弯曲变形求解方法

弯曲变形求解方法
弯曲变形求解方法

单元5 剪切与扭转变形时的承载力计算

单元5 剪切与扭转变形时的承载力计算 【学习目标】 1.能深入理解剪切和挤压的概念; 2.能进行剪应力和压应力的计算和校核; 3.能灵活运用剪切虎克定律公式和剪应力互等定理; 4.能深入理解圆轴的扭矩的概念和公式; 5.能进行圆轴圆轴扭转强度计算,最大剪应力; 5.1 剪切与挤压变形实例 5.1.1剪切的概念 它是指杆件受到一对垂直于杆轴方向的大小相等、方向相反、作用线相距很近的外力作用所引起的变形,如铆钉连接中的铆钉及销轴连接中的销等都是心剪切变形为主要变形的构件。 图5.1 如图所示。此时,截面cd相对于动将发生相对ab错动,即剪切变形。若变形过大,杆件将在两个外力作用面之间的某一截面m—m处被剪断,被剪断的截面称为剪切面,如图5.1所示。 5.1.2挤压的概念 构件在受剪切的同时,在两构件的接触面上,因互相压紧会产生局部受压,称为挤压。 图5.2

如图5.2所示的铆钉连接中,作用在钢板上的拉力F,通过钢板与铆钉的接触面传递给铆钉,接触面上就产生了挤压。两构件的接触面称为挤压面,作用于接触面的压力称挤压力,挤压面上的压应力称挤压应力,当挤压力过大时,孔壁边缘将受压起“皱”,铆钉局部压“扁”,使圆孔变成椭圆,连接松动,这就是挤压破坏。因此,连接件除剪切强度需计算外,还要进行挤压强度计算。 图5.3 5.2 铆接或螺栓连接实用计算(剪切与挤压的实用计算) 5.2.1剪切的实用计算 剪切面上的内力可用截面法求得。 图5.4 假想将铆钉沿剪切面截开分为上下两部分,任取其中一部分为研究对象,由平衡条件可知,剪切面上的内力Q必然与外力方向相反,大小由∑X=0,F-Q=0,得:Q=F这种平行于截面的内力Q称为剪力。 与剪力Q相应,在剪切面上有剪应力η存在。剪应力在剪切面上的分布情况十分复杂,工程上通常采用一种以试验及经验为基础的实用计算方法来计算,假定剪切面上的剪应力η是均匀分布的。因此:Qη=―A式中A——剪切面面积; Q——剪切面上的剪力。 为保证构件不发生剪切破坏,就要求剪切面上的平均剪应力不超过材料的许用剪应力,即剪切时的强度条件为:Q η=―≤[η]( 5.1 ) A 式中[η]——许用剪应力,许用剪应力由剪切试验测定。

弹片压力变形计算公式

The formula between Shrapnel stress and deflection The deflection curve equation of Shrapnel is as following: ()x l EI F y x --=362 (1) The max deflection of the Shrapnel ’s endpoint A : EI F l y A 33-= (2) In which I stands for Z-axis moment of inertia of the Shrapnel ’s Section, 1232 2222 2b y y a dydZ dA I a a b b ===???-- (3) To verify the correctness of the above formula . Assume : l=10mm ;a=2mm ;b=0.2mm ;E=210GP;F=11N Result:mm 95.013-=y A The figure is the finite element result:

The deflection curve equation of Shrapnel is as following: EI F y x 2d 2 -= (1) The max deflection of the Shrapnel’s endpoint A : EI F l y A 2d -= (2) In which I stands for Z-axis moment of inertia of the Shrapnel’s Section, 1232 2222 2b y y a dydZ dA I a a b b ===???-- (3) b l y Ea F A 32d 12-= (4)

