电芬顿水处理技术最新研究进展

电芬顿水处理技术最新研究进展
电芬顿水处理技术最新研究进展

电化学 循环水处理工艺介绍

项目概述 ***********厂内现有部分循环水排污水。 为了节约用水,减少排放,实现水资源再利用,公司拟对厂内的上述各系统循环水排污水进行处理后回用于厂内循环水系统作为补水,代替新鲜水的使用。设计处理水量为200m3/h。 一.设计基础 1.水质情况 1.1水质指标 注:混合污水水质即为经计算后原水水质指标。 1.2水质分析 由以上数据表可以看出,将几股循环水排污水及浓水混合后,其水质的主要问题是电导率、总硬度、总碱度较高,需要进行降低去除处理。

而对于水中含盐量的降低去除则必然涉及到膜法除盐技术,而膜脱盐设备对于进水水质有一定的要求标准,从上述水质表分析,其水质总硬度、总碱度等指标较高,均超过膜脱盐设备的进水要求,原水的结垢性较强,易在膜过滤过程中形成垢类物质沉积在膜表面,影响膜的正常运行。所以必需对原水进行预处理,降低水质的总硬度、总碱度等指标,使处理出水达到膜脱盐设备的进水要求,才能进入脱盐设备进行脱盐处理。 本方案设计工艺分为两部分,一部分是预处理,一部分是脱盐处理。预处理主要用于降低水中的总硬度、总碱度等,脱盐处理主要用于降低水中的含盐量。2.设计水量 设计处理水量为:200m3/h。 二.技术工艺说明 1.技术工艺确定 1.1 技术工艺确定 根据污水水质分析,处理工艺确定为“预处理+脱盐”。其中预处理工艺需要降低水中总硬度、总碱度等,使出水水质满足膜脱盐设备的进水要求。对于水中的上述指标,均可通过“三法净水”处理技术进行有效降低去除,同时还可以进一步去除污水中的浊度、悬浮物等颗粒杂质。 由于处理出水作为循环水系统的补水,对于水质的含盐量要求并不高(新鲜水补水电导450-500uS/cm),而且随着回用设备的投运,循环水系统的含盐量逐渐降低,水质将逐渐改善,所以选择适度脱盐设备进行脱盐处理,即JR-EDR 电渗析脱盐设备。同时,JR-EDR电渗析脱盐设备具有运行成本低、膜抗污染性较强的特点,更适宜应用于污水回用处理。 设计技术工艺为:“三法净水”一体化设备+JR-EDR电渗析脱盐设备。1.2工艺流程框图 加酸、杀菌剂

电渗析技术

电渗析技术的发展及应用 08食科汪强 20080808132 摘要:电渗析技术属于膜分离技术, 广泛应用于食品、化工、废水处理等行业的分离纯化的生产过程中, 有效率高、清洁卫生及经济节能等优点。本文简述了电渗析技术的类型, 重点论述了电渗析技术的原理, 介绍了电渗析技术在食品行业以及在废水处理中应用研究, 并对其发展前景进行了展望。 关键词:电渗析;膜;应用 电渗析是在外加直流电场的作用下, 利用离子交换膜的选择透过性, 使离子从一部分水中迁移到另一部分水中的物理化学过程。电渗析器, 就是利用多层隔室中的电渗析过程达到除盐的目的。电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子, 阻止阴离子通过, 阴膜只允许通过阴离子, 阻止阳离子通过。在外加直流电场的作用下, 水中离子作定向迁移。由于电渗析器是由多层隔室组成, 故淡室中阴阳离子迁移到相邻的浓室中去, 从而使含盐水淡化。在食品及医药工业, 电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功[ 1] 。电渗析作为一种新兴的膜法分离技术, 在天然水淡化, 海水浓缩制盐, 废水处理等[ 2] 方面起着重要的作用, 已成为一种较为成熟的水处理方法。 1 .电渗析技术的类型 1.1倒极电渗析( EDR) 倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。 1.2液膜电渗析( EDLM) 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜[3 ] ,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。 1.3填充床电渗析( EDI) 填充床电渗析( EDI) 是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最

