函数新定义习题

函数新定义习题
函数新定义习题

函数新定义习题

已知函数)(x f 的定义域为),0(+∞,若x

x f y )

(=在),0(+∞上为增函数,则称)(x f 为“一阶比增函数”; 若2)

(x

x f y =

在),0(+∞上为增函数,则称)(x f 为“二阶比增函数”。我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω。若函数hx hx x x f --=2

3

2)(,且1)(Ω∈x f ,2)(Ω?x f ,则实数h 的取值范围是() A .),0[+∞ B .),0(+∞ C .]0,(-∞ D .)0,(-∞

(茂名2014年一模)8、定义域为],[b a 的函数)(x f y =的图象的两个端点为B A 、,点

),(y x M 是)(x f 图象上任意 一点,其中)10()1(≤≤-+=λλλb a x ),向量

OB OA ON )1(λλ-+=(O 为坐标原点)

,若不等式k MN ≤恒成立,则称函数)(x f 在],[b a 上“k 阶线性近似”. 若函数]1

x

x y -=在2,1[上“k 阶线性近似”,则实数k 的取值

范围为( )

A .),0[+∞

B .),1[+∞

C .),223

[+∞- D .),22

3[+∞+

(2010福建卷理10)对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k b ,为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有

0()()0()()f x h x m h x g x m <-

<-

则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”。给出定义域均为D={}

1x x >的四组函数如下: ①2

()f x x =

,()g x =

②()102x f x -=+,()g x =

23

x x

-; ③()f x 21x x +,()g x =ln 1ln x x x

+; ④22()1x f x x =+,()2(1)x

g x x e -=--。

其中,曲线()y f x =与()y g x =存在“分渐近线”的是 A .①④

B .②③

C .②④

D .③④

【答案】C

【解析】要透过现象看本质,存在分渐近线的充要条件是∞→x 时,0)()(→-x g x f 。

对于○1,当1>x 时便不符合,所以○1不存在;对于○2,肯定存在分渐近线,因为当时,0)()(→-x g x f ;

对于○3,x x x g x f

ln 11)

()(-

=-,设01

)(",ln )(2>=-=x

x x x x λλ且x x

0,所以不存在分渐近线;○4当0→x 时,02

2112)()(→+++-=

-x e x

x g x f ,因此存在分渐近线。故,存在分渐近线的是○2○4选C

【命题意图】本题从大学数列极限定义的角度出发,仿造构造了分渐近线函数,目的是考查学生分析问题、解决问题的能力,考生需要抓住本质:存在分渐近线的充要条件是∞→x 时,

0)()(→-x g x f 进行做答,是一道好题,思维灵活。

(茂名2014年一模)21、(本小题满分14分) 已知函数)0()1(21ln )(2

≠∈-+-

=a R a x a x a

x x f 且。 (1)当1-≤a 时,求函数)(x f 的单调递增区间;

(2)记函数)(x F y =的图象为曲线C ,设点),(),,(2211y x B y x A 是曲线C 上的不同两点.如果在曲线C 上存在点),(00y x M ,使得:①2

2

10x x x +=

;②曲线C 在点M 处的切线平行于直线AB ,则称函数)(x F 存在“中值相依切线”,试问:函数)(x f 是否存在“中值相依切线”,请说明理由.

11、下图展示了一个由区间(0,1)到实数集R 的映射过程:区间()0,1中的实数m 对应数轴上 的点M ,如图1;将线段AB 围成一个圆,使两端点A 、B 恰好重合,如图2;再将这个 圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为()0,1,如图3.图3中直 线AM 与x 轴交于点(),0N n ,则m 的象就是n ,记作()f m n =.

(ⅰ)方程()0f x =的解是x = ;

(ⅱ)下列说法中正确命题的序号是 .(填出所有正确命题的序号) ①114f ??

=

???

; ②()f x 是奇函数; ③()f x 在定义域上单调递增; ④()f x 的图象关于点1,02?? ???

对称.

