顾一下功率放大器的发展历程,对我们来说也是一件积极有意义的事情。随着时代的发展,信息时代的来临,音频功率放大领域取得了喜人的硕果。新的技术飞跃往往是新材料、新理论、新方法的出现之后产生的,音频放大器同样也不会例外。在科技日新月异的时代,我们有理由期待更完美的功率放大器的出现。 此次电子技术课程设计我们选择的就是音频功率放大电路的设计。音频放大器的目的是在产生声音的输出元件上重建输入的音频信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇叭或(高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV 或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常很高(至少40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪音,所以经常采用反馈。

D 类放大高效率音频功率放大器电路图原理

D类放大高效率音频功率放大器电路图原理为提高功放效率,以适应现代社会高效、节能和小型化的发展趋势,以D类功率放大器为核心,以单片机89C51和可编程逻辑器件(FPGA)进行控制及时数据的处理,实现了对音频信号的高效率放大。系统最大不失真输出功率大于1W,可实现电压放大倍数1~20连续可调,并增加了短路保护断电功能,输出噪声低。系统可对功率进行计算显示,具有4位数字显示,精度优于5%。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%.B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。本系统即采用D类功率放大实现,并用单电源供电,符合现代社会对电源小巧、便携要求的实际需要。 1系统方案论证与选择 1.1整体方案 方案①:数字方案。输入信号经前置放大调理后,即由A/D采入单片机进行处理,三角波产生及与音频信号的比较均由软件部分完成,然后由单片机输出两路完全反向的PWM 波给入后级功率放大部分,进行放大。此种方案硬件电路简单,但会引入较大数字噪声。 方案②:硬件电路方案。三角波产生及比较、PWM产生仍由硬件电路实现,此方案噪声较小、且幅值能做到更大,效果较好,故采用此方案。 1.2三角波产生电路设计 方案①:利用NE555产生三角波。该电路的特点是采用恒流源对电容线性冲、放电产生三角波,波形线性度较好、频率控制简单,信号幅度可通过后加衰减电位器控制。 方案②:对方波积分产生三角波。积分器与比较器级联,通过对比较器产生的方波积分得到三角波,频率与幅值控制只需调整某些电阻值,控制简单。但考虑积分电路存在积分漂移。 此处采用选择方案①。

音频功率放大器设计(明细)

电气与电子信息工程学院《电子线路设计与测试B》报告 设计题目:多级音频放大电路的设计与测试专业班级:电子信息工程技术2013(1)班学号: 201330230118 姓名: 指导教师: 设计时间: 2015/07/13~2015/07/17 设计地点:K2—306

电子线路设计与测试B成绩评定表 姓名学号 专业班级电子信息工程技术2013级(1)班 课程设计题目:多级音频放大电路的设计与测试 课程设计答辩或质疑记录: 1、对一个音频功率放大器的前置级有什么要求? 答:要求:一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。 2、试画出利用TDA2030/2030A实现的OTL功率放大器电路? 答: 3、何为D类功率放大器?D类功率放大器有什么特点? 答:(1)D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。 (2)特点:效率高、功率大、失真小、体积小。 成绩评定依据: 实物制作(40%): 课程设计考勤情况(10%): 课程设计答辩情况(20%): 完成设计任务及报告规范性(30%): 最终评定成绩: 指导教师签字: 年月日

目录 《电子线路设计与测试B》课程设计任务书 (4) 一、课程设计题目:多级音频放大电路的设计与测试 (4) 二、课程设计内容 (4) 三、进度安排 (4) 四、基本要求 (5) 五、课程设计考核办法与成绩评定 (5) 六、课程设计参考资料 (5) 多级音频功率放大电路的设计与测试 (6) 一、设计任务 (6) 二、设计方案分析 (6) 1、前置放大器 (6) 2、音调控制电路 (7) 3、功率放大器 (11) 三、主要单元电路参考设计 (11) 1、前置放大器电路 (12) 2、音调控制器电路 (12) 3、功率放大器电路 (14) 四、软件的仿真与调试 (15) 五、原理图与PCB的制作 (16) 六、音频功率放大器的调试 (17) 七、心得体会 (18) 八、附录 (19) 1、元件清单 (19) 2、实物图 (19) 3、文献 (19)