0774.强化常规水处理工艺

强化常规水处理工艺 近些年来,随着水源污染严重、水质不断恶化和饮用水质标准不断提高,人们开始研究一些新技术强化常规处理工艺或发展饮用水深度处理技术。目前应用较多给水深度处理工艺有活性炭吸附、臭氧氧化、臭氧和活性炭联用、臭氧高级氧化技术、生物活性炭、膜过滤技术等。在此笔者结合大量的实验研究,仅对强化常规给水处理工艺(包括强化混凝、强化沉淀与气浮和强化过滤)、化学预氧化(预臭氧化)等发展情况作以简要论述。 【强化混凝技术】 常规给水处理工艺中对有机物去除起主要作用的是混凝工艺,其去除有机物的机理主要分三个方面:带正电的金属离子和带负电的有机物胶体发生电中和而脱稳凝聚;二是金属离子与溶解性有机物分子形成不溶性复合物而沉淀;三是有机物在絮体表面的物理化学吸附。影响混凝效果的因素很多:混凝剂的种类、混凝剂的投加量、原水水质、混凝pH值、碱度、混凝搅拌程度以及混凝剂与助凝剂的投加顺序等。强化混凝就是通过采取一定措施,确定混凝的最佳条件,发挥混凝的最佳效果,尽可能地去除能被混凝阶段能够去除的成分,特别是有机成分。 由于近年水源受有机物污染严重,高浓度的有机物对水中胶体产生很强的保护作用,致使常规混凝效果变差,因此为提高常规混凝效果,在保证浊度去除率的同时提高水中有机物的去除率,强化混凝处理无疑是一个首选之法。Joseph等人认为强化混凝是去除水中天然有机物比较经济、实用的一种处理工艺;美国工作者普遍认为,强化混凝是达到"饮用水消毒/消毒副产物(D/DBP)标准"第一阶段要求和控制饮用水中天然有机物(NOM)的最佳方法之一;我们的实验结果也表明,某些强化混凝技术能有效地去除天然水中的有机物和藻类,并可降低水中剩余铝的浓度。 强化混凝技术首先要根据水质情况筛选优化确定混凝剂的种类和投量。目前水厂使用的混凝剂大致有三种:铝盐Al(Ⅲ)、铁盐Fe(Ⅲ)以及人工合成的有机阳离子聚合混凝剂,一般铝盐和铁盐的混凝效果要优于人工合成的混凝剂,原因是这

污水处理电化学处理技术

污水处理电化学处理技术 高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等。 第一节电化学处理技术 一、基本原理与特点 1. 原理 电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。根据不同的氧化作用机理,可分为直接电解和间接电解。 1 ) 直接电解 直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性。 直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大。 2 ) 间接电解 间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。间接电解分为可逆过程和不可逆过程。可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、?HO、?H02/02 等自由基。 2. 电化学水处理技术的特点 1) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性; 2) 一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高; 3)有的电化学水处理工艺需消耗电能,运行成本大。 二、电化学反应器与电极 电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。按反应器中工作电极的形状分类可分为二维电极反应器、三维电极反应器。二维电极呈平面或曲面状,电极的形状比较简单,如平板、圆柱电极。电极反应发生于电极表面上,其电极表面积有限,比表面积极小,但电势和电流在表面上分布比较均匀。三维电极的结构复杂,通常是多孔状。电极反应发生于电极内部,整个三维空间都有反应发生。特点是比表面积大,床层结构紧密,但电势和电流分布不均匀。下列出了常见电化学反应器的电极类型。

8种电化学水处理方法

8种电化学水处理方法 电化学水处理- 世间万物,都是有一利就有一弊。社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。废水就是其中之一。随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。 为了处理每天大量排出的工业废水,人们也是蛮拼的。物、化、生齐用,力、声、光、电、磁结合。今天笔者为您总结用电’ 来处理废水的电化学水处理技术。 电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为环境友好’ 技术。 电化学水处理的发展历程 1799 年 Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源 1833 年 建立电流和化学反应关系的法拉第定律。 19世纪70年代 Helmholtz提出双电层概念。任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。 1887 年 Arrhenius提出电离学说。 1889 年 Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。 1903 年 Morse 和Pierce 把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。 1905年 提出Tafel 公式,揭示电流密度和氢过电位之间的关系。 1906年