解析:(i) 0)(=x f 则2

1=x ;

(ii) 当4

1=m 时,∠ACM=2

π,此时1-=n 故1)4

1(-=f ①错

)(x f 的定义域为)1,0(不关于原点对称 ②错

显然随着m 的增大,n 也增大;所以()f x 在定义域上单调递增 ③对

又整个过程是对称的,所以 ④对

4、如图,半径为2的⊙O 与直线MN 相切于点P ,射线PK 从PN 出发绕点P 逆时针方向旋转到PM ,旋转过程中,PK 交 ⊙O 于点Q ,设POQ ∠为x ,弓 形 PmQ 的面积为()S f x =,

那么()f x 的图象大致是( D )

(2010广东卷理21))设A(11,x y ),B(22,x y )是平面直角坐标系xOy 上的两点,先定义由点A 到点B 的一种折线距离ρ(A,B)为ρ(A,B)=21x x -+21y y -.对于平面xOy 上给定的不同的两点A(11,x y ),B(22,x y )

(1) 若点C (x, y )是平面xOy 上的点,试证明ρ(,)A C +ρ(,)C B ≥ρ(,)A B ; (2) 在平面xOy 上是否存在点C(x, y),同时满足①ρ(,)A C +ρ(,)C B = ρ(,)A B ; ②ρ(,)A C = ρ(,)C B ;若存在,请求所给出所有符合条件的点;若不存在,请予以证明。

解析:设A(11,x y ),B(22,x y )是平面直角坐标系xOy 上的两点,先定义由点A 到点B 的一种折线距离p(A,B)为2121(,)||||P A B x x y y =-+-.

当且仅当1212()()0,()()0x x x x y y y y --≥--≥时等号成立,即,,A B C 三点共线时等号成立.

(2)当点C(x, y) 同时满足①P (,)A C +P (,)C B = P (,)A B ,②P (,)A C = P (,)C B 时,点C 是线段AB 的中点. 1212,22x x y y x y ++==,即存在点1212

(,)22

x x y y C ++满足条件。

(2010上海卷理22)若实数x 、y 、m 满足x m y m -->,则称x 比y 远离m . (1)若21x -比1远离0,求x 的取值范围;

(2)对任意两个不相等的正数a 、b ,证明:33a b +比22a b ab +远离2ab ab ; (3)已知函数()f x 的定义域k D=x|x +k Z x R 24

ππ

{≠

,∈,∈}

.任取x D ∈,()f x 等于sin x 和cos x 中远离0的那个值.写出函数()f x 的解析式,并指出它的基本性质(结论不要求证明).

解析:(1) (,2)( 2.)x ∈-∞-+∞U ;

(2) 对任意两个不相等的正数a 、b ,有332a b ab ab +>222a b ab ab ab +> 因为33222|2|2()()0a b ab a b ab ab ab a b a b +--+-=+->,

所以3322|2|2a b a b ab +->+-,即a 3+b 3比a 2b +ab 2

远离2;

(3) 3sin ,(,)44

()cos ,(,)

44

x x k k f x x x k k ππππππππ?

∈++??=??∈-+??,

性质:1?f (x )是偶函数,图像关于y 轴对称,2?f (x )是周期函数,最小正周期2

T π

=,

3?函数f (x )在区间(

,]242k k πππ-单调递增,在区间[,)224

k k πππ

+单调递减,k ∈Z , 4?函数f (x )

的值域为. (2010上海卷文22)若实数x 、y 、m 满足x m y m -<-,则称x 比y 接近m . (1)若21x -比3接近0,求x 的取值范围;

(2)对任意两个不相等的正数a 、b ,证明:22a b ab +比33a b +

接近2; (3)已知函数()f x 的定义域{}

,,D x x k k Z x R π≠∈∈.任取x D ∈,()f x 等于1sin x +和1sin x -中接近0的那个值.写出函数()f x 的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明). 解析:(1) x ∈(-2,2);

(2) 对任意两个不相等的正数a 、b

,有222a b ab +>

,332a b +>

因为22332|2|2()()0a b ab a b a b a b +--+-=-+-<,

所以2233|2|2a b ab a b +-<+-,即a 2b +ab 2比a 3+b 3

接近2 (3) 1sin ,(2,2)

()1|sin |,1sin ,(2,2)x x k k f x x x k x x k k πππππππ+∈-?==-≠?

-∈+?

,k ∈Z , f (x )是偶函数,f (x )是周期函数,最小正周期T =π,函数f (x )的最小值为0, 函数f (x )在区间[,)2k k π

ππ-单调递增,在区间(,]2

k k π

ππ+单调递减,k ∈Z .

22、将正整数2012表示成n 个正整数123,,,n x x x x L 之和.记1i j i j n

s x x ≤<≤=?∑

.

(I )当2n =时,12,x x 取何值时s 有最大值.

(II )当5n =时,12345,,,,x x x x x 分别取何值时,s 取得最大值,并说明理由.