高效音频功率放大器

高效音频功率放大器 一、设计任务与要求 1、设计任务 设计并制作一个高效率音频功率放大器及其参数的测量、显示装置。功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。 2、设计要求 ⑴基本要求 ①功率放大器 a.3 dB通频带为300~3400Hz,输出正弦信号无明显失真。 b.最大不失真输出功率≥1W。 c.输入阻抗>10kΩ,电压放大倍数1~20连续可调。 d.低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。 e.在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。 ②设计并制作一个放大倍数为1的信号变换电路,将功率放大器双端输出的信号转换为单端输出,经RC滤波供外接测试仪表用,如下图所示。图中,高效率功率放大器组成框图可参见本题第3项“说明”。 图1 系统组成框图 ③设计并制作一个测量放大器输出功率的装置,要求具有3位数字显示,精度优于5%。 ⑵发挥部分 ① 3dB通频带扩展至300Hz~20kHz。 ②输出功率保持为200mW,尽量提高放大器效率。 ③输出功率保持为200mW,尽量降低放大器电源电压。 ④增加输出短路保护功能。 ⑤其他。 1、说明 ⑴采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。

图2 D类放大原理框图 ⑵效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),不包括“基本要求”中第(2)、(3)项涉及的电路部分功耗。制作时要注意便于效率测试。 ⑶在整个测试过程中,要求输出波形无明显失真。 二、方案论证与比较 根据设计任务的要求,本系统的组成方框图如图1所示。下面对每个框电路的设计方案分别进行论证与比较。 1、高效率功率放大器 ⑴高效率功放类型的选择 方案一:采用A类、B类、AB类功率放大器。这三类功放的效率均达不到题目的要求。 方案二:采用D类功率放大器。D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。 ⑵高效D类功率放大器实现电路的选择本题目的核心就是功率放大器部分,采用何种电路形式以达到题目要求的性能指标,这是关键。 图3 脉宽调制器电路 ①脉宽调制器(PWM) 方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。 方案二:采用图3所示方式来实现。三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。 ②高速开关电路

双声道BTL功放电路设计

目录 摘要 (1) Abstract (1) 第一章绪论 (2) 双声道BTL功放电路设计内容 (2) 双声道BTL功放电路设计要求 (2) 国内外发展现状 (2) 第二章 BTL简介 (3) BTL功率放大电路简介 (3) BTL电路的组成及工作原 (4) BTL集成功放电路的构成. (5) 第三章BTL功放工作原理 (6) BTL功放电路 (6) BTL功放电路工作原理 (6) . BTL功放电路特点 (6) OCL功放电路 (6) OCL电路特点 (7) 第四章双声道BTL功放电路原理图设计 (7) 电路原理结构框图 (7) BTL电路原理图 (8) 第五章双声道BTL功放单元电路设计 (9) 电源电路 (9) 前置放大电路 (10)

功率放大电路 (11) 音量控制电路 (12) 总结 (12) 致谢 (14) 参考文献 (14) 附录 (15)

摘要 分析分立元件BTL电路及输入信号和输出信号的特点,归纳出构成BTL电路的一般原则,同时介绍了集成功放电路在不同用法下如何构成BTL。在实际工作中使用起来更加方便容易。集成功率放大器由于不仅具有体积小、重量轻、成本低、外围元件少、安装调试简单、使用方便的优点;而且在性能上也优于分立元件,例如温度稳定性好,功耗小、失真小,特别是集成功率放大器内部还设置有过热、过电流、过电压等自动保护功能的电路对电路自行进行保护。由于集成功率放大器具有分立元件不具有的很多优点,近年来集成功率放大器件发展很快,使用相当广泛。集成功放在实际应用中通常接成OCL电路,或OTL电路,接成BTL(Balanced Transformer Less)电路却很少,而BTL电路的优点是电源利用率比前面两种电路高4倍。采用音频电位器控制,通过改变输入音频功放的电压大小,从而改变输出声音大小。整体电路连接,输入小音频信号,接通电源,便可听到放大后的双声音频效果。 关键词:BTL电路、集成功率放大器、电位器 Abstract BTL circuit analysis division element and the input signal and the characteristics of the output signal, summarized the BTL circuit constitute the general principle, and introduces the integrated amplifier circuit different usage in how to constitute BTL. In practical work convenient for operation easy. Integrated power amplifier has not only because of its small volume, light weight, low cost, peripheral less component, installation and debugging of the advantages of simple and easy to use; And the performance is better than division components, like temperature stability, low consumption, distortion is small, especially integrated internal power amplifier is set overheated, over electric current, over voltage and automatic protection function of the circuit to circuit to make their own protection. Due to the integrated power amplifier has elements have divided in recent years many advantages, and integrated power amplifier