电芬顿总结

电芬顿总结 含油废水:油污水是一个组成、极性、相态都非常复杂的有机混合体。根据胶体化学理论,按污水中油珠粒径大小及稳定性,通常把油分为浮油、分散油、乳化油、溶解油4类。 近年来发展起来的以Fenton反应为基础的高级氧化技术(Advanced oxidation Processes ,AoPs),是处理有机废水发展最快的技术之一,不仅可以用于浓度非常高的有毒难降解有机污水处理,而且具有能耗小,处理成本低等特点。这些技术包括Fenton法和类Fenton法(UV-Fenton法、Ultrasonic-Fenton法和Electro-Fenton法等)。传统的芬顿反应通过加入过氧化氢达到氧化有机、无机污染物的目的,这样做反应速率低,氧化氢使用效率低下,加入金属盐(如铁盐)、臭氧或者紫外线等外界条件都能大大提高其效率,其中电Fenton因较其他方法具有自动产生H2O2的机制、H2O2利用率高、有机物降解因素较多(除轻自由基的氧化作用外,还有阳极氧化,电吸附)等优点,在Fenton系统中具有较高的发展应用趋势。 高级氧化技术(Advanced oxidation processes ,AOPs),又被称为是深度氧化技术。该技术利用物理(包括光、声、电等)和化学过程产生高活性、氧化性强的羟基自由基(·OH),实现对污染物的矿化和降解。现有的高级氧化技术包括电化学氧化法、化学氧化法、光化学催化氧化法、湿式氧化法、超临界水氧化法以及液相脉冲放电法等主要的实验方法。因为其在污水处理中适用范围比较广泛,产生大量强氧化性(2.80V)的羟基自由基(·OH),处理污水迅速且比较彻底,不易产生二次污染,处理过程容易控制等的特点,高级氧化技术显示出比较好的应用前景。但是在技术处理方面,高氧化技术对反应条件要求比较荀刻,实验选择性比较差,而且成本相比其他降解方式较高,使其具有较高的局限性。目前,该技术多用于处理含有高毒性且难降解的有机物废水,包括印染、农药、制药等行业。 高级氧化技术是利用活性羟基自由基进攻大分子有机物并与之反应,从而破坏有机物分子结构,使难降解有机物转化为CO2、H2O和有机小分子等,达到氧化去除有毒有害污染物的目的,实现对污染物的高效氧化处理。而高级氧化技术中又因Fenton 试剂法具有简单快速、可絮凝、无二次污染等优点而倍受关注,该法能有效地降解醚类、苯酚类、芳香族胺类、多环芳香族等多种有毒有害难降解有机污染物。 电化学氧化分为直接电化学氧化法和间接电化学氧化法。直接电化学氧化通过阳极直接氧化,是有机污染物和部分无机污染物转化为无害物质,间接氧化是通过电极反应生成具有强氧化性的中间体(H2O2、轻基自由基等),中间体再与污染物作用,降解污染物其中,电芬顿(电-Fenton)氧化技术被广泛应用。电-Fenton法是Fenton试剂法的发展,是一种通过电解生成芬顿试剂的水处理技术,根据铁和H2O2生成的方式,电-Fenton 法可分为EF-FeRe 法、EF-FeOx 法、EF-H202-FeRe 法和EF-H2O2-FeOx 法。 电芬顿系统是在Fenton试剂的作用基础上发展起来的电化学处理系统之一。电芬顿系统对污染物的降解去除作用机理也很复杂,目前普遍认同的也是基于羟基自由基的强氧化作用,由于电芬顿的形式不一,其产生羟基的方式也不一样,但在对污染物的降解中,研究者普遍认为同Fenton试剂的作用类似,主要是两极作用产生的羟基自由基的强氧化作用氧化分解污染物,同时达到消除污染的目的。 廉雨等以涂有RuO2的铁基板为阳极,碳租为阴极构建电芬顿体系,降解酸性橙II,研宄结果

电渗析技术的简介

电渗析技术的简介 一、电渗析技术简介及其发展背景 电渗析(eletrodialysis,简称ED) 技术是膜分离技术的一种,它将阴、 阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统,在直流电场作用下,以电位差为动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。 电渗析技术的研究始于德国,1903年,Morse和Pierce把2根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的实验装置,力图减轻极化,增加传质速率。但直到1950年Juda首次试制成功了具有高选择性的离子交换膜后,电渗析技术才进入了实用阶段,其中经历了三大革新: (1) 具有选择性离子交换膜的应用; (2) 设计出多隔室电渗析组件; (3) 采用频繁倒极操作模式。 现在离子交换膜各方面的性能及电渗析装置结构等不断革新和改进,电渗析技术进入了一个新的发展阶段,其应用前景也更加广阔。 电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子,阻止阴离子通过,阴膜只允许通过阴离子,阻止阳离子通过。在外加直流电场的作

用下,水中离子作定向迁移。由于电渗析器是由多层隔室组成,故淡室中阴阳离子迁移到相邻的浓室中去,从而使含盐水淡化。在食品及医药工业,电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功。 电渗析作为一种新兴的膜法分离技术,在天然水淡化,海水浓缩制盐,废水处理等方面起着重要的作用,已成为一种较为成熟的水处理方法。 二、几种电渗析技术 1 倒极电渗析( EDR) 倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20 世纪80 年代后期,倒极电渗析器的使用, 大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR 在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95 %。 2 液膜电渗析( EDLM) 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器 中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