(III )设对任意的1≤i j <≤5且|i j x x -|≤2,当12345,,,,x x x x x 取何值时,S 取得最小值,并

说明理由.

解:(I )根据均值不等式,当x 1=x 2=1006时,S 有最大值10062. (II )当x 1=x 2=x 3 =402,x 4=x 5=403时,S 取得最大值. 由x 1+x 2+x 3 +x 4+x 5=2012,15

i j i j s x x ≤<≤=

?∑

取得最大值时,必有|x i -x j |≤1( 1≤i

事实上,假设(*)式不成立.不妨设x 1-x 2≥2,令

. 有, 21212121

1x x x x x x x x >--+='

' 15

i j i j s x x ≤<≤=

?∑

=

同时S ‘=

这与S 取得最大值矛盾.所以必须有|x i -x j |≤1( 1≤i

i j i j s x x ≤<≤=?∑

=10t 2+8t , 在③时, 设t=402,15

i j i j s x x ≤<≤=

?∑

=10t 2+8t.

因此在①③时S 取得最小值.

函数定义域几种类型及其求法

函数定义域几种类型及其求法 河北省承德县一中 黄淑华 一、已知函数解析式型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1、求函数8315 22-+--=x x x y 的定义域。 解:要使函数有意义,则必须满足?????≠-+≥--0 8301522x x x 即???-≠≠-<>11535x x x x 且或 解得1135-≠-<>x x x 且或 即函数的定义域为{}1135-≠-<>x x x x 且或。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。 (一)已知)(x f 的定义域,求[])(x g f 的定义域。 其解法是:已知)(x f 的定义域是],[b a 求[])(x g f 的定义域是解b x g a ≤≤)(,即为所求的定义域。 例2、已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域。 解:22≤≤-x ,2122≤-≤-∴x ,解得33≤≤- x 即函数)1(2-x f 的定义域为{}33≤≤-x x (二)已知[])(x g f 的定义域,求)(x f 的定义域。 其解法是:已知[])(x g f 的定义域是],[b a 求)(x f 的定义域的方法是:b x a ≤≤,求)(x g 的值域,即所求)(x f 的定义域。 例3、已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域。 解:21≤≤x ,422≤≤∴x ,5123≤+≤∴x 。 即函数)(x f 的定义域是{}53|≤≤x x 。

二次函数新定义问题(一)(讲义及答案)

新定义问题(一)(讲义) 知识点睛 新定义问题是在已学知识基础上,以未接触过的新定义为载体,现学现用,侧重考查理解、分析、应用等能力的问题。 此类问题的一般思路: ①结合图形,理解新定义关键词; ②借助题目正反举例,理解新定义实质,尝试“化生为熟”; ③结合背景信息,借助新定义求解.

精讲精练 1.如图,边长为8的正方形OABC的两边在坐标轴上,以C为 顶点的抛物线经过点A,P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F.点D,E的坐标分别为(0,6),(-4,0),连接PD,PE,DE. (1)请直接写出抛物线的解析式. (2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由.(3)小明进一步探究得出结论:若将使△PDE的面积为整数的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标.

2.已知抛物线2y ax bx c =++,若a ,b ,c 满足b =a +c ,则称抛 物线2y ax bx c =++为“恒定”抛物线. (1)求证:“恒定”抛物线2y ax bx c =++必过x 轴上的一个定点A ; (2)已知“恒定”抛物线233y x =-的顶点为P ,与x 轴的另一个交点为B ,是否存在以Q 为顶点,与x 轴另一个交点为C 的“恒定”抛物线,使得以PA ,CQ 为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

函数中的新定义问题

函数中的新定义问题 一、填空题 1、定义区间[x1,x2](x1?x2)的长度为x2?x1,已知函数 f(x)?|log1x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值与最小值的差 2 为 . 2、(2015余杭区模拟)已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|,则称函数f(x)为F﹣函数.给出下列函数:①f(x)=x;②f(x)= x2;③f(x)=2;④f(x)=sin2x.其中是F﹣函数的序号为. 3、(2009厦门十中)定义:若存在常数k,使得对定义域D内的任意两个x1,x2?x1?x2?,均有f?x1??f?x2?kx1?x2成立,则称函数f?x?在定义域D上满足利普希茨条件。若函数f?x?? 4、(2012格致三模)已知全集为U,P??U,定义集合P的特征函数为x?x?1?满足利普希茨条件,则常数k的最小值为_____。 ??1,x?P,fP?x???,对于A??U, B??U,给出下列四个结论: 0,x?eP.?U? ①对任意x?U,有feUA?x??fA?x??1; ②对任意x?U,若A??B,则fA?x??fB?x?; ③对任意x?U,有fAIB?x??fA?x??fB?x?; ④对任意x?U,有fA?B?x??fA?x??fB?x?。 其中,正确结论的序号是__________。 5、定义运算:a*b=,对于函数f(x)和g(x),函数|f(x)﹣g(x)|在闭区间[a,b]上的最大值称为f(x)与g(x)在闭区间[a,b]上的“绝对差”,记为(f(x),g(x)),则(sinx*cosx,1)= .