弯曲变形剪切变形

很常见的四个概念,但是一定要小心~ 弯曲变形、剪切变形,弯曲型变形、剪切型变形。注意,一个字之差,意思却大不相同。弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由弯矩和抗弯刚度EI、剪力和抗剪刚度GA计算得到。框架结构,剪力墙结构和框剪结构在侧向力作用下的水平位移曲线的特点:1、框:抗侧刚度较小,其位移由两部分组成:梁和柱的弯曲变形产生的位移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线呈弯曲型,自下而上层间位移增大.第一部分是主要的,第二部分很小可以忽略,所以框架结构在侧向力作用下的侧移曲线以剪切型为主,故称为剪切型变形. 2、剪:抗侧刚度较大,剪力墙的剪切变形产生位移,侧向位移呈弯曲型,即层间位移由下至上逐渐增大,相当于一个悬臂梁; 3、框剪:位移曲线包括剪切型和弯曲型,由于楼板的作用,框架和墙的侧向位移必须协调.在结构的底部,框架的侧移减小;在结构的上部,剪力墙的侧移减小,侧移曲线呈弯剪型,层间位移沿建筑物的高度比较均匀,改善了框架结构及剪力墙结构的抗震性能,也有利于减少小震作用下非结构构件的破坏 框架结构抗侧刚度小,在水平力作用下产生较大侧向位移该位移变形包括1、由柱子的拉压变形产生水平位移而引起的整体弯曲,该部份所占比例小而被忽略了2、梁柱杆件发生弯曲变形后产生的水平位移而引起的剪切变形。底部的剪力大剪切变形就大,楼层增高该变形逐渐减小. 而剪力墙结构就是2楼说的它是一根下部嵌固的悬臂深梁 剪力墙结构的侧向刚度较大,在水平力作用下其结构类似于一根竖向悬臂构件, 可以把地球理解成这根竖向悬臂构件的支座,地面就是它的固定端, 它的变形当然是离固定端近的就比较小了,好象挑梁一样. 弯曲变形对应弯曲破坏,是延性破坏,剪力墙刚度大,对应的是弯曲变形, 给一个单位力施加在结构上,所产生的位移对应是柔度, 框架结构变形较剪力墙变形大,是相对其剪力墙较柔,刚度较差。 剪切变形对应剪切破坏,是脆性破坏,结构中尽量避免,延迟。 有些概念,只是概念,结构中很多是试验得到的,有时太深入,反而把自己搞晕了。 2#楼的好像说的也不是很清楚。 我试着说说。根据结构力学我们知道结构在荷载作用下的位移包括三部分:弯矩引起的、剪力引起、轴力引起。一般多层框架结构的变形主要是由梁柱的弯曲变形产生的,层间剪力除以层抗侧刚度,高层的话轴力变形也是不容忽略的。这种变形的形状和悬臂梁在剪力作用下的相似,所以叫剪切变形。 而剪力墙结构的变形主要由弯曲和剪切变形,变形的形状和悬臂梁的弯曲变形相似,所以称为弯曲变形。 为什么都是和悬臂梁的变形做比较,每个建筑从整体上看都是坐落在大地上的悬臂梁。老庄结构总提的老子的思想,一生二,从悬臂梁转化简支梁、固端梁等等。

温度、热量与热变形的关系及计算方法研究

温度、热量与热变形的关系及计算方法研究 摘要:通过分析热变形与热量之间的关系,提出利用平均线膨胀系数,将较复杂温度分布(如移动持续热源形成的温度分布) 情况下工件热变形量的计算简化为热量含量相同且温度均布状态下工件热变形量的计算方法,并给出了计算实例。 1 引言 在机械制造、仪器仪表等行业,由温度引起的热变形是影响机器、仪器设备精度的重要因素,热变形引起的误差通常可占总误差的1/3。在精密加工中,热变形引起的误差在加工总误差中所占比例可达4 0%~70%。为提高机器设备的工作精度,通常可采用温度控制和精度补偿两种途径来减小温度对精度的影响。温度控制是对关键热源部件或关键零件的温度波动范围进行精密控制(包括环境温度控制)。实现方法包括:①采用新型结构,如机床中的复合恒温构件等;②使用降温系统控制部件温升;③采用低膨胀系数材料等。这些方法都可程度不同地降低热变形程度,但成本较高。精度补偿方法是通过建立热变形数学模型,计算出热变形量与温度的关系,采用相应的软件补偿或硬件设备进行精度补偿。精度补偿法虽然成本较低,但要求建立精确且计算简便的数学模型。目前常见的数学模型大多是以温度作为主要计算因素,当形状规则的工件处于稳定、均匀的温度场中时,热变形数学模型的计算简便性可得到较好保证,但对于处于移动持续热源温度

