集中热水供应设计秒流量计算方法分析

集中热水供应设计秒流量计算方法分析
集中热水供应设计秒流量计算方法分析

集中热水供应设计秒流量计算方法分析

摘要本文就建筑中热水供应采取分区组合体型式系统下设计秒流量的计算方法。分别介绍了我国传统式现行计算设计秒流量计算方法和其局限性,全新的计算方法——概率法计算设计秒流量的特点和其优越性。

关键词集中热水供应设计秒流量概率流量计算

1.前言

热水供应系统主要满足居民在卫生(洗漱、沐浴)等方面对于75℃以下热水的需要。应目前节能,环保的要求,集中热水供应系统形式在现代建筑中优先采用。

随着人民日益增长的生活水平的提高,居民在卫生方面对于热水的需要日益提高。集中热水供应系统在越来越多的建筑里成为工程设计的必不可少的部分。在集中热水供应系统的设计中,系统型式的正确选择十分重要,它关系到系统的功能、运行稳定性以及一次造价等。本文优先采用分区组合体系统形式进行分析计算。设计秒流量反映了管道的这一负荷特性,设计秒流量是确定运行年限在20~50年的给水系统的重要技术参数之一。设计秒流量的计算应该能够客观、全面的反映受多种因素影响的复杂的实际过程。在系统配水的量确定下以后,即热水供应系统入口处流量恒定的条件下,才能对生活给水供应系统的水力工况进行计算分析,计算最远配水点的压力损失,选用必需的升压泵,为了保证配水点的压力,确定各种配水水平下的循环流量。

本文的工作是选定了热水供应分区组合体的系统型式下,针对建筑给水设计秒流量的计算方法的分析和研究,主要进行分析比较了我国住宅、旅馆传统设计秒流量计算方法与概率法性相比存在的盲目性,以及概率法的优越的科学性合理性。

2.设计秒流量的计算方法

设计秒流量不仅是确定各管段管径的主要依据,也是计算管道水头

损失,进而确定给水系统所需压力的主要依据,为了保证用水,给水管道的设计流量应为建筑内部卫生器具按配水最不利情况下组合出流时最大瞬时流量,又称设计秒流量。

设计秒流量要在对用水工况实测的基础上进行科学的加工,从而得到经济实用的设计秒流量的计算方法。目前设计秒流量的计算方法有三种:经验法、平方根法和概率法。根据我国建筑给水排水设计规范GB50015-2003,住宅建筑用水时间长、用水设备使用不集中的特点,对其设计秒流量的计算方法在以往平方根法[**]的基础上进行了修改,采用了以概率理论为基础的计算方法,但是与国外比较成熟的概率法之间还存在着较大的差距;对于公建部分,仍采用平方根法。对于我国来说,概率法是一种全新的计算思想和方法,在美、日、俄等国得到普遍应用,上述国家在概率法的基础上,结合实际运行数据,制成图表以便工程设计使用。

2.1我国现行给水管网设计秒流量计算方法[7]

我国给水配水设计秒流量的计算按建筑类型分别有下列公式来计算:2.1.1住宅建筑的生活给水管道的设计秒流量

应按下列步骤和方法计算:

(1)根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数,按(1)式计算出最大用水时卫生器具给水当量平均出流概率:

U O =qO mK k/ 0.2*N g*T(1)

U O——生活给水管的最大用水时卫生器具给水当量平均出流概率(%);

qO——最高用水日的用水定额,按规范表取用;

m——每户用水人数;

K k——小时变化系数,

N g——每户设置的卫生器具给水当量数;

T——用水时数(h)

0.2——一个卫生器具给水当量的额定流量(L/s)。

(2)根据计算管段上的卫生器具给水当量总数,按(2)式计算得出该管段的卫生器具给水当量的同时出流概率:

U=[(1+αc(Ng-1)0.49)/ Ng1/2]%(2)U——计算管段的卫生器具给水当量同时出流概率(%);

αc——对应于不同U o系数,根据经验数据表查得;

N g——计算管段的卫生器具给水当量总数。

(3)根据计算管段上的卫生器具给水当量同时出流概率,按式(3)计算得计算管段的设计秒流量:

q g=0.2*U Ng(3)

q g——计算管段的设计秒流量(L/s)。

注:1 为了计算快速、方便,在计算出U o后,即可根据计算管段的N g值从附录计算表中直接查得给水设计秒流量。该表可用该

内插法。

2 当计算管段的卫生器具给水当量总数超过附录表中的最大值

时,其流量应取最大用水时平均秒流量,即q g=0.2*U N g。

(4)有两条或两条以上具有不同最大用水时卫生器具给水当量平均出流概率的给水支管的给水干管,该管段的最大时卫生器具给水当量平均出流概率(4)式计算:

=∑/∑(4)

式中——给水干管的卫生器具给水当量平均出流概率;

——支管的最大用水时卫生器具给水当量平均出流概率;

——相应支管的卫生器具给水当量总数。

2.1.2集体宿舍、旅馆、宾馆、医院、疗养院、幼儿园、养老院、办公楼、商场、客运站、会展中心、中小学教学楼、公共厕所等建筑的设计秒流量

按下式计算给水设计秒流量,即按(5)计算:

=0.2() (5)

式中——计算管段的给水设计秒流量(L/s);

——计算管段的卫生器具给水当量总数;

——根据建筑用途而定的系数,按照规范查取。

注:1 如计算值小于该管段上一个最大卫生器具给水额定流量时,应采用一个最大的卫生器具给水额定流量作为设计秒流量。

2 如计算值大于该管段上按卫生器具给水额定流量累加所得流量值时,应按卫生器具给水额定流量累加所得流量值采用。

3 大便器延时自闭冲洗阀的给水管段,大便器延时自闭冲洗阀的给水

当量均以0.5计,计算得到的附加1.10L/s的流量后,为该管段的给水设计秒流量。

4 综合楼建筑的值应按加权平均法计算。

从公式(1)看出,我国住宅建筑计算设计秒流量方法在理论和实际应用中存在以下几个问题:(1)未能体现单位器具符合人数的影响因素;(2)未能体现不同卫生器具组合的影响因素;(3)我国现行住宅建筑计算设计秒流量方法没能体现给水保证率。但在进行计算时已经考虑

到了用水随机的影响因素,而且还考虑了用水人数、用水定额、用水时间的组合影响因素,可以说已经非常成功地采用了概率思想。

从(2)看出对于集体宿舍、旅馆、商场等建筑类型,设计秒流量的计算在实际应用中存在以下问题:(1)仅仅考虑到了用水的不均匀性,但未体现用水的随机性;(2)计算公式只考虑到了卫生器具的种类不同,未能反映影响用水量的实际因素,如单位器具负荷人数、各种卫生器具的组合型式、供水制度等等;(3)未能体现设计秒流量和用水定额之间的关系,虽然考虑到了建筑用途的不同,增加了系数,但是建筑用途的划分过于粗糙,而且α的值还需要测验分析。所以我国采用平方根法计算设计秒流量存在很大的不准确性和盲目性。就像计算住宅建筑一样,计算其它类型建筑设计秒流量的新方法仍要从概率思想着手。

2.2概率法

概率法中比较有代表性的计算设计秒流量的方法有亨特概率法和俄罗斯概率法,而其中俄罗斯概率法自成一家,比较成熟,而且因为我国的平方根法计算秒流量公式来源于俄罗斯,本文重点对俄罗斯概率法进行研究分析。早期的俄罗斯概率法的理论基础是用户的用水情况按泊松分布来描述,数学表达式如下:

P(x=i)=(Np)i/i!*e-Np(6)式中P(x=i)——i个卫生器具同时用水的概率;