初三数学中考一轮复习新定义问题教案(含练习)

Presented by Csuzzy,All Rights Reserved. 15新定义

§15-1 新定义计算对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点()1,a b ,()21,a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-. (1)写出函数21y x =-的限减系数; (2)0m >,已知()11,0y x m x x = -≤≤≠是限减函数,且限减系数4k =,求m 的取值范围; (3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.1

Presented by Csuzzy ,All Rights Reserved. 在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x ,这两个函数对应的函数值记为1y ,2y ,都有点()1,x y 和()2,x y 关于点(),x x 中心对称(包括三个点重合时),由于对称中心都在直线y x =上,所以称这两个函数为关于直线y x =的特别对称函数.例如:12y x =和32 y x =为关于直线y x =的特别对称函数.(1)若32y x =+和()0y kx t k =+≠为关于直线y x =的特别对称函数,点()1,M m 是32y x =+上一点. ①点()1,M m 关于点()1,1中心对称的点坐标为. ②求k ,t 的值. (2)若3y x n =+和它的特别对称函数的图象与y 轴围成的三角形面积为2,求n 的值. (3)若二次函数2y ax bx c =++和2y x d =+为关于直线y x =的特别对称函数. ①直接写出a ,b 的值. ②已知点()3,1P -,点()2,1Q ,连接PQ ,直接写出2y ax bx c =++和2y x d =+两条抛物线与线段PQ 恰好有两个交点时d 的取值范围.

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

与函数有关的新定义题型

与函数有关的新定义题型 1.(2016长沙25题10分)若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”. (1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值; (2)若某“路线”L 的顶点在反比例函数y =6 x 的图象上,它的“带线”l 的解析式为y =2x -4, 求此“路线”L 的解析式; (3)当常数k 满足1 2≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴, y 轴所围成的三角形面积的取值范围.

2.(2015长沙25题10分)在直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点......称之为“中国结”. (1)求函数y =3x +2的图象上所有“中国结”的坐标; (2)若函数y =k x (k ≠0,k 为常数)的图象上有且只有两个“中国结”,试求出常数k 的值与 相应“中国结”的坐标; (3)若二次函数y =(k 2-3k +2)x 2+(2k 2-4k +1)x +k 2-k (k 为常数)的图象与x 轴相交得到两个不同的“中国结”,试问该函数的图象与x 轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?

3.(2014长沙25题10分)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”.例如点(-1,-1),(0,0),(2,2),…都是“梦之点”,显然,这样的“梦之点”有无数个. (1)若点P (2,m )是反比例函数y =n x (n 为常数,n ≠0)的图象上的“梦之点”,求这个反比 例函数的解析式; (2)函数y =3kx +s -1(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由; (3)若二次函数y =ax 2+bx +1(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A (x 1,x 1),B (x 2,x 2),且满足-2

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

二次函数新定义问题

专题训练(四)与二次函数相关的新定义问题 ?类型之一应用型:阅读——理解——建模——应用 图4-ZT-1 1.2017·巴中如图4-ZT-1,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A,B,C,D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的函数表达式为y=x2-2x-3,则半圆圆心M点的坐标为________. 2.一个函数的图象关于y轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y=x2+bx-4是“偶函数”,该函数的图象与x轴交于点A和点B,顶点为P,那么△ABP 的面积是________. 3.2017·余杭区一模如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图4-ZT-2所示,二次函数y1=x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”. (1)直接写出两条图中“关于y轴对称二次函数”图象所具有的特点. (2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”表达式为____________;二次函数y=a(x-h)2+k的“关于y轴对称二次函数”表达式为____________. (3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连结点A,B,O,C得到一个面积为24的菱形,求“关于y轴对称二次函数”的表达式. 图4-ZT-2

?类型之二探究型:阅读——理解——尝试——探究 4.若抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线. (1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的函数表达式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案; (2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的函数表达式.请你解答. 5.2017·衢州定义:如图4-ZT-3①,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B 两点,点P在该抛物线上(点P与A,B两点不重合),若△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点. (1)直接写出抛物线y=-x2+1的勾股点的坐标; (2)如图②,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式; (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标.