场中的工件,其温度分布函数的计算将变得相当复杂,甚至无法得出解析解,只能采用逼近的近似数值解法。例如:对精密丝杠进行磨削加工时,磨削热引起的丝杠热变形会导致丝杠螺距误差。在计算丝杠热变形量时,首先必须建立砂轮磨削热产生的移动持续热源在丝杠上形成的温度分布数学模型。再如:车削加工中产生的切削热形成一持续热源,使车刀产生较大热膨胀量(可达0.1mm),严重影响加工精度。计算车刀的热变形量时,首先需要建立持续热源在车刀刀杆中的温度分布模型,这就增加了计算的复杂性。 图1 双原子模型示意图 本文从温度、热量和热变形的定义出发,分析了热量与热变形的关系。利用该关系,可简化实际工程应用中的热变形数学模型,减小运算工作量。 2 热变形原理及计算公式 热变形原理相当复杂,目前只能在微观上给予定性解释。固体材料的热膨胀本质上可归结为点阵结构中各点平均距离随温度的升高 而增大。德拜(Debye)理论认为,各原子间的热振动相互牵连制约,随着温度的升高,各质点的热振动加剧,质点间的距离增大,在宏观上表现为晶体膨胀现象。用图1所示双原子模型可解释如下:在温度T0时,原子1与原子2的间距为r0,当温度升高时,原子热运动加剧,原子间势能增加,两原子间势能U(r)增大,原子间距r=r0+x0。将U(r)

工程力学习题库-弯曲变形

第8章 弯曲变形 本章要点 【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。 剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。 【公式】 1. 弯曲正应力 变形几何关系:y ερ = 物理关系:E y σρ = 静力关系:0N A F dA σ==?,0y A M z dA σ==?,2z z A A EI E M y dA y dA σρ ρ == =?? 中性层曲率: 1 M EI ρ = 弯曲正应力应力:,M y I σ= ,max max z M W σ= 弯曲变形的正应力强度条件:[]max max z M W σσ=≤ 2. 弯曲切应力 矩形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F bh F S S 2323max ==τ 工字形梁弯曲切应力:d I S F y z z S ??=* )(τ,A F dh F S S ==max τ 圆形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F S 34max =τ 弯曲切应力强度条件:[]ττ≤max

3. 梁的弯曲变形 梁的挠曲线近似微分方程:() ''EIw M x =- 梁的转角方程:1()dw M x dx C dx EI θ= =-+? 梁的挠度方程:12()Z M x w dx dx C x C EI ??=-++ ??? ?? 练习题 一. 单选题 1、 建立平面弯曲正应力公式z I My /=σ,需要考虑的关系有( )。查看答案 A 、平衡关系,物理关系,变形几何关系 B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系 D 、平衡关系, 物理关系,静力关系; 2、 利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常 数。查看答案 A 、平衡条件 B 、边界条件 C 、连续性条件 D 、光滑性条件 3、 在图1悬臂梁的AC 段上,各个截面上的( )。 A .剪力相同,弯矩不同 B .剪力不同,弯矩相同 C .剪力和弯矩均相同 D .剪力和弯矩均不同 图1 图2 4、 图2悬臂梁受力,其中( )。

电功率的计算公式的变形

电功率的计算公式的变形 解读电功率的计算公式: 电功率的四个表达式:(1)定义式:P=W/t。(2)反映电学特点的普适式P=UI。 与欧姆定律结合后得到的(3)式P=I2R。(4)式P=U2/R。 电功率是反映电能消耗快慢的物理量,定义为1秒钟内消耗电能的多少,因此,用所消耗的电能除以消耗这些电能所用的时间,就得到定义式P=W/t。 经实验研究证明,电功率等于导体两端电压与通过导体电流的乘积,即P=UI。电压和电流是电路中最重要的物理量。有电压才可能有电流。电能是通过电荷有规律的运动转化成其它形式的能量的,电荷有规律的运动就形成电流。没有电流就不会消耗电能,当然也就不会有电能转化为其它形式的能量。所以,P=UI广泛应用于电功率的计算。 与欧姆定律结合得到的(3)式P=I2R、(4)式P=U2/R适用于纯电阻电路。因为,欧姆定律反映的是导体中的电流与导体两端电压和导体电阻之间的关系,是在纯电阻电路中得出的,所以,它只适用于纯电阻电路。如:白炽灯、电阻、电热器等,不适用于含电动机的电路和输变电电路的计算。由于串联电路中电流处处相等,所以在串联电路中,使用(3)式P=I2R分析和计算方便。在并联电路中,各支路两端电压相等,所以用(4)式P=U2/R分析和计算方便。通过对近几年的中考命题分析,除了含电动机电路的电功率计算外,其它全是纯电阻电路。在纯电阻电路中,四个计算公式通用,可根据具体情况选择方便的公式进行运用。 巧用电阻不变求实际功率: 由用电器铭牌上的U额、P额,求出电阻。即由P= ,解出R=;由于电 阻是不变的物理量,当求不同电压的实际功率时,可依据求得。 例1:如图所示,电源电压不变,灯L1标有“6V 3W”字样。当S、S1均闭合时,L1 正常发光,的示数是____V。若闭合S、断开S1,的示数是0.3A,则L2的实际功率为__W。 解析:当S、S1均闭合时,L2被短路,此时L1正常发光,所以电压表示数等于6V。 当闭合S,断开S1 时,灯L1、L2串联。灯L1电阻。灯L1