N——管段上连接的卫生器具总数;

P——单个卫生器具使用的概率;

i——管段上卫生器具同时使用的个数。

在计算管段上有不多于m个卫生器具同时使用的概率为Pm,则

P m= e-Np N p∑(Np)(i-1)/i!(7)Pm即给水保证率,在给定的Pm之下,连接有N个卫生器具的管段设计秒流量为:

q g=m*q o(8)这样计算设计秒流量的任务就转化为确定给水保证率的值。体现了设计

秒流量和给水保证率之间的关系,但是与平方根法比较,该公式不适用于卫生器具较少而用水概率较大的建筑。以绍宾斯基方法为基础建立起来的俄罗斯现行概率法,是在对单个卫生器具、单幢建筑以及小区给水系统的工况进行深入研究分析,并对大量日用水量积分曲线进行分析研究,得到了能够描述各种形式日用水量积分曲线的的通用公式,考虑到了多种类型建筑、多种卫生器具的多种组合因素,考虑了多种用水因素的影响,在绍宾斯基方法简化模型的基础的基础上,给水保证率取P m=0.997,得到了设计秒流量的简便计算式。该方法的理论要点如下:(1)确定用水单位类型和用书单位数量U;

(2)确定卫生器具的总数N和计算管段上的卫生器具数量N i;

(3)确定卫生器具配水龙头的额定秒流量q o;

(4)确定用水高峰期卫生器具使用概率p;

1:当U/N不变化时,建筑中所有用水单位为同一类型时,其使用概率

p=q h,u*U/3600/q o/N(9)q h,u——一个用水单位最大小时用水定额,L/s;

2:当建筑物中有各种不同类型的用水单位时,其使用概率

P∑i=∑N p i/∑N i(10)(5)确定计算管段上的设计秒流量

q g=5*qo*α (11)q o——单个卫生器具的秒流量,L/s;

α——由计算管段上所连接的卫生器具数N和卫生器具使用概率p有关的系数,表《俄罗斯规范》附录4。

可以看出,俄罗斯现行概率法选用了较高的用水保证率0.997,运用了概率思想,而在工程上又并非完全按二项分布或泊松分布计算结果进行查表,而是根据实践应用方便进行了处理。当卫生器具数较少,而使用概率较大时(N≤200,p>0.1),用水情况采用二项分布描述;而当卫生器具数较多,使用概率较大时(N≥200,p>0.1)或卫生器具为任意值,卫生器具使用较小(p<0.1)时,用水情况按柏松分布描述。由于α的值是小数而不是整数,可见俄罗斯概率法并不是完全按照纯二项分布和

纯泊松分布进行计算,而是考虑了其它多种实际因素的影响。公式是俄罗斯近些年来通过给水系统的大量试验和理论研究归纳出来的,不仅考虑到了用水设备的数量和技术特性,而且考虑到了用水设备的运行条件、用水工况和用户数目。由于设计秒流量的值是在系统给水保证率取0.997的情况下计算得到的,能够保证不需要的额外计算,用较少的时间就确定了耗水量的值。

2.3两种方法计算设计秒流量的比较分析

本次设计对象属于公共建筑,本文为了说明我国住宅建筑计算设计秒流量和俄罗斯概率法计算设计秒流量的区别,本节假定设计对象为旅馆建筑和住宅建筑分别进行了研究计算。因此,首先依据我国现行规范,采用平方根法进行计算旅馆建筑的设计秒流量;其次,本文还在俄罗斯计算设计秒流量概率方法的研究分析基础上进行设计计算。并对两种方法计算旅馆建筑设计秒流量的结果进行了比较分析。然后,采用我国现行概率思想方法计算住宅建筑设计秒流量,并与俄罗斯概率法计算住宅设计秒流量计算结果进行了比较,分析了两者之间的异同点。

2.3.1旅馆建筑两种计算方法的比较

例:建筑构采用上文所述的条件,系统型式采用我国传统型式。由于建筑类型假定为旅馆,用水单位为人,卫生器具为浴盆和洗脸盆,针对配水最不利的一根立管,分别采用我国现行旅馆建筑平方根计算方法(2003)和俄罗斯概率法计算设计秒流量,并进行比较分析,旅馆建筑α=2.5;洗脸盆热水当量为1.0,浴盆为1.5;按照给水排水规范2003[7]旅馆设计秒流量计算如下

qg=0.2()1/2 (12)

——根据建筑用途取 2.5,——各计算管段上的当量数。计算结果见表1。

根据俄罗斯给水规范,按照俄罗斯概率法,对于上述建筑类型,每个用水单位即每人的用水定额为q h uh=10L/h*人, 用水单位数量U为228人,两种卫生器具单个流量均为q0=0.2L/s,卫生器具数N为192。

系统卫生器具总的概率

p=q h,u*U/3600/q o/N

=10.0*228/3600/0.2/192

=0.0165,

qg=5*qo*α

α根据表《俄罗斯规范》附录4查取。计算结果如表2。

表1 表2

由图5可见,当管段上卫生起居数量即

用水当量数比较少时,两种计算方法的结果

差距不大,随着起居数量的增多,平方根法的计算值远大于概率法,由于概率法有很高的给水保证率,以足够满足用水量的需求;还看到两种方法的结果曲线并不相像,说明两种方法考虑的影响设计秒流量的因素并不相同。这样平方根法的计算就引起水资源的大量浪费、系统不稳定、管材消耗过大,而且与实际用水情况存在

很难符合。因此设计秒流量的计算采用概率法更合理可靠。

图5 两种方法计算旅馆建筑设计秒流量的结果分析

2.3.2住宅建筑两种计算方法的比较

建筑结构采用上文所述的条件,系统型式采用我国传统型式。为了进一步研究概率法,假定建筑类型假定为住宅,用水单位为人,卫生器具为浴盆和洗脸盆,供水时间是T =24小时。针对配水最不利的一根立管,分别采用我国现行住宅建筑概率思想计算方法(2003)和俄罗斯概率法计算设计秒流量,并进行比较分析,住宅建筑共有用水单位,即人数M =228人,户数n =96户,这样平均每户用水人数m =2.735人,小时变化系数K h =2.5;洗脸盆热水当量为N g1=1.0,浴盆为N g2=1.5,则每个卫生间的用水当量N g =2.5;对于该建筑类型,每个用水单位即每人的用热水定额取为q h uh =10L/h *人,两种卫生器具单个额定流量均为q 0=0.2L/s 。采用俄罗斯概率法计算旅馆建筑的计算结果,如表3。我国现行概率思想计算方法按规范进行如下:

0.00

0.50

1.00

1.50

2.00

2.50

3.003.50

0510152025303540

卫生器具数(个)

设计秒流量(L /s )

(1) 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数,按(1)式计算最大用水时卫生器具给水当量平均出流概率: U O=q o TmK h/(0.2N g T3600)

=(10*24*2.735*2.5)/(0.2*2.5*24*3600)

=0.0330

(2)根据计算管段上的卫生器具给水当量总数,按(2)式计算出计算管段上的卫生器具给水当量的同时出流概率,根据计算所得U O查表a c=0.022;则:U=(1+a c(N g-1)0.49)/ (N g)1/2

=(1+0.022(N g-1)0.49)/ (N g)1/2

根据计算管段上的卫生器具给水当量同时出流概率,按(3)式计算得计算管段的设计秒流量:q g=0.2U N g

计算结果见下表4

表3 表4

图6 两种方法计算住宅建筑设计秒流量的分析图

比较俄罗斯概率法和我国现行概率思想法计算住宅建筑设计秒流量结果可以看出:在卫生器具数量小的情况下,两种方法计算的结果数值大小很接近,随着卫生器具数量的增加,计算结果数值逐渐加大,我国现行概率思想法计算结果明显大于俄罗斯概率法。