函数的概念及其定义域

2.1 函数概念 1.对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数; ②对于不同的x ,y 的值也不同; ③f (a )表示当x =a 时函数f (x )的值,是一个常量; ④f (x )一定可以用一个具体的式子表示出来. A .1个 B .2个 C .3个 D .4个 2.区间(0,1)等于( ) A .{0,1} B .{(0,1)} C .{x |0

2.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1 B .y =x 0和y =1 C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=(x )2x 和g (x )=x (x )2 3.函数y =21-1-x 的定义域为( ) A .(-∞,1) B .(-∞,0)∪(0,1] C .(-∞,0)∪(0,1) D .[1,+∞) 4.已知f (x )=π(x ∈R ),则f (π2)的值是( ) A .π2 B .Π C.π D .不确定 5.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图像的只可能是( ) 6.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=??? c x ,x

函数·典型例题精析

2.2 函数2例题解析 【例1】判断下列各式,哪个能确定y 是x 的函数?为什么? (1)x 2+y =1 (2)x +y 2=1 (3)y =11 --x x 解 (1)由x 2+y =1得y =1-x 2,它能确定y 是x 的函数. (2)x y 1y y x 2由+=得=±.它不能确定是的函数,因为对1-x 于任意的x ∈{x|x ≤1},其函数值不是唯一的. (3)y y x =的定义域是,所以它不能确定是的函数.11 --?x x 【例2】下列各组式是否表示同一个函数,为什么? (1)f(x)|x|(t)(2)f(x)g(x)(x)2=,==,=?t x 2 2 (3)f(x)g(x)(4)f(x)g(x)=2,==2,=x x x x x x +--+--111 11122 解 (1)中两式的定义域部是R ,对应法则相同,故两式为相同函数. (2)、(3)中两式子的定义域不同,故两式表示的是不同函数. (4)中两式的定义域都是-1≤x ≤1,对应法则也相同,故两式子是相同函数. 【例3】求下列函数的定义域: (1)f(x)2 (2)f(x)(3)f(x)=++==x x x x x x x --+----145 3210215 2||

(4)f(x)(4x 5)(1)x 10 4x 0 1x 4{x|1x 4}(2)3x 20x {x|x }=+-由-≥-≥得≤≤.∴定义域是≤≤由->,得>,∴定义域是>812323|| x -???解 (3)10x x 210 |x|503x 7x 5{x|3x 7x 5} 2由--≥-≠得≤≤且≠,∴定义域是≤≤,且≠??? (4)10 |x|0 4x 508x 00x x 8[80)(0)()由-≥≠-≠解得-≤<或<<或<≤∴定义域是-,∪,∪,854545454 8||x ?????? ??? 【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域: (1)y f (2)y f(2x)f (3)y f ==+=()()()123 2x x x a + 解(1)01x 1x 1f(){x|x 1x 1}由<≤,得≤-或≥,∴的定义域是≤-或≥1 122x x

函数的定义域及求法讲解

函数 一、函数的定义域及求法 1、分式的分母≠0;偶次方根的被开方数≥0; 2、对数函数的真数>0;对数函数的底数>0且≠1; 3、正切函数:x ≠kπ+ π/2 ,k∈Z;余切函数:x ≠kπ,k ∈Z ; 4、一次函数、二次函数、指数函数的定义域为R; 5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法; 6、复合函数定义域的求法:推理、取交集及分类讨论. [例题]: 1、求下列函数的定义域

3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论] 当m=0时,则mx2-4mx+m+3=3,→原函数的定义域为R; 当m≠0时,则mx2-4mx+m+3>0, ①m<0时,显然原函数定义域不为R; ②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R, 所以当m∈[0,1) 时,原函数定义域为R.