最新第七章 剪切和扭转讲课讲稿

第七章 剪切和扭转 § 7-1 剪切的概念 在工程实际中,有许多起连接作用的部件,如图17-所示各种常见连接中的螺栓、铆 钉、销轴、键,这些起连接作用的部件,称为连接件,它们都是剪切变形的工程实例。 图7—2(a )所示的铆钉连接中,钢板受力后,通过钢板与铆钉的接触面,将力传递到铆钉上,使铆钉受力如图(b )所示。此时,铆钉受到一对垂直于杆轴线、大小相等、方向相反、作用线相距很近而不重合的平行外力的作用。 随着力的逐渐增大,铆钉的上、下两部分将会分别沿着外力的方向移动,从而发生沿着两作用力之间的截面相对错动的变形,这种变形即为剪切变形。当外力足够大时,铆钉可能会沿着mm 截面被剪断,如图7—2(c )所示。 在剪切变形中,发生相对错动的面,称为剪切面。剪切面平行于作用力的方向,介于使连接件产生剪切变形的二力之间。 § 7-2 连接接头的强度计算 工程上通常采用实用计算方法来分析连接件的强度计算 一、剪切的实用计算 二、挤压实用计算 连接件在受剪切的同时,往往伴随着挤压,如图7—4所示。作用于挤压面上的力,称为挤压力,用C F 表示。挤压面积用C A 表示。挤压力在挤压面上的分布集度称为挤压应力,用C σ表示。挤压应力的实际分布很复杂。在实用计算中,假定挤压应力在挤压面上是均匀分布的。 【例7—1】 如图7—5所示铆接钢板的厚度10=δmm ,铆钉直径17=d mm ,铆钉的许用剪 应力 []τ=140MPa ,许用挤压应力[]320 =C σMPa ,=P 24kN ,试作强度校核。 解:(1)剪切强度校核 24 = ==d P A Q πτ[]MPa 8.105=<=τ(2)挤压强度校核 [MPa d P A F C C C 2.141<===δσ满足挤压强度条件

焊接变形计算公式

焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值 e= x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值

e= x=板厚 3、 4、

5、 6、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考)2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。

工程力学基础习题

《工程力学》练习题 一、填空题: 1、平面汇交力系平衡的充分必要条件是_____________________________。 2、圆轴扭转时,横截面上各点只有剪应力,其作用线________________,同一半径的圆周上各点剪应力___________________。 3、梁在集中力作用处,剪力Q_______________,弯矩M________________。 4、强度条件 []σ ≤ + W T M2 2 只适用于___________________________。 5、以截面的左侧的外力计算剪力时,向________的外力取正号;向______的外力取负号。若以右侧的外力计算,则外力正负规定与此__________。 6、平面任意力系平衡方程,? ? ? ? ? = = = B A m m X ∑ ∑ ∑ 的附加条件是__________________ 而? ? ? ? ? = = = C B A m m m ∑ ∑ ∑ 的附加条件是_____________________。 7、梁在集中力偶作用处,剪力Q______________,弯矩M________________。 8、梁某截面的弯矩,若梁在该截面附近弯成________________ ,则弯矩为正;弯成________________则弯矩为负。 9、当梁的材料是钢时,应选用______________ 的截面形状;若是铸铁,则应采用_____________________的截面形状。 10、塑性材料的弯扭组合变形圆轴的强度条件为_____ 11、柔性约束对物体只有沿_________的___________力。 12、铰链约束分为_________和_________。 13、平面汇交力系的特点为__________________________________________。 其平衡的充分必要条件为________________________________________。 14、力偶是指______________________________________________________。 15、作用于刚体上的力,均可_________到刚体上任一点,但必须同时