图7 系统示意图

2.4 分区组合体的流量计算

采用本次给定的建筑条件和图7所示的系统型式。分区组合体型式

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

020406080100120140160180200

卫生器具数(个)

设计秒流量(L /s )

与传统型式在配水立管设计秒流量的计算上有根本的不同,根据概率理论,配水高峰期间分区组合体内所有配水立管同时出现设计秒流量的概率应该为零,又由于分区组合体内几根配水立管通过结环连通管互相并联,当某根配水立管达到设计秒流量,而其余配水立管负荷较小时,最大负荷配水立管中的供水将来自两个方向——下端由供水干管进入,上端通过结环连通管由小负荷的配水立管流来(对于下行上给式系统),这说明分取组合体配水立管的设计秒流量应小于传统形式下配水立管设计秒流量的计算。通过结环连通管的流量取决于组合体构造、结环立管数目等固定因素和每个时刻用水点的分布位置、组合体流量水平等随机因素的影响。

首先为定量说明组合体立管设计流量与传统型式立管设计流量的区别,给出了某根配水立管达到设计流量的条件下,分区组合体内单根立管流量水平的数学期望值变化曲线。

从立管计算流量下立管自下供水值与组合体配水水平关系曲线[8]

可以看出当进入分区组合体的流量q i h与配水立管流量q st h相等时,组合体流量水平数学期望值为0.5,即水是从供水干管和结环连通管等份额的进入配水立管的。当组合体达到设计流量值,即q i h/q uz h=1时,其流量水平数学期望值为0.7,即水从供水干管70%的份额进入配水立管的,也就说分区组合体配水立管的设计流量按下式计算:

q st=0.7q g(13)q g——传统型式时概率法计算配水立管的设计秒流量(l/s)而组合体设计流量值是保证率为0.997下得到的,足够保证了建筑最大用水量。对于单根立管分别在传统型式和分区组合体型式下采用概率法计算设计秒流流量,并进行比较分析。

图8 概率法计算两种系统型式设计秒流量的比较曲线图分区组合体除了在系统设计时节省了循环立管管材,减少了各种附属设备数量,而且根据计算结果和曲线图8可以看到分区组合体单根配水立管秒流量比传统型式减少30%,从而根据设计秒流量所选的立管管径尺寸也要变小,进一步节省了管材耗用,增加了立管阻力,有利于系统稳定。

概率法计算水头损失偏大于传统方法,这是因为概率法立管设计秒流量采用等比例均分干管流量值,其设计秒流量值比传统方法偏大,致使水头损失偏大。但是随着卫生器具的增多,概率法计算水头损失明显减小,这是因为随着卫生器具的增多,概率法水力计算的设计秒流量更符合真实工况,其值明显小于传统水利计算方法值,在该设计秒流量值下,水头损失明显降低。而且立管总的水头损失概率法值明显小于我国传统水力计算方法。

根据上述分析有如下结论:概率法进行水利计算考虑到了用水的实际情况,综合影响水头损失的流量水平、配水点位置、系统结构形式等各种因素,使得计算水头损失更接近系统运行的真实值,避免设备选择过大或者偏离实际运行工况,减少了资源浪费,增加了系统稳定性。

3.结论

集中热水系统随着生活给水供应质量的要求、生态环境的要求、能源的要求其系统型式越来越重要,在上述一系列的要求之下,设计秒流量的计算就显得更有意义,而以概率思想为基础的计算方法考虑到热水利用的各种随机性因素,通过实际工程的计算机模拟和计算结果的分析,证明了概率法计算设计秒流量的科学性和合理性。该方法在发达国家已经广泛应用,在我国也逐渐被利用到工程设计。

参考资料

[1]赵金玲,邹平华.集中热水供应系统型式的研究.给水排水,1999,V ol.25 ,No.1

[2]邹平华,赵金玲.生活给水及热水供应设计秒流量的计算方法的研究(一).给水排水.V ol.26,No.8

[3]中国市政工程西南设计院.给水排水设计手册.第一册.常用资料.第一版.中国建筑工业出版社.1986.P606.

[4]А?А约宁(苏).单文昌,尚雷(译).供热学.机械工业出版社.1986.9

[5]王增长,曾雪华.建筑给水排水工程.第四版.中国建筑工业出版社.1998.6

[6]马金等.建筑给水排水工程.第一版.清华大学出版社.2004.4

[7]建筑给水配水规范.2003.

[8]снип2.04.01—85*.внутреннийводопроводиканализациязданиймосква .1998;

[9]справочникпроектировощкавнутренниесанитарно-техническиеустройства. частъⅡ.строиздат.1990;

[10]贺平,孙刚.供热工程.第三版.中国建筑工业出版社.1993.11

[11]供热水.[日]空气调和?卫生工学会.科学出版社.2002

[12]刘希孟,郭玉茹.高层建筑给水排水工程.哈尔滨工业大学出版社.1994.

[13]李亚峰,尹士君.给水排水工程专业毕业设计指南.第一版.化学工业出版社.2003.10

[14]王子茹.房屋建筑设备识图.中国建材工业出版社.第一版.2001.1

洪峰流量的计算

3.4设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm (1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=0.278ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数; F——流域面积,km2。 (1)流域特征值 在1/50000的地形图上,量算鸭嘴河布西水库坝址的流域特征值,见表3.7。

生活给水设计秒流量的概率计算方法

生活给水设计秒流量的概率计算方法 摘要:本文分别介绍了国内外在计算生活给水设计秒流量时采用的常用概率理论方法,即亨特概率法和俄罗斯概率法。并对其理论原理,计算方法及特点进行了阐述。最后对两种方法进行比较。 关键词:给水设计秒流量概率法卫生器具 1 前 生活用水设计秒流量反映了给水排水系统瞬时高峰用水规律的设计流量。以L/s计。用于确定给水管管径和排水管管径,计算给水管系的水头损失和排水管道的坡度、充满度,以及选用水泵等 世界各国进行了不少水量方面的研究,并制定出各自室内给水管道流量的计算方法。室内给水管道流量的计算方法有平方根法、概率理论法 目前,国外应用的方法皆以概率为理论基础,概率计算是所有新的设计方法的基础。国外不仅早已建立了以概率理论为基础的秒流量计算式,而且在近几十年来,对用水工况进行了长期的大量的研究,至今己获得足够的可以更完善地加工整理设计秒流量计算方法的资料,这对我国设计秒流量计算方法的改进具有重要的参考价值。虽然许多国家均采用概率方法为基础,但由于对数据的选取以及处理方式不同,所产生的方法不同,以美国的亨特概率方法和俄罗斯的概率方法为代表 2 概率计算方 2.1 亨特概率方 2.1.1 亨特概率法的建立 [1 亨特概率法由美国的亨特(Roy B.Hunter)于1924年提出,并在1940年以后发展成熟,得到承认。其基本原理是将系统中卫生器具的使用看作一个随机变量,各种卫生器具的使用是独立的,使用中不存在相互联系,可用二项分布的数学模型来描述秒流量这一随机变量