电化学水处理考察

电化学水处理考察报告 针对我公司设备冷却循环水质不达标情况,由能源部、机动部联合组织相关人员分别对上海东方维尔和山西和风佳会两家公司在工业领域的应用进行了实地考察,两家公司处理原理基本相同,只是处理设备的形式上有所区别。 两家公司电化学水处理技术的主要工作原理是利用电化学的氧化还原反应,将水中的Ca2+、Mg2+以固体形式排除,降低水体的硬度,同时产生氧化性物质,抑制循环水系统中菌藻的滋生,达到杀菌灭藻功能。目前,对于电化学循环水处理技术的机理研究主要集中在以下几个方面: 1.电化学除垢原理 在直流电场的作用下水在阴极发生电解反应生成OH-,由阴极反应产生的OH-离子,打破阴极附近溶液中碱度与硬度的平衡,溶液中的HCO3-离子转化为CO32-离子,同时水中的Ca2+、Mg2+等成垢离子在静电引力的作用下向阴极区迁移,分别生成CaCO3、Mg(OH)2沉淀析出,同时在电场的作用下,CaCO3在阴极板表面的结晶形式由坚硬的方解石结构转变为较为疏松的文石型结构,更易于剥离去除 2.电化学杀菌原理 在电场的作用下,水中的氯离子会被氧化成氯气、次氯酸、次氯酸根等自由氯组分,电解氯化作用,主要通过次氯酸起作用。次氯酸为很小的中性分子,它扩散到带负电的细菌表面,并通过细菌的细胞

壁穿透到细菌内部。当次氯酸到达细菌内部时,能起氧化作用破坏细菌的酶系统而使细菌死亡。在电催化反应中,通过电解水以及溶解在水中的氧气在电极表面生成一些短寿命的中间产物,即臭氧、羟基自由基、过氧化氢和氧自由基等,这些强氧化性的物质能使微生物细胞中的多种成分发生氧化,从而使微生物产生不可逆的变化而死亡。 3.电化学处理设备的工作流程 冷却水在反应室内,经过电化学作用发生下列反应:(1)在阴极(反应室内壁)附近形成一个强碱性环境,使CaCO3从水中析出,与沉积的重金属离子一起附着在内壁上。(2)电流导致悬浮颗粒失稳,形成较大絮体沉淀下来。(3)在阳极附近,氯离子被电解氧化生成游离氯或者次氯酸。(4)在阳极附近同时生成氢氧根自由基、氧自由基、臭氧和双氧水,这些物质进一步强化在反应室内和整个水系统的杀菌灭藻效果。(5)当设备工作时间达到设定值或者水中电导率过高时,控制系统就启动自动刮垢、排污和清洗程序。进水阀门自动关闭,同时排污阀门开启,电机启动刮刀刮掉反应室内壁的软质水垢,与沉淀物一起排出反应室。然后进水阀门开启,刮刀停止运动,将水垢和沉淀物彻底清洗干净。达到设定时间后,排污阀门自动关闭,设备恢复正常工作。 通过对两家公司电化学水处理设备在焦化行业循环水池的应用我们进行比较,东方维尔的设备安装在曹妃甸首钢京唐公司的焦化循环水池,该设备为矩形反应室,阳极和阴极都是板式结构,需要手动清理污垢,并且需要把反应设备停车进行处理。山西和风佳会的处理