(整理)工程力学第六章答案梁的变形

第五章 梁的变形 测试练习 1. 判断改错题 5-1-1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零. ( ) 5-1-2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。 ( ) 5-1-3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。 ( ) 5-1-4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零。 ( ) 5-1-5 挠曲线近似微分方程不能用于求截面直梁的位移。 ( ) 5-1-6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。 ( ) 5-1-7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。 ( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一 个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。 ( ) 5-1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。 ( ) 5-1-10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。 ( ) 题5-1-3图 题5-1-4图 题5-1-8图 题5-1-7图 题5-1-9图

2.填空题 5-2-1 挠曲线近似微分方程EI x M x y ) ()(" - = 的近似性表现在 和 。 5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则 =2 1 P P 。 5-2-3 应用叠加原理求梁的变形时应满足的条件是: 。 5-2-4 在梁的变形中挠度和转角之间的关系是 。 5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是 ,连续条件是 。 5-2-6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是 ,连续条件是 。 5-2-7 图示结构为 次超静定梁。 5-2-8 纯弯曲梁段变形后的曲率与外力偶矩M 的关系为 ,其变形曲线为 曲线。 5-2-9 两根E I 值相同、跨度之比为1:2的简支梁,当承受相同的均布荷载q 作用时,它们的挠度之比为 。 5-2-10 当梁上作用有均布荷载时,其挠曲线方程是x 的 次方程。梁上作用有集中力时,挠曲线方程是x 的 次方程。梁上作用有力偶矩时,挠曲线方程是x 的 次方程。 5-2-11 图示外伸梁,若A B 段作用有均布荷载,B C 段上无荷载,则A B 段挠曲线方程是x 的 次方程;B C 段挠曲线方程是x 的 次方程。 5-2-12 减小梁变形的主要途径有: , , 。 题5-2-2图 题5-2-7图 题5-2-6图 x C 题5-2-11图

案例-弯曲变形与强度.

台湾丰原高中礼堂坍塌事故原因分析 建筑物坍毁是工程事故发展的最终阶段,因此所有坍塌事故均属于恶性事故。按照《建筑结构设计统一标准》(GB 68—84、GB 50068—2001)和结构抗震设计“小震不坏,中震可修,大震不倒”三准则的要求,所有坍塌事故,包括地震灾后的坍塌事故,都属于责任事故,应该追究当事人责任。只有经过分析鉴定,确认事故原因存在设计安全水准以外的意外因素时,才能界定为天灾,豁免当事人责仟。下面列举的坍塌事故都是近年来发生在国内外的引起全社会关注的恶性事故,并且都是人为过失事故。说明在所有工程事故中,人为过失事故占了很大比例,值得警惕! 1.案例背景 该礼堂位于一栋19.5m×49.5m的两层长方形建筑的第2层(底层为教室),层高6m,平面如图1所示。屋顶结构由跨度19.5m、中心间距4.5m的钢桁架承重。桁架端部高125cm,跨中高135cm,次桁架起纵向支撑的作用,并与主桁架相连接构成整体,由40cm×60cm的钢筋混凝土柱与纵向连系梁组成纵向排架支承,并在⑤~⑧轴处从联系梁则面悬挑出一很大的钢筋混凝土雨篷。屋盖系统如图2所示。 图1 中学礼堂平面图图2 礼堂顶层结构简图 施工过程中,由于某种原因,在底层教室完工后,曾有10个月的停工间隙期,因而在第2层楼面以上的钢筋混凝土立柱中,存在施工缝的处理问题。 该建筑于1975年1月竣工。由于出现严重的屋面渗漏现象,在1983年6月对屋面进行返修。返修时,为了改善屋面的保温隔热性能,在屋顶上增加了一个蓄水保温系统。 1983年8月24日,该礼堂屋顶结构发生坍塌。虽然事故的前一天曾经下过雨,但在事故发生的时候,并未在结构上施加任何临时额外荷载,坍毁前也没有出现异兆。 2.可用于事故原因分析的线索 (1)节点连接的施工质量问题 台湾技术学院的C.Y.林教授经过现场考察认为,结构系统的坍毁很可能是始于下弦拉杆的某一焊接头断裂,或者是由于垂直杆与斜撑杆的螺栓接头松

05、基本知识 怎样推导梁的应力公式、变形公式(供参考)