假定某给水管段上连接有n个卫生器具,各个器具的开启和关闭相互独立,每个器具的额定流量为q0,则通过该计算管段的最大给水设计秒流量为q0n,最小给水流量为0,任意时刻通过该管段的给水秒流量q(0≤q≤q0)。设计系统应降低管材耗量,并保证不间断供水,以满足用水高峰时的用水量。假设用水高峰时每个卫生器具的使用概率为p,则不被使用的概率为(1-p),那么在用水高峰时,n个卫生器具中有i个同时使用的概率为 (2-1 亨特的定义,对根据于只有一种卫生器具构成单一系统,表示如下 (2-2 其中:Pm—至多有m个器具同时的概率值 m— 卫生器具同时使用个数设计值 p—用水高峰期单个卫生器具的使用概率 n—管段连接的卫生器具数 Pr—供水保证值,在亨特概率方法中采用0.99 由上式可以得知,在供水保证值Pr给出的情况下,可得在总卫生器具n个中,同时起作用的卫生器具数目r的值 由上式(2-2)知,n个卫生器具中有r个作用,r是0到n的任意数,把r从0到n的概率全部想加起来可得 (2-3 其中:式中符号同前 利用(式2.2)在已知N,P的条件下,可求出满足Pm≥0.99的m值。卫生器具同时使用个数设计值的概念与设计秒流量的概念想对应的计算管段的设计秒流量为 qg=q0 式中 qg——计算管段的设计秒流量,L/S

热水系统计算书

热水系统计算 一、热水系统: 1.1.本工程宿舍设全日制集中热水供应系统。 1.2. 耗热量计算: 冷、热水计算温度分别取值5℃和60℃; 宿舍热水总耗热量计算: 已知: 用水计算单位数m=324 (床位);热水用水定额qr=100升/每人每日;使用时间=24小时;冷水水温tl=5℃;热水水温tr=60℃;根据《给水排水设计手册》第一册,第二版《常用资料》的表5-28,插值计算得热水密度=0.98324kg/L ;再根据2009版《建筑给水排水设计规范》的表 5.3.1插值计算得小时变化系数Kh=4.534857 ;水的比热C=4.187kJ/kg℃; 计算: 设计小时耗热量Qh=(4.534857×324×100×4.187×(60-5)×0.98324)/24=1386189kJ/h=385kW。 1.3.设计小时总热水量: 已知: 设计小时耗热量=385000W ;设计热水温度=60℃;设计冷水温度=5℃; 计算: 根据《给水排水设计手册》第一册,第二版《常用资料》的表5-28,插值计算得热水密度=0.98324kg/L ;设计小时热水量=385000/(1.163×(60-5)×0.98324)=6121.51L/h ,即6.12立方米/小时。 2.本工程热水系统供水分区同冷水给水系统。其中3F~5F为供水一区,6F~11F为供水二区。 21.低区(3F~5F)宿舍热水耗热量计算: 已知: 用水计算单位数m=108 ;热水用水定额qr=100升/每人每日;使用时间=24小时;冷水水温tl=5℃;热水水温tr=60℃;根据《给水排水设计手册》第一册,第二版《常用资料》的表5-28,插值计算得热水密度=0.98324kg/L ;再根据2009版《建筑给水排水设计规范》的表5.3.1插值计算得小时变化系数Kh=4.8 ;水的比热C=4.187kJ/kg℃; 计算: 设计小时耗热量Qh=(4.8×108×100× 4.187×(60-5)×0.98324)/24=489079kJ/h=136kW。

设计秒流量的计算

附 1、5设计秒流量的计算 1、5、1设计流量计算 (1)最高日用水量Qd 最高日用水量按式(1-1)计算: 3(/)1000 d d mq Q m d = (1-1) 式中m —设计单位数(如人数、床位数等) q d 一用水定额,见表1-9、10 采用公式(1-1)应注意以下几点: 1)该公式适用于各类建筑物用水、汽车库汽车冲洗用水、绿化用水、道路浇洒用水。 2)对于多功能的建筑物,如商住楼、宾馆、大会堂、影剧院等,应分别按不同建筑物的用水量定额,计算各自的最高日用水量,然后将同时用水者叠加,取最大一组用水量作为整幢建筑物的最高日用水量。 3)对一幢建筑可用于几种功能时,应按耗水量最大的功能计算。 4)一幢建筑物的服务人数超过范围时,设计单位数应按实际单位数计算,如集体宿舍内附设公共浴室,该浴室还为其它人员服务时,其浴室用水量应按全部服务对象计算。 5)建筑物实际用水项目超出或少于范围时,其用水量应作相应增减。如医院、旅馆增设洗衣房时应增加洗衣房的用水量。 6)设计单位数应由建设单位或建筑专业提供。当无法取得数据时,在征得建设单位同 意下,可按卫生器具一小时用水量与每日工作时数来确定最高日用水量。 (2)工业企业生产用水量:应根据工业生产工艺、设备、工作制度、供水水质与水温等因 素并结合供水系统状况来选择与确定生产用水量。 (3)消防用水量:见第2章。 (4)最大小时生活用水量:最大小时用水量按式(1-2)计算: 3(/)d h Q Q K m h T = (1-2) 式中Qh —最大小时用水量3(/)m h Qd 最高日用水量3(/)m d 或最大班用水量3 (/)m 班; T —每日或最大班用水时间(h) K —小时变化系数,见表1-9,10 (5)生活给水设计秒流量: 1)住宅、集体宿舍、旅馆、宾馆、医院、幼儿园、办公楼、学校等建筑物生活给水设计秒流量,应按式(1-3)计算: 0.2(/)g g q KN L s = (1-3) 式中g q —设计秒流量(L/s) a,K —根据建筑物用途而定的系数,见表1-20; g N —计算管段的卫生器具给水当量总数,见表1-16

生活给水设计秒流量的概率计算方法

生活给水设计秒流量的概率计算方法 生活用水设计秒流量反映了给水排水系统瞬时高峰用水规律的设计流量。以L/s计。用于确定给水管管径和排水管管径,计算给水管系的水头损失和排水管道的坡度、充满度,以及选用水泵等。 世界各国进行了不少水量方面的研究,并制定出各自室内给水管道流量的计算方法。室内给水管道流量的计算方法有平方根法、概率理论法。 目前,国外应用的方法皆以概率为理论基础,概率计算是所有新的设计方法的基础。国外不仅早已建立了以概率理论为基础的秒流量计算式,而且在近几十年来,对用水工况进行了长期的大量的研究,至今己获得足够的可以更完善地加工整理设计秒流量计算方法的资料,这对我国设计秒流量计算方法的改进具有重要的参考价值。虽然许多国家均采用概率方法为基础,但由于对数据的选取以及处理方式不同,所产生的方法不同,以美国的亨特概率方法和俄罗斯的概率方法为代表。 2 概率计算方法 2.1 亨特概率方法 2.1.1 亨特概率法的建立[1]

亨特概率法由美国的亨特(Roy B.Hunter)于1924年提出,并在1940年以后发展成熟,得到承认。其基本原理是将系统中卫生器具的使用看作一个随机变量,各种卫生器具的使用是独立的,使用中不存在相互联系,可用二项分布的数学模型来描述秒流量这一随机变量。 假定某给水管段上连接有n个卫生器具,各个器具的开启和关闭相互独立,每个器具的额定流量为q0,则通过该计算管段的最大给水设计秒流量为q0n,最小给水流量为0,任意时刻通过该管段的给水秒流量q(0≤q≤q0)。设计系统应降低管材耗量,并保证不间断供水,以满足用水高峰时的用水量。假设用水高峰时每个卫生器具的使用概率为p,则不被使用的概率为(1-p),那么在用水高峰时,n个卫生器具中有i个同时使用的概率为: (2-1) 亨特的定义,对根据于只有一种卫生器具构成单一系统,表示如下: (2-2) 其中:Pm—至多有m个器具同时的概率值; m—卫生器具同时使用个数设计值;