4、求函数y=log x + 1 (x≥4) 的反函数的定义域. 2 [解析]:[求原函数的值域] 由题意可知,即求原函数的值域, ∵x≥4,∴log2x≥2∴y≥3 所以函数y=log2x + 1 (x≥4) 的反函数的定义域是[3,+∞). 5、函数f(2x)的定义域是[-1,1],求f(log x)的定义域. 2 [解析]:由题意可知2-1≤2x≤21→f(x)定义域为[1/2,2] → 1/2≤log2x≤2→√ ̄2≤x≤4. x)的定义域是[√ ̄2,4]. 所以f(log 2 二、函数的值域及求法 1、一次函数y=kx+b(k≠0)的值域为R; 2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时, y≤-△/4a ; 3、反比例函数的值域:y≠0 ; 4、指数函数的值域为(0,+∞);对数函数的值域为R; 5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R; 6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法. [例题]::求下列函数的值域

高中数学 函数知识点总结与经典例题与解析

函数知识点总结 知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数

中考数学专题突破十:新定义问题(含答案)

专题突破(十) 新定义问题 1. 在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙O 的反称点的定义如下:若在射线..CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图Z10-1为点P 及其关于⊙C 的反称点P ′的示意图. (1)当⊙O 的半径为1时. ①分别判断点M (2,1),N (3 2,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其 坐标; ②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围. (2)当⊙C 的圆心在x 轴上,且半径为1,直线y =- 3 3 x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围. 图Z10-1 2. 对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1. (1)分别判断函数y =1 x (x >0)和y =x +1(-4a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3)将函数y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位长度,得到的函数的边界值是t ,当m 在什么范围时,满足3 4 ≤t ≤1?

函数定义域的求法整理(整理详细版)

函数定义域的求法整理 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15x 2x y 2-+--=的定义域。 解:要使函数有意义,则必须满足 ???≠-+≥--②①08|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0x 160x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定

函数的基本性质(考点加经典例题分析)

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值2 1 ,x x ,当 2 1x x <时,都有))()()(()(2 1 2 1 x f x f x f x f ><或,那么就 说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )() 0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2-=的左侧单调减小,右侧单调增加; 当0

6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数12-=x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1)()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对 称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤

函数的定义域常见的三种类型

函数的定义域常见的三种类型 ywq3344520 10级分类:理工学科被浏览105次 2013.06.28 jmmn9938668 采纳率:59% 10级 2013.06.29 函数定义域的三类求法一、给出函数解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解。二. 给出函数的定义域,求函数的定义域,其解法步骤是:若已知函数的定义域为,则其复合函数的定义域应由不等式解得。三. 给出的定义域,求的定义域,其解法步骤是:若已知的定义域为,则的定义域是在时的取值范围。求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f〔g(x)〕的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域; 求定义域的规则及类型的演讲稿 leya027 10级分类:其他被浏览63次 2014.01.20 检举 高中课题研究:定义域的规则及类型。第一次演讲,我急需一篇关于“定义域的规则及类型”的演讲稿。希望大家给我找一篇…… 一般来讲,只要给一个自变量的值,能求出因变量,那么该自变量的值就属于定义域。定义域与非定义域的主要区别是,在非定义域内的值,无法求出函数值。常见的就是,求值过程中遇到一元二次方程无解,或分母为零。所以只要求出x在什么时候使得方程无解或分母为零,就可以了

高中数学典型例题分析与解答:复合函数的导数

复合函数的导数 求分段函数的导数 例 求函数?????=≠=0 ,00,1sin )(2x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当0≠x 时,)(x f 的关系式是初等函数x x 1sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1sin lim )0()(lim )0(0200===-='→?→?→?x x x x x x f x f f x x x 当0≠x 时,x x x x x x x x x x x x x x x f 1cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为)(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,32 2+-===x x v v u y u ;

新定义函数-中考新题型

3

实数b的取值范围. 变式 如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3]. (1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标. (2)探究下列问题: ①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数. ②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?

例3.如图1,抛物线y =ax 2 +bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高. (1)抛物线2 12 y x = 对应的碟宽为 ;抛物线y =4x 2对应的碟宽为 ;抛物线y =ax 2(a >0)对应的碟宽为 ;抛物线y =a (x -2)2 +3(a >0)对应的碟宽为 ; (2)抛物线2 543 y ax ax =--(a >0)对应的碟宽为6,且在x 轴上,求a 的值; (3)将抛物线y =a n x 2+b n x +c n (a n >0)的对应准蝶形记为F n (n =1,2,3…),定义F 1, F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为1 2 ,且F n 的碟顶 是F n ﹣1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1. ①求抛物线y 2的表达式; ②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽有端点横坐标为2;若F 1,F 2,…,F n 的碟宽右端点在一条直线上,请直接写出该直线的表达式;若不是,请说明理由。

相关文档
最新文档