新型微生物燃料电池耦合技术的研究进展

2019年第8期广东化工 第46卷总第394期https://www.360docs.net/doc/6512014330.html, ·101 ·新型微生物燃料电池耦合技术的研究进展 阳柳,刘志华,苗珂,王丹阳,赵文玉*,杨敏,夏畅斌 (长沙理工大学化学与食品工程学院,电力与交通材料保护湖南省重点实验室,湖南长沙410004) [摘要]微生物燃料电池(MFC)产电低而难以商业化应用制约了其发展,而MFC与其它技术耦合实现电能的有效利用成为研究者关注的热 点,也为MFC的商业化应用提供更广阔的思路。本文综述了MFC耦合新技术研究进展,包括MFC-MEC、MFC-电芬顿、MFC-PEC、MFC-CW、MFC-超级电容器,并对其进行展望。 [关键词]微生物燃料电池;耦合技术;能源利用 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2019)08-0101-02 Research Progress on New Microbial Fuel Cell Coupling Technology Yang Liu, Liu Zhihua, Miao Ke, Wang Danyang, Zhao Wenyu*, Yang Min, Xia Changbin (Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemical and Food Engineering, Changsha University of Science and Technology, Changsha 410004, China) Abstract: Due to the low power generation of microbial fuel cells (MFC), it is difficult to commercialize applications, and the coupling of MFC with other technologies has become the main focus of researchers. This paper reviews the research progress of new MFC coupling technologies, including MFC-MEC, MFC-Electric Fenton, MFC-PEC, MFC-CW, and MFC-supercapacitors. Keywords: Microbial fuel cell(MFC);coupling technique;energy use 微生物燃料电池(MFC)是把生物电化学能转化为电能的一种 新型技术,它通过细菌对有机物的氧化和氧气的还原来发电。该 技术可以实现废水处理的同时实现电能回收,为解决能源和环境 挑战提供了一种很有前景的解决方案,从而成为环境工程研究的 热点方向之一。在MFC染料方面,从简单物质(如醋酸盐[1])到复杂的难降解物质(如纤维素[2]);以及从低浓度易降解的废水(如生活污水[3])到复杂有机废水(如玉米秸秆水解物[4])等MFC的应用方面均开展了大量的研究。为了提高MFC产电效能,从电极材料 的选择[5]、质子膜的使用[6]、MFC构型的改进[7]以及MFC的规模 化[8]、包括新型MFC生物阴极[9-11]等MFC构型开发方面也做了 大量的开发。然而,MFC的最大功率(200~250 Wm-3)仍然比化学燃料电池(CFCs)低几个数量级[12],从而限制了其进一步的开发应 用。为了克服MFC产电低而难以直接商业利用的缺点,许多研 究者开发MFC与其它技术的耦合方式来实现电能的使用而开发 出新型的污染治理工艺。本文对微生物燃料电池与微生物电解池、 电芬顿、光催化、人工湿地和超级电容器等技术进行耦合技术发 展进行了综述,同时对其发展的前景进行了展望。 1 MFC-MEC耦合技术 微生物电解池(MEC)利用微生物作为反应主体,在阴阳极间 施加电流后产生氢气。利用MFC产生的电能作为MEC电能供给 成为MFC电能利用的新思路,成为MFC研究的热点之一。 Sun等[13]采用MFC-MEC的耦合系统实现了醋酸盐产氢,电路中负载电阻从10 Ω变为10 kΩ时,氢气产率在2.9±0.2到0.2±0.0 mL L-1·d-1的范围内变化,其中氢回收率(RH2),库仑效率(CE)和氢产率(YH2)均随着负载电阻的增加而降低。Wang等[14]先采用发 酵方式水解纤维素,再采用MFC-MEC耦合系统实现产氢,与单 独发酵相比,综合系统(发酵-MFC-MEC)的总产氢量增加了41%, 达到14.3 mmol H2·g-1纤维素,总产氢率为0.24 m3 H2·m-3·d-1,总能量回收效率为23 %。同时将MFC-MEC系统串联或并联有利于 提高污染物处理效率,同时提高能源的回收效率。Yong Zhang等[15]在用MFC-MEC耦合系统回收Cr(VI)、Cu(II)和Cd(II)时发现,将MFCs(Cr)和MFCs(Cu)串联的回收率优于并联配置,此时,每 mol的COD可分别回收0.23±0.04 mol Cd,0.27±0.03 mol Cr,和0.40±0.05 mol Cu,同时产氢量为0.0022±0.0001 m3 H2·m-3·d-1。 随着MFC-MEC耦合系统的发展,其也可实现其他污染物的 协同处理。Yong Jiang等[16]使用硫化物和有机化合物作为电子供 体,在MFC-MEC耦合系统中实现了从二氧化碳中去除硫化物同 时产生甲烷,三个阳极室中的硫化物去除率分别为62.5 %、60.4 % 和57.7 %。甲烷以0.354 mL·h-1·L-1的速率累积,库伦效率为51 %。Liping Huang等[17]在自驱动MFC-MEC系统中实现从钴酸锂中完全回收钴,并从MEC中获得0.8 g Co g-1 COD产率,以及0.15 g Co g-1Co的总系统钴产率。潘璐璐等[18]则实现了含镉重金属废水中Cd2+的去除,并发现,MFC的产电量、MEC中Cd2+的去除率和MFC容积成正相关,但与MFC阴极处Cr6+去除率呈负相关,MEC 阴极液pH在3~5时有利于含镉重金属废水的处理,最高Cr6+去除率可达80 %以上。 2 MFC-电芬顿耦合技术 电芬顿技术是近年来在水处理技术中发展起来的一种新型电化学氧化技术,因其氧化能力强,耗能低等特点,备受国内外的重视。MFC与电芬顿技术相结合成为一种新型组合工艺。 利用MFC产电驱动电芬顿反应来控制MFC阴极中污染物降解[18],与传统的电芬顿系统相比,将节省能源成本,同时拓宽MFC的应用领域。Rozendal等[19]将有机废水作为MFC的阳极燃料,使MFC-Fenton系统降解非生物化学物质,例如废水染料,从废水中回收能量。Lei Fu等[20]用MFC-电芬顿系统降解偶氮染料-觅菜红,以0.5 mmol·L-1 Fe3+为催化剂,1 h内75 mg·L-1苋菜红的降解率可达76.4 %。Xiuping Zhu等[21]使用苯酚为燃料,在电-芬顿反应器中进行一个循环(22小时)能除去75±2 %的总有机碳(TOC),并且苯酚完全降解为简单且易于生物降解的有机酸。对燃料电池或者电芬顿系统进行电极改性强化,能提高MFC-电芬顿系统的总体性能。Dios等[22]利用MFC和电芬顿技术中的真菌细菌组合开发了废物可持续能源生产的潜力,该系统能产生稳定的电,当在阴极室中发生电芬顿反应时,该配置可达到约1000 mV 的稳定电压,证明了MFC-电芬顿,同时进行染料脱色和发电的双重益处。MFC-电芬顿耦合系统系统中,可以利用MFC阴极室连续产生H2O2,促进芬顿系统降解废水中的染料[23]。Chunhua Feng等[24]发现具有改性电极的MFC通过O2的双电子还原能在阴极室中有H2O2最大生成速率,而H2O2浓度的增加有利于H2O2与Fe2+反应产生的羟基自由基数量的增加,能使电芬顿过程的氧化能力提高到偶氮染料的脱色和矿化。 3 MFC-PEC耦合技术 近年来,光电催化(PEC)由于克服了光催化过程中光生电子-空穴对的复合这一限制因素而成为研究热点[56-27],利用MFC与PEC耦合可利用MFC产生的电能降低PEC的能耗和提高处理效率成为MFC研究的新方向。 SHI-JIE YUAN等[28]在生物电化学系统中,利用微生物燃料电池产生的能量,有效地减少了有机污染物-对硝基苯酚。耦合系统中,电化学和光催化氧化过程之间存在协同效应,表现出更快速地降解对硝基苯酚,其最大降解速率常数0.411 h-1,为单个光催化和电化学方法的两倍。吕淑彬等[29]在以TiO2纳米孔阵列电极作光阳极,金属铂黑做阴极,设计了一种光催化废水燃料电池,用于有机废水处理和废水有机物化学能的综合利用,该系统开路电压为1.16 V,短路电流为1.28 mA·cm-2,最大输出功率密度达 [收稿日期] 2019-03-26 [基金项目] 长沙理工大学电力与交通材料保护湖南省重点实验室开放基金资助项目(2017CL09);2018年度湖南省重点研发计划项目(2018SK2011) [作者简介] 阳柳(1994-),女,湖南人,硕士研究生,主要研究方向废水处理及污泥资源化。*为通讯作者。