流量计算公式

摘要:本文概述了目前用于管道直饮水系统管网设计秒流量的三种算法:传统公式算法、改造传统公式算法和概率公式算法,并比较了这三种算法的计算结果,分析了其中原因。指出传统公式算法和改造传统公式算法都不适用于管道直饮水系统管网的计算,而概率公式算法是一种较为合适的方法。 关键词:管道直饮水设计秒流量算法 0 前言 设计秒流量的计算是管网水力计算的基础,设计秒流量计算正确才能保证整个系统的正常运行。设计秒流量计算偏大,就会导致管径偏大、水泵流量偏大,造成经济上的浪费;同时,管网中的流速偏小,容易导致细菌繁殖,微粒沉积。而如果设计秒流量过小,则会使所选管径过小,造成水头损失过高,浪费能量,严重时出现断流,不能保证用水可靠性。所以,选择一个正确的设计秒流量计算方法至关重要。 1.设计秒流量计算方法概述 目前,用于管道直饮水系统设计秒流量的计算方法大致有三种: (1)算法一(传统公式算法) 即采用建筑生活给水管道设计秒流量计算公式 (1) 取=1.02,=0.0045,公式(1)成为: (2) 其中为设计秒流量(l/s),为当量总数,此公式为水工业工程设计手册《建筑和小区给水排水》[1]所采用。 (2)算法二(改造传统公式算法) 根据1981年出版的《室内给排水工程》[2],住宅生活用水秒不均匀系数与平均日用水量的关系为:

(3) 则 (4) 其中,为秒不均匀系数,为平均日用水量(m3/d)。 (3)算法三(概率公式算法) 关于概率公式算法,首先要引入一个重要概念——龙头使用概率。根据有关资料[3],龙头使用概率可表示为: (5) ——最高峰用水时龙头连续两次用水时间间隔(s); ——期间龙头放水时间(s)。 有了龙头的使用概率之后,可以用概率统计的方法计算出同时用水龙头数量,个龙头额定流量之和便是管道设计秒流量。 、和可用以下方法计算得到。设用水高峰期为下班后的某个半小时内,且此时段内的放水时间均匀分布,则此时龙头的使用概率为: (6) ——高峰期用水定额,l/s; ——管段负荷龙头总数;

住宅热水设计计算

住宅热水设计计算 一、概述: 1、目前国内住宅具有如下特点: ⑴、住宅分类,普通住宅:建筑面积小于80平方米,设一厨一卫。高尚住宅:建筑面积大(100 ~200平方米),室内外装修标准高,附设卫生间两个或两个以上 ⑵、每户居民人数平均3~4人。 ⑶、一般设有即热式燃气热水器或小容积式电热水器,部分大城市高标准商品住宅设有集中热水供应或每户设大容积式热水器。 ⑷、小管径新型冷热水管材得到普遍使用。 ⑸、对节水器具的使用提出了新的要求。 2、住宅热水用水量的分析:资料表明,洗浴用热水占户总用水量的30%,耗热量占整个家庭耗能的15%。如果采用合适的节水措施,可节约15%的用水量。 二、热水设计秒流量的计算方法: 1、平方根法: 规范规定的公式: q=α*0.2√Ng+k*Ng) (1) 其中:α=1.05; k=0.0045;Ng--卫生器具当量总数 公式(1)的推导及取值:公式 (1) 是根据给水秒不均匀系数确定的: Ks = 30 / √Qp’ q = (Qp’/24)*Ks*1/3.6=0.347√Qp’ = 0.347√So*N =bo √Ng ( l/s ) 其中:Ks-----给水秒不均匀系数; Qp’------平均日用水量; So-----单位当量的日用水量 Ng----- 卫生器具当量数 bo = 0.347 √So 公式 (1)使用条件: 按每户一个卫生间,每户5人计。 不同用水量标准的N、√So值和 bo值见表1。 根据上表,取bo=0.2, 并把bo随生活用水量标准的变化性质用系数α反

映出来,再加以修正,从而得出计算公式(1) 。 对于设有多个卫生间的“高尚住宅”,不同用水量标准的N、√So值和 bo 值见表2。每户使用人数同上。 2、平方根法的修改:从上表1~2可看出,当每户使用人数一定时,随着卫生器具当量总数的增加,用水量标准亦增大,但bo值增加很小,并且小于0.15;每户使用人数减少时,虽然卫生器具当量增加,用水量标准增大,但bo值也小于0.15。因此,仍按公式 (1) 计算设计秒流量明显不否合适,应考虑到卫生器具增多,卫生洁具同时使用率变小的因素,对于“高尚住宅”,建议bo的取值为0.15。并取消k值得修正。 由于公式(1)存在理论推导和实测资料两方面的缺陷,不能反映使用人数及用水量标准对设计流量的影响因素,且当Ng≥300时,(k*Ng)项值明显增加,从而失去了修正的意义。对多卫生间的高尚住宅,热水管道设计秒流量计算公式修改为: q=α*0.15√Ng (2) 3、概率法:给水设计秒流量的计算属于概率统计的范畴,采用概率法计算更能反映客观实际情况,这一方法在美欧发达国家得以采用。设计秒流量计算公式为:q=1.0+0.22p*Ng (3) 其中:Ng:卫生器具当量数,的取值应大于25; p:单位当量使用频率,p=0.017~0.055,p的取值与用水量标准、使用人数、卫生器具当量总数有关。p的取值应根据不同的使用工况经实测取得,但目前还难以做到。 三、不同使用工况热水设计秒流量的计算比较: 1、不同户型器具当量数及流量计算: (1) 、户内采用即热式热水器时,由于即热式热水器流量为定值(5~10 l/min),热水管均可采用DN15管道。热水设计秒流量可不计算。 (2) 、户内采用容积式热水器或集中热水供应时, 流量计算见表3 2、多栋住宅楼组成的小区器具当量数及流量计算: 某小区由10栋小高层(10层)组成,共800户,服务人口2880人,户型均为一厨二卫的高尚住宅,集中热水供应,竖向为一个给水区。计算简图见图1,有关计

小流域洪峰流量计算的公式

小流域洪峰流量计算的公式 1、推理公式 f Q n s m τ ψ278.0= 当τ≥c t ,时,n s u τψ-=1 当τ c t ,时,n c t n -? ? ? ??=1τψ n H s -= 12424 n --=410ψ ττ () n n n sF L m J ----??? ? ? ?= 414431410278.0τ ()n c s n t 1 1? ???? ?-=μ m Q ——设计频率的洪峰流量(m 3 /s ) ψ ——洪峰径流系数 τ ——汇流历时(h) S ——暴雨雨力(mm/h) n ——暴雨衰减指数,其分界点为1小时,当t<1,取n=n 1,

当t 1,取n=n 2 μ ——产流历时内流域内的平均入渗率(mm/h ) c t ——产流历时 24H ——设计频率的最大 24小时雨量(mm ) 计算步骤 1、根据地形图确定流域的特征参数F 、L 、J 2、由公式4 13 1 F J L =θ计算θ值,并根据相关公式计算汇流参数 m 3、由暴雨μ的参数等值线图确定设计流域的暴雨参数特征值 24 H 、C V 、C S 、n 1或n 2,并由皮尔逊Ⅲ型,结合频率查表, 确定指定频率下的K p 值,由()2412 24H K s K S n p p p -== 4、有《四川省水文手册》,查出 n -44 的值,并根据n s m -?? ? ? ? ???????=44 410383.0θτ计算0 τ值 5、查表确定μ值,并计算n s τμ,查图由n 、n s τμ两坐标 的焦点值,确定洪峰径流系数ψ 6、根据《四川省水文手册》,查出n -41的值,计算流域汇流时间n --=41 ψ ττ,计算τ值