LM3886功率放大器原理图及PCB

LM3886原理图: LM3886 _PCB: LM3886 3D效果图:

元器件清单: 说明封装序号0.1U R AD0.2 C14 0.1U R AD0.2 C13 0.1U R AD0.2 C12 0.1U R AD0.2 C11 0.47U RAD0.2 C4 0.47U RAD0.2 C2 0.47U RAD0.2 C3 0.47U RAD0.2 C1 0.7UH AXIAL0.6 L2 0.7UH AXIAL0.6 L1 10 AXIAL0.6 R12 10 AXIAL0.6 R11 100U RB.2/.4 C18 100U RB.2/.4 C17 10A BRIDGE-H1 DBR1 10K AXIAL0.4 R8 10K AXIAL0.4 R7 1K AXIAL0.4 R4 1K AXIAL0.4 R2 1K AXIAL0.4 R3 1K AXIAL0.4 R1 2.7 AXIAL0.5 R10 2.7 AXIAL0.5 R9 20K AXIAL0.4 R16

20K AXIAL0.4 R15 20K AXIAL0.4 R13 20K AXIAL0.4 R14 220P RAD0.2 C16 220P RAD0.2 C15 22K AXIAL0.4 R6 22K AXIAL0.4 R5 22U RAD0.2 C20 22U RAD0.2 C19 4.7U R AD0.2 C10 4.7U R AD0.2 C9 470U RB.2/.4 C8 470U RB.2/.4 C6 470U RB.2/.4 C7 470U RB.2/.4 C5 50P RAD0.2 C22 50P RAD0.2 C21 6800U RB.3/.6 C26 6800U RB.3/.6 C25 6800U RB.3/.6 C24 6800U RB.3/.6 C23 LM3886 ZIP-11V U2 LM3886 ZIP-11V U1 Output PORT2 J1 POWER FLY3 J3 SIG_INPUT PHONE J2

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

音频功率放大器课程设计--OTL音频功率放大器的设计与制作-精品

学号: 课程设计 题目OTL音频功率放大器的设计与制作 学院信息工程学院 专业通信工程 班级通信1302 姓名 指导教师 2014 年 1 月23 日

课程设计任务书 题目:OTL音频功率放大器的设计与制作 初始条件: 元件:集成功放TDA2030A、集成稳压器LM7812、电阻、电容、电位计若干。 仪器:万用表、示波器、交流毫伏表、函数信号发生器、学生电源要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: ①要求设计制作一个音频功率放大器频率响应20~20KHZ,效率>60﹪,失真小。完成对音频功率放大器的设计、仿真、装配与调试,并自制直流稳压电源。 ②确定设计方案以及电路原理图并用multisim进行电路仿真。 时间安排: 序号设计内容所用时间 1 布置任务及调研1天 2 方案确定0.5天 3 制作与调试 1.5天 4 撰写设计报告书1天 5 答辩1天 合计1周 指导教师签名: 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 音频功率放大器的设计与制作 (3) 1. 设计原理及参数 (3) 1.1音频功放电路的设计 (3) 1.1.1设计原理 (3) 1.1.2 参数计算 (5) 1.2直流稳压电源的设计 (6) 1.2.1设计原理 (6) 1.2.2参数计算 (7) 2.仿真结果及分析 (8) 2.1音频功率放大电路 (8) 2.1.1仿真原理图 (8) 2.1.2仿真效果图 (9) 2.2直流稳压电源电路 (11) 2.2.1电路原理图仿真 (11) 2.2.2仿真效果图 (11) 3.实物制作与性能测试 (12) 3.1音频功放实物制作 (12) 3.2性能测试 (13) 3.2.1功率性能测试 (13) 3.2.2频率响应测试 (14) 3.3直流稳压电源制作 (14) 3.4直流稳压电源的测试 (15) 4.收获以及体会 (15)

相关文档
最新文档