电渗析法综述

电渗析技术综述 摘要:电渗析技术属于膜分离技术,广泛应用于食品、化工、废水处理等行业的分离纯化的生产过程中,有效率高、经济节能等优点。本文重点介绍电渗析技术的原理和分类,还有电渗析技术在食品行业中的应用及对其发展的展望。 关键词:电渗析原理分类应用展望 1、电渗析 电渗析是在直流电场作用下,利用离子交换膜的选择透过性,带电离子透过离子交换膜定向迁移,从水溶液和其他不带电组分中分离出来,从而实现对溶液的浓缩、淡化、精制和提纯的目的。目前电渗折技术己发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。广泛应用于化工脱盐,海水淡化,食品医药和废水处理等领域,在某些地区已成为饮用水的主要生产方法,具有能量消耗少,经济效益显著;装置设计与系统应用灵活,操作维修方便,不污染环境,装置使用寿命长,原水的回收率高等优点。[1] 2、电渗析技术的发展简介 电渗析技术的研究始于20世纪初的德国,1903年,Morse和Pierce把两根电极分别置于透析袋内部和外部的溶液中发现带点杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的试验装置,力图减轻极化,增加传质速率,直至20世纪50年代离子交换膜的制造进入工业化生产后,电渗析技术才进入实用阶段。其中经历了三大革新:一是具有选择性离子交换膜的应用,二是设计出多层电渗析的组件,三是采用倒换电极的操作式。目前电渗析技术已发展成一个大规模的化工单元过程,在膜分离领域占有重要地位。电渗析技术的分类 3.1、倒极电渗析 倒极电渗析就是根据电渗析原理,每隔一定时间(一般为15~20min),正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20世纪80年代后期,倒极电渗析器的使用,大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95%。 3.2、液膜电渗析 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属(锇、钌等)的盐溶液进行电渗析时,会在膜上形成金属二氧化物沉淀,这将引起膜的过早损耗,并破坏整个工艺过程,应用液膜则无此弊端。 3.3、填充床电渗析 填充床电渗析是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最大特点是利用水解离产生的H+和OH-自动再生填充在电渗析器淡水室中的混床离子交换树脂,从而实现了持续深度脱盐。它集中了电渗析和离子交换法的优点,提高了极限电流密度和电流效率。1983年Ke2dem.o.及其同事们提出了填充混合离子交换树脂电渗析过程除去离子的思想,1987年,Mlillpore公司推出了这一产品。填充床电渗析技术具有高度先进性和实用性,在电子、医药、能源等领域具有广阔的应用前景,可望成为纯水制造的主流技术。 3.4、双极性膜电渗析