第五章热水系统设计与计算

第五章热水系统设计与计算 5.1热水系统选择 5.1.1热水供应系统选择 建筑热水供应系统按热水供应围的大小,可分为集中热水供应系统、局部热水供应系统和区域热水供应系统。热水供应系统类型的选择,应根据使用要求、耗热量、用水点分布、热源种类等因素确定。综合考虑,本设计中采用集中热水供应方式。 5.1.2热水供应方式确定 本设计中采用间接加热方式,加热设备选用导流型容积式水加热器,热水管网采用半循环方式,打开配水龙头时只需放掉热水支管中少量的存水,就能获得规定水温的热水。并采用开式热水供水方式,即在所有配水点关闭后,系统的水仍与大气相通。该方式一般在管网顶部设有高位冷水箱和膨胀管或高位开式加热水箱。为了保证良好的循环效果,采用同程式循环系统。 5.2热水供应系统组成 热水供应系统的组成因建筑类型和规模、热源情况、用水要求、加热和储存设备的供应情况、建筑对美观和安静的要求等不同情况而异。典型的集中热水供应系统主要由热媒系统、热水供应系统、附件三部分组成。

5.3热水管道的布置与敷设 热水管道的布置与敷设除了应满足给(冷)水管布置敷设的要求外,还应注意由于水温高带来的体积膨胀、管道伸缩补偿、保温、排气等问题。 5.3.1热水管道的布置 热水管道的布置按热水流向分为上行下给和下行上给两种形式。根据《建筑给水排水设计规》GB 50015—2009规定根据生活给水管道的布置形式和相关规要求,确定下、上区热水管道的布置形式为均为下行上给式。另外,热水管道的布置按循环管路水流路径可分为异程和等程两种。规要求循环管道应采用同程布置方式,并设循环泵机械循环。 故本设计中建筑热水管道的布置采取下行上给的同程式布置。 5.3.2热水管道的敷设 本次设计中热水管道布置高度统一取1.3米,当要穿门时布置高度取2.5米。热给水管埋地深度0.4米,户外热水管做好保温措施,坡度取0.003。热回水管与热给水管布置方式相同,底层横干管埋深0.7米。 5.3.4热水管道管材选择 热水系统采用的管材和管件,应符合现行产品标准的要求。管道的工作压力和工作温度不得大于产品标准标定的允许工作压力和工作温度。 热水管道应选用耐腐蚀和安装连接方便可靠的管材,可采用薄壁铜管、薄壁不锈钢管、塑料热水管、塑料和金属复合热水管等。

设计秒流量的计算

附 设计秒流量的计算 1.5.1设计流量计算 (1)最高日用水量Qd 最高日用水量按式(1-1)计算: 3(/)1000 d d mq Q m d = (1-1) 式中m —设计单位数(如人数、床位数等) q d 一用水定额,见表1-9、10 采用公式(1-1)应注意以下几点: 1)该公式适用于各类建筑物用水、汽车库汽车冲洗用水、绿化用水、道路浇洒用水。 2)对于多功能的建筑物,如商住楼、宾馆、大会堂、影剧院等,应分别按不同建筑物的用水量定额,计算各自的最高日用水量,然后将同时用水者叠加,取最大一组用水量作为整幢建筑物的最高日用水量。 3)对一幢建筑可用于几种功能时,应按耗水量最大的功能计算。 4)一幢建筑物的服务人数超过范围时,设计单位数应按实际单位数计算,如集体宿舍内附设公共浴室,该浴室还为其它人员服务时,其浴室用水量应按全部服务对象计算。 5)建筑物实际用水项目超出或少于范围时,其用水量应作相应增减。如医院、旅馆增设洗衣房时应增加洗衣房的用水量。 6)设计单位数应由建设单位或建筑专业提供。当无法取得数据时,在征得建设单位同 意下,可按卫生器具一小时用水量和每日工作时数来确定最高日用水量。 (2)工业企业生产用水量:应根据工业生产工艺、设备、工作制度、供水水质和水温等因 素并结合供水系统状况来选择和确定生产用水量。 (3)消防用水量:见第2章。 (4)最大小时生活用水量:最大小时用水量按式(1-2)计算: 3(/)d h Q Q K m h T = (1-2) 式中Qh —最大小时用水量3(/)m h Qd 最高日用水量3(/)m d 或最大班用水量3 (/)m 班; T —每日或最大班用水时间(h) K —小时变化系数,见表1-9,10 (5)生活给水设计秒流量: 1)住宅、集体宿舍、旅馆、宾馆、医院、幼儿园、办公楼、学校等建筑物生活给水设计秒流量,应按式(1-3)计算: 0.2(/)g g q KN L s = (1-3) 式中g q —设计秒流量(L/s) a,K —根据建筑物用途而定的系数,见表1-20; g N —计算管段的卫生器具给水当量总数,见表1-16

用水量计算方法

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算;

2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算:

建筑热水计算

5.3 耗热量、热水量和加热设备供热量的计算 5.3.1设计小时耗热量的计算: 1设有集中热水供应系统的居住小区的设计小时耗热量,当公共建筑的最大用水时时段与住宅的最大用水时时段一致时,应按两者的设计耗热量叠加计算,当公共建筑的最大用水时时段与住宅的最大用水时时段不一致时,应按住宅的设计小时耗热量加公共建筑的平均小时耗热量叠加计算。 2全日供应热水的住宅、别墅、招待所、培训中心、旅馆、宾馆的客房(不含员工)、医院住院部、养老院、幼儿园、托儿所(有住宿)等建筑的集中热水供应系统的设计小时耗电量应按下式计算: (5.3.1-1) 式中--设计小时耗热量(W); --用水计算单位数(人数或床位数); --热水用水定额(L/人·d或L/床·d)应按本规范表5.1.1-1采用; --水的比热,=4187(J/Kg·℃); --热水的温度,=60℃; --冷水温度,按本规范表5.1.4选用; --热水的密度(Kg/L); --小时变化系数,可按表5.3.1-1~表5.3.1-3采用。 表5.3.1-1 住宅、别墅的热水小时变化系数值 居住人数m ≤100150 200 250 300 500 1000 3000 ≥6000 5.12 4.49 4.13 3.88 3.70 3.28 2.86 2.48 2.34 表5.3.1-2 旅馆的热水小时变化变化系数值 居住人数m ≤150300 450 600 900 ≥6000 6.84 5.61 4.97 4.58 4.19 3.90

表5.3.1-3 医院的热水小时变化变化系数值 居住人数m ≤5075 100 200 300 500 4.55 3.78 3.54 2.93 2.60 2.23 注:招待所、培训中心、宾馆的客房(不含员工)、养老院、幼儿园、托儿所(有住宿)等的建筑K h可参照表5.1.3-2选用;办公楼的K h见表3.1.10。 3 定时供应热水的住宅、旅馆、医院及工业企业生活间、公共浴室、学校、剧院、体育馆 (场)等建筑的集中热水供应系统的设计小时耗热量应按下式计算: (5.3.1-2) 式中--设计小时耗热量(W); --卫生器具热水的小时用水定额(L/h),应按本规范表5.1.1-2采用; --水的比热,C=4187(J/Kg·℃); --热水的温度(℃),按本规范表5.1.1-2采用 --冷水温度(℃),按本规范表5.1.4采用; --热水的密度(Kg/L); --同类型卫生器具数; --卫生器具的同时使用百分数:住宅、旅馆、医院、疗养院病房,卫生间内浴盆或淋浴器可按70%~100% 计,其他器具不计,但定时连续供水时间应不小于2h。工业企业生活间、公共浴室、学校、剧院、体 育馆(场)等的浴室内淋浴器和洗脸盆均按100%计。住宅一户带多个卫生间时,只按照一个卫生间计 算。 4具有多个不同使用热水部门的单一建筑或具有多种使用功能的综合性建筑,当其热水由同一热水供应系统供应时,设计小时耗热量,可按同一时间内出现用水高峰的主要用水部门的设计小时耗热量加其他部门的平均小时耗热量计算。 5.3.2设计小时耗热量可按下式计算: (5.3.2) 式中--设计小时耗热量(L/h);