05、基本知识 怎样推导梁的应力公式、变形公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@https://www.360docs.net/doc/652371153.html, ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。回信请注明班级和学号的后面三位数。 1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究梁的应力公式和变形公式。 ................................................... 2 3 1.1梁的纯弯曲(纯弯曲:横截面上无剪力的粱段)应力公式推导 ................................. 2 4 1.2 梁弯曲的变形公式推导(仅研究纯弯曲) .................................................................... 5 5 1.3 弯曲应力公式和变形公式的简要推导 ............................................................................ 6 6 1.4 梁弯曲的正应力强度条件和刚度条件的建立 ................................................................ 7 7 2.1 梁剪切的应力公式推导 .................................................................................................... 8 8 2.2 梁弯曲的剪应力强度条件的建立 .................................................................................... 8 9 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9) 1 * 问题的提出 在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。 强度条件就是工作应力不超过许用应力,即,[]σσ许用应力工作应力≤、[]ττ≤; 刚度条件就是工作变形不超过许用变形,即,[]y y 许用变形工作变形≤、[]θθ≤。 如,梁 弯曲强度条件:[]σσ≤=W M max max ;剪切强度条件:[]τρτρ≤?= b I S F z Q * max ,max 刚度条件:挠度 ?? ? ???≤l y l y max ;转角[]??≤max 这里带方括号的,是材料的某种许用值。由材料实验确定出破坏值,再除以安全系数, 即得。 显然,不等式左侧的工作应力和工作变形计算公式,是十分重要的。如果把各种应力公式和变形公式的来历搞明白,对于如何进行强度分析和刚度分析(这是材料力学的主要内容)就会得心应手。 杆件的基本变形一共四种:轴向拉压、扭转、剪切和弯曲变形。它们分别在轴向拉压杆、扭转轴、梁的各章讲授。 其对应的公式各异,但是,推导这些公式的方法却是一样的,都要从静力、几何、物理三个方面考虑,从而导出相应的《应力公式》,在导出应力公式之后,就可以十分方便地获得《变形公式》。

材料力学的基本计算公式

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件横 截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比 7.胡克定律

8.受多个力作用的杆件纵向变形计算公式? 9.承受轴向分布力或变截面的杆件,纵向变形计算公式 10.轴向拉压杆的强度计算公式 11.许用应力,脆性材料,塑性材 料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g ) 15.拉压弹性模量E、泊松比和切变模量G之间关系 式 16.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩 T,所求点到圆心距离r)

18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数,(a)实心圆 (b)空心圆 20.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半 径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关 系式 22.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴的刚度条件? 或 26.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

27.平面应力状态下斜截面应力的一般公式 , 28.平面应力状态的三个主应力 , , 29.主平面方位的计算公式 30.面内最大切应力 31.受扭圆轴表面某点的三个主应力,, 32.三向应力状态最大与最小正应力 , 33.三向应力状态最大切应力 34.广义胡克定律

壳– 具有明显剪切变形的板弯曲

SAP2000 PROGRAM NAME: REVISION NO.: 算例 2-012 壳–具有明显剪切变形的板弯曲 问题描述 本算例是参考文献Roark and Young 1975中376页的例子。这是一个环形 板,内径1.4 in,外径2 in,厚度0.5 in。板在内边简支,在半径1.8 in处 施加一圆形线荷载。自由外边缘的变形与文献中的结果进行了比较。 文献中给出了弯曲和剪切对边缘变形的贡献。为这个算例创建三个模型。 第一个模型(Example 2-012a-thin)使用壳单元薄板选项。因为薄板公式不包 括剪切变形效果,薄板模型结果与文献中的弯曲变形比较。 第二个模型(Example 2-012a-thick)使用厚板选项。因为厚板变形包括剪切变 形影响,厚板模型结果与文献中弯曲和剪切变形的和进行比较。 第三个模型(Example 2-012b-thick)使用厚板选项但包含了面对象剪切刚度修 正v13 = 1,000 和 v23 = 1,000。修正系数使壳单元在剪切上刚 1,000 倍,因此 剪切变形可忽略不计。带剪切刚度修正的厚板模型结果与文献中变形比 较。 环形板用6x96网格剖分(径向乘切向). 圆形线荷载作为分布荷载施加到虚框架单元上。对虚框架单元所有的属性 修改设为零。因此虚框架单元没有刚度。

PROGRAM NAME: SAP2000 REVISION NO.: 几何,属性与荷载 , ,

PROGRAM NAME: SAP2000 REVISION NO