电化学法在水处理中的应用现状

电化学法在水处理中的应用现状 摘要随着城市规模的不断扩大和人口的增加,水资源污染也日益严重,水污染治理也成为了关注的焦点。为此,电化学水处理技术也被研究应用到实际的污水处理中。对电化学法在重金属离子的回收和去除、难生物降解有机废水的处理、含染料废水的处理、含油废水的处理、垃圾渗滤液的处理、含氮废水的处理中的应用及处理效果做论述,得到很好的效果。 关键词电化学;水处理技术;应用 1概述 现代社会,废水处理是一个热门话题。目前,由于电化学方法具有处理装置紧凑、设备小、占地面积少、不产生二次污染,又能起到消毒作用等优点已得到人们的重视,用在造纸废水、印染废水、制药废水、医院废水、含油废水等的研究中。 目前,国内电催化法水处理的研究应用已有一定的基础,然而和国外相比还不是很系统。随着水处理领域的热点转移到有机废水的处理,电化学法降解有机废水受到国内外的关注。 电解法处理废水主要有电化学氧化法、电化学还原法、内电解法、电凝聚法、电气浮法、电沉积法、电渗析法、电吸附法。 2电化学在水处理中的应用 随着全球环境状况的日益严峻,环境保护及污染物处理问题引起了各国政府的高度重视。目前,在美、日等发达国家已经广泛的应用电化学方法进行催化氧化处理有机废水。国内在电化学处理废水方面也有很快的发展。由于电化学处理废水的种种优势与功能,近年来国内外的研究较多,现已广泛应用于处理电镀废水、化工废水、印染废水等的研究,并取得了一定的成效。 2.1难生物降解有机废水的处理 对工业部门外排的一些有机废水,由于有机物含量高、污水流量波动相对较大常规生物处理的效率是很低的,甚至是无效的。采用电解氧化过程处理这类废水,如果选用涂层电极作为阳极材料,就可通过阳极反应直接氧化分解有机污染物,或者通过阳极反应产生的氧化性物质间接分解有机污染物;如果选用可溶性铁或铝作阳极,就可在同一电解反应器中通过电氧化、电凝聚、电气浮协同作用去除有机污染物。从而达到很好的处理效果,COD的去处效率甚至可以达到98%以上。 2.2重金属离子的回收和去除

电渗析技术概述及应用进展

电渗析技术概述及应用进展 一.电渗析技术概述 1.引言[1] 电渗析(elet rodialysis ,简称ED) 技术是膜分离技术的一种,它将阴、阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化) 和浓缩两个系统,在直流电场作用下,以电位差为动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。电渗析技术的研究始于德国, 1903年,Morse 和Pierce 把2 根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去; 1924 年, Pauli 采用化工设计的原理,改进了Morse 的实验装置,力图减轻极化,增加传质速率。但直到1950 年J uda首次试制成功了具有高选择性的离子交换膜后,电渗析技术才进入了实用阶段,其中经历了三大革新: (1) 具有选择性离子交换膜的应用; (2) 设计出多隔室电渗析组件; (3) 采用频繁倒极操作模式。现在离子交换膜各方面的性能及电渗析装置结构等不断革新和改进,电渗析技术进入了一个新的发展阶段,其应用前景也更加广阔。 2. 原理 在阴极与阳极之间,放置着若干交替排列的阳膜与阴膜,让水通过两膜及两膜与两极之间所形成的隔室,在两端电极接通直通电源后,水中阴、阳离子分别向阳极、阴极方向迁移,由于阳膜、阴膜的选择透过性,就形成了交替排列的离子浓度减少的淡室和离子浓度增加的浓室。与此同时,在两电极上也发生着氧化还原反应,即电极反应,其结果是使阴极室因溶液呈碱性而结垢,阳极室因溶液呈酸性而腐蚀。因此,在电渗析过程中,电能的消耗主要用来克服电流通过溶液、膜时所受到的阻力及电极反应。