给水设计秒流量计算举例

住宅给水设计秒流量计算 例1:生活给水设计计算草图如图1所示,立管A 和B 服务于每层六户的10层普通住宅Ⅱ型,每户一厨一卫,生活热水由家用燃气热水器供应,每户的卫生器具及当量为:洗涤盆1只(N=1.0);坐便器1具(N=0.5);洗脸盆1只(N=0.75);淋浴器1具(N=0.75);洗衣机水嘴1个(N=1.0)。立管C 和D 服务于每层四户的10层普通住宅Ⅲ型,每户两卫一厨,生活热水由家用燃气热水器供应,每户的卫生器具及当量为:洗涤盆1只(N=1.0);坐便器2具(N=0.5*1=1);洗脸盆2只(N=0.75*2=1.5);浴盆1只(N=1.2),淋浴器1具(N=0.75);洗衣机水嘴1个(N=1.0)。计算给水设计秒流量。 计算:立管A 和B :查表2.2.1,取生活用水定额:250L/人?天;用水时间24小时;时变化系数2.8。设户均人数3.5人。 查表2.1.1,小计户当量N g =4.0。 最大用水时卫生器具给水当量平均出流概率为: U 0= 3600 *24*4*2.08 .2*5.3*250=0.0354 查表2.3.1;αc =0.02413 立管C 和D :查表2.2.1,取生活用水定额:280L/人?天;用水时间24小时;时变化系数2.5。设户均人数4人。 查表2.1.1,小计户当量N g =6.45。 最大用水时卫生器具给水当量平均出流概率为: U 0= 3600 *24*45.6*2.05 .2*4*280=0.0251 查表2.3.1;αc =0.01522 管段2~3的最大用水时卫生器具给水当量平均出流概率为:

0318.010 *4*45.62*10*6*40251 .0*10*4*45.60354.0*2*10*6*4)3~2(0=++= U 查表2.3.1;αc =0.02095 管段3~4的最大用水时卫生器具给水当量平均出流概率为: 0301.02 *10*4*45.62*10*6*40251 .0*2*10*4*45.60354.0*2*10*6*4)3~2(0=++= U 查表2.3.1;αc =0.01947 设计秒流量计算如下表: 浴盆(1.20)坐便器(0.5)洗脸盆(0.75洗涤盆(1.0)淋浴器 (0.75 ) 洗衣机 (1.0) ∑Ng U。(%) ɑc U(%) q(L/s) 入户管A 00.50.7510.75140.03540.024130.52070.42A1~A203 4.56 4.56240.03540.024130.2270 1.09A2~A306912912480.03540.024130.1673 1.61A3~A40913.51813.518720.03540.024130.1408 2.03A4~A501218241824960.03540.024130.1250 2.40A5~A601522.53022.5301200.03540.024130.1142 2.74A6~A7018273627361440.03540.024130.1062 3.06A7~A802131.54231.5421680.03540.024130.1000 3.36A8~A9024364836481920.03540.024130.0950 3.65A9~A1002740.55440.5542160.03540.024130.0909 3.93A10~1030456045602400.03540.024130.0873 4.191~206090120901204800.03540.024130.0683 6.56入户管C 1.21 1.510.751 6.450.02510.015220.40750.53C1~C2 4.84643425.80.02510.015220.2113 1.09C2~C39.681286851.60.02510.015220.1537 1.59C3~C414.412181291277.40.02510.015220.1281 1.98C4~C519.21624161216103.20.02510.015220.1129 2.33C5~C62420302015201290.02510.015220.1025 2.64C6~C728.82436241824154.80.02510.015220.0948 2.94C7~C833.62842282128180.60.02510.015220.0888 3.21C8~C938.43248322432206.40.02510.015220.0840 3.47C9~C1043.23654362736232.20.02510.015220.0800 3.72C10~24840604030402580.0251 0.01522 0.0766 3.952~3481001501601201607380.03180.020950.05648.333~4 96140 210 200 150 200 996 0.03010.019470.0499 9.93

设计秒流量的计算

附 1.5设计秒流量的计算 1.5.1设计流量计算 (1)最高日用水量Qd 最高日用水量按式(1-1)计算: 3(/)1000 d d mq Q m d = (1-1) 式中m —设计单位数(如人数、床位数等) q d 一用水定额,见表1-9、10 采用公式(1-1)应注意以下几点: 1)该公式适用于各类建筑物用水、汽车库汽车冲洗用水、绿化用水、道路浇洒用水。 2)对于多功能的建筑物,如商住楼、宾馆、大会堂、影剧院等,应分别按不同建筑物的用水量定额,计算各自的最高日用水量,然后将同时用水者叠加,取最大一组用水量作为整幢建筑物的最高日用水量。 3)对一幢建筑可用于几种功能时,应按耗水量最大的功能计算。 4)一幢建筑物的服务人数超过范围时,设计单位数应按实际单位数计算,如集体宿舍内附设公共浴室,该浴室还为其它人员服务时,其浴室用水量应按全部服务对象计算。 5)建筑物实际用水项目超出或少于范围时,其用水量应作相应增减。如医院、旅馆增设洗衣房时应增加洗衣房的用水量。 6)设计单位数应由建设单位或建筑专业提供。当无法取得数据时,在征得建设单位同 意下,可按卫生器具一小时用水量和每日工作时数来确定最高日用水量。 (2)工业企业生产用水量:应根据工业生产工艺、设备、工作制度、供水水质和水温等因 素并结合供水系统状况来选择和确定生产用水量。 (3)消防用水量:见第2章。 (4)最大小时生活用水量:最大小时用水量按式(1-2)计算: 3(/)d h Q Q K m h T = (1-2) 式中Qh —最大小时用水量3(/)m h Qd 最高日用水量3(/)m d 或最大班用水量3 (/)m 班; T —每日或最大班用水时间(h) K —小时变化系数,见表1-9,10 (5)生活给水设计秒流量: 1)住宅、集体宿舍、旅馆、宾馆、医院、幼儿园、办公楼、学校等建筑物生活给水设计秒流量,应按式(1-3)计算: 0.2(/)g g g q N KN L s = (1-3) 式中g q —设计秒流量(L/s) a,K —根据建筑物用途而定的系数,见表1-20; g N —计算管段的卫生器具给水当量总数,见表1-16

用水量计算

用水量计算
3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、 用水定额及卫 生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表 3.6.1 中数值的室外给水管段,其住宅应按本规范第 3.6.3、3.6.4 条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施应按本规范第 3.6.5 条和第 3.6.6 条的规定计算节点流量; 表 3.6.1 居住小区室外给水管道设计流量计算人数 每户 Ng 3 4 5 6 7 8 9 10
qokh 350 400 450 500 550 600 650 700
10200 9100 8200 7400 6700 6100 5600 5200
9600 8700 7900 7200 6700 6100 5700 5300
8900 8100 7500 6900 6400 6000 5600 5200
8200 7600 7100 6600 6200 5800 5400 5100
7600 7100 6650 6250 5900 5550 5250 4950
— 6650 6250 5900 5600 5300 5000 4800
— — 5900 5600 5350 5050 4800 4600
— — — 5350 5100 4850 4650 4450
注:1 当居住小区内含多种住宅类别及户内 Ng 不同时,可采用加权平均法计 算; 2 表内数据可用内插法。 2 服务人数大于表 3.6.1 中数值的给水干管,住宅应按本规范第 3.1.9 条的规定 计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施的生活给水设计流量,应按本规范第 3.1.10 条计算最大时用水量为节点 流量; 3 居住小区内配套的文教、 医疗保健、 社区管理等设施, 以及绿化和景观用水、 道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。

室内给排水、热水、消防系统计算步骤(精)

一、建筑内部给水系统设计计算步骤 1. 初步确定系统方案 ⑴给水系统——生活、生活~生产、生产~消防、 ⑵供水方式: H0与估算的H 比较确定 H0>H H0稍<H H0<H ⑶管路图式:下行上给、上行下给、中分 ⑷建筑物的性质:重要——环状、暗装。 不重要——枝状、明装。 2. 管道平面布置 地下室、底层、标准层、顶层、屋面、水箱间 内容包括:引入管、干管、立管、支管、卫生设备、水池、水泵、水箱。(并向建筑、结构、暖通、电气提供地沟、立管位置、水箱位置) 3. 绘制计算草图 ⑴可不按比例画,但应按实际布置位置情况画; ⑵画出水池、水泵、水箱及室外管网示意图: ⑶以流量变化为节点,对计算管路编号; 上行下给从最高最远用水点至水箱,

下行上给从最高最远用水点至水水泵或室外管网。 ⑷其他管路编号(一张草图上编号不能重)。 ⑸标出管长。 4. 据建筑物类型确定设计秒流量计算公式及参数 5. 列表进行水力计算确定各管段的 计算管路:qg 、DN 、V 、I 、hy 其他管路:qg 、DN 、V 6、求计算管路的沿程水头损失、局部水头损失、水表水头损失。 7、求系统所需压力H 8、校核室外管网资用水头Ho 。最后确定供水方式 9、增压贮水调节设备设计计算(若 Ho>H 接第 10步) 水箱:容积、选定型产品、确定水箱的安装高度。 水泵:出水量、扬程、选产品类型和数量 水池:容积、几何尺寸、标高(最高水位、最低水位)提交给搞结构的。 10、绘制正式平面图 地下室、底层、标准层、顶层、屋面、水箱间 11、绘制正式系统图 标出管径、坡度、管件、附件、标高 12、局部放大图

酒店热水设计方案

酒店热水设计方案 一、设计依据 1、《建筑给水排水设计规范》GB 50015-2003 2、气象参数 (1)冬季空调计算干球温度: 3.5 ℃ (2)极端最低温度: -4.2 ℃ (3)每年日平均温度≤ 8℃天的天数: 29 天 二、热水用水量 序号 用水点概况 合计用水量( L)用水房间用水指标 1会议 150 人3L/ 人450 2不加浴缸客房 105 间120L/ 人25200 3加浴缸客房 19 间500L/ 间9500 4足疗间 42 床位100L/ 床位4200 5SPA间 2 间1000L/ 间2000 6餐饮 +厨房( 200 人)20L/ 人4000共计最大日用水量: 45.35T/ 天( 60℃) 49.5T/ 天( 55℃)

三、热泵设计 1、冷水水温计算温度: 5℃ 2、每天最大需求制热量:49.5T x 1000 x 50 / 860 = 2878kw 3、每天加热时间按12 小时计算,每小时所需热量:2878 / 12 =240kw 4、10HP热泵配置数量: 240kw / 41kw = 5.85 台(配置 6 台,单台制热量41kw) 不同环境温度热泵运行概况 环境温度(℃)热泵制热量( kw)每天最大运行时间( h)154111.7 73016 02221.8 5、电辅加热按热泵制热量40%配置, 240kw x 0.4 =96kw ,配 100KW电加热。 四、保温水箱容量设计 1、最大日用水量: 49.5T (55℃) 2、高峰用水时间: 4 小时 3、高峰时期总用水量: 4 x k x 49.5 / 24 = 46T(55℃)(k=5.61) 4、水箱容量 = 高峰时期总用水量–高峰时期热泵产水量=39T (水箱 40T) 五、热泵热水系统设计 1、采用高温制热循环式热泵热水系统 (1)直热补水:补进水箱的水温恒定,水箱水温变化相对较小 (2)循环恒温:水箱水温降低时,循环加热 六、热水供水系统设计 1、系统分区

集中热水供应设计秒流量计算方法分析

集中热水供应设计秒流量计算方法分析 摘要本文就建筑中热水供应采取分区组合体型式系统下设计秒流量的计算方法。分别介绍了我国传统式现行计算设计秒流量计算方法和其局限性,全新的计算方法——概率法计算设计秒流量的特点和其优越性。 关键词集中热水供应设计秒流量概率流量计算 1.前言 热水供应系统主要满足居民在卫生(洗漱、沐浴)等方面对于75℃以下热水的需要。应目前节能,环保的要求,集中热水供应系统形式在现代建筑中优先采用。 随着人民日益增长的生活水平的提高,居民在卫生方面对于热水的需要日益提高。集中热水供应系统在越来越多的建筑里成为工程设计的必不可少的部分。在集中热水供应系统的设计中,系统型式的正确选择十分重要,它关系到系统的功能、运行稳定性以及一次造价等。本文优先采用分区组合体系统形式进行分析计算。设计秒流量反映了管道的这一负荷特性,设计秒流量是确定运行年限在20~50年的给水系统的重要技术参数之一。设计秒流量的计算应该能够客观、全面的反映受多种因素影响的复杂的实际过程。在系统配水的量确定下以后,即热水供应系统入口处流量恒定的条件下,才能对生活给水供应系统的水力工况进行计算分析,计算最远配水点的压力损失,选用必需的升压泵,为了保证配水点的压力,确定各种配水水平下的循环流量。 本文的工作是选定了热水供应分区组合体的系统型式下,针对建筑给水设计秒流量的计算方法的分析和研究,主要进行分析比较了我国住宅、旅馆传统设计秒流量计算方法与概率法性相比存在的盲目性,以及概率法的优越的科学性合理性。 2.设计秒流量的计算方法 设计秒流量不仅是确定各管段管径的主要依据,也是计算管道水头

损失,进而确定给水系统所需压力的主要依据,为了保证用水,给水管道的设计流量应为建筑内部卫生器具按配水最不利情况下组合出流时最大瞬时流量,又称设计秒流量。 设计秒流量要在对用水工况实测的基础上进行科学的加工,从而得到经济实用的设计秒流量的计算方法。目前设计秒流量的计算方法有三种:经验法、平方根法和概率法。根据我国建筑给水排水设计规范GB50015-2003,住宅建筑用水时间长、用水设备使用不集中的特点,对其设计秒流量的计算方法在以往平方根法[**]的基础上进行了修改,采用了以概率理论为基础的计算方法,但是与国外比较成熟的概率法之间还存在着较大的差距;对于公建部分,仍采用平方根法。对于我国来说,概率法是一种全新的计算思想和方法,在美、日、俄等国得到普遍应用,上述国家在概率法的基础上,结合实际运行数据,制成图表以便工程设计使用。 2.1我国现行给水管网设计秒流量计算方法[7] 我国给水配水设计秒流量的计算按建筑类型分别有下列公式来计算:2.1.1住宅建筑的生活给水管道的设计秒流量 应按下列步骤和方法计算: (1)根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数,按(1)式计算出最大用水时卫生器具给水当量平均出流概率: U O =qO mK k/ 0.2*N g*T(1) U O——生活给水管的最大用水时卫生器具给水当量平均出流概率(%); qO——最高用水日的用水定额,按规范表取用; m——每户用水人数; K k——小时变化系数,

相关文档
最新文档