电化学水处理系统原理和市场分析

电化学水处理系统 Electrolytic Descaling System 工业冷却循环水除垢技术 电化学水处理系统原理简介 一、电解; 1、原理概述:高频、变频电解反应将水分子打散,变成中性的小分子还原水(小分子还原水国际公认具有强渗透力与溶解能力),细化的水具有强的 溶解性和渗透性,可以渗透进管道的水垢及铁锈层,逐步将其溶解。 2、系统中带正电的离子(Ca2+、Mg2+、Fe3+)随着系统的循环水流出,并被水力清的电极外网(负极)吸附并在上面形成钙、镁的化合物结晶,降 低水体的硬度,且吸附网的吸附能力远远大于水垢在换热器铜管内生成的 能力,使水垢能集中在吸附网上生成,从根本上解决换热器管道内水垢的 产生。 3、 原理示意图;①还原水溶垢、锈示意图(H· 代表小分子还原水):

循环水除垢机的先进性、突破性与高效益 ②还原水流动溶垢、锈示意图 ③电极吸附收集水垢示意图

电化学水处理系统工作特征 ◎ 超环保 首创高频变频电解纯物理方式吸垢除锈,不需化学药剂,避免管道及换热设备腐蚀。 ◎ 超节能 自身功率为 0.3-4.5KW,却可以提升系统 5-25%综合效果,节约能耗 5-20%。!

◎ 超节水 基本不需要排污,同比目前行业水处理法节水量超过 90%及以上。 ◎ 超智能 全天候无需人员值守,管理方便,简单,不需专人管理。 冷却水系统除垢除锈的必要性: ◎ 长时间不对冷却水进行处理,会造成管道以及换热设备内壁生成水 垢,影响冷却水流量及换热效率,降低冷却效果,影响生产。 ◎ 严重时甚至堵塞换热设备,停机清洗,影响生产效率。 ◎ 常年累积的水垢与铁锈导致换热设备冷却效果不理想,成型周期变 得越来越长。甚至会出现垢腐蚀管路、设备现象。 电化学水处理系统带来的好处: ◎ 时刻吸垢,让冷却水系统处于无垢状态。稳定冷却水流量,提高冷 却效果及换热效率。保障正常生产。 ◎ 不需投放化学药剂,避免管道、换热设备腐蚀,增加设备的使用寿 命。同时减少人工及时间去清理水塔、水池,减少排水 量,节能环 保。

电渗析技术

双极膜电渗析技术在有机酸生产中的应用进展 职业扩展2009-07-29 12:42:32 阅读118 评论0字号:大中小 来源:中国化工信息网2007年7月31日 在最近的10几年里,双极膜电渗析技术(Elec-Trodialysis with Bipolar Membrane,EDBM)的理论和应用研究获得了突飞猛进的发展。双极膜的应用研究已经深入到环境、化工、生物、食品、海洋化工和能源等各个方面。但是真正用于大规模生产的,主要也就是在有机酸发酵生产中的应用了。采用双极膜电渗析技术可以浓缩发酵液中的有机酸,可以除去发酵液中的无机盐离子。对于发酵产物为有机酸盐的,还可以实现从有机酸盐到有机酸的转化,而不需要另外加酸,也不产生任何酸碱盐废液。因此能够减少环境污染,降低化工原料和能源消耗,具有显著的工业应用价值和环境效益。同时因其产品回收率高、纯度高,而由此导致的产品质量提高所带来的经济效益更令人振奋。 所以从1995年后,在美国、意大利、日本、法国和德国等都纷纷建立了双极膜电渗析法生产有机酸或氨基酸的工厂,而国内大多还只停留在实验研究阶段。我们也正在从事这方面的研究,但由于双极膜价格贵,设备一次性投入很大,因而在大规模生产上还不是很普及。所以若能在双极膜本身的生产方面有所突破,那么双极膜电渗析技术在有机酸生产中的应用前景将会非常乐观。 1双极膜电渗析技术生产有机酸的原理 双极膜是近年来发展比较迅猛的一种新型离子交换复合膜,由阴、阳膜层缔合而成,在电场的作用下,阴、阳膜层的界面就会发生水的解离,产生H+和OH-.H+可与阴离子结合成酸,OH-可与阳离子结合成碱,这就是双极膜能够实现制酸、制碱的关键所在。据理论计算,制备1mol/L

相关文档
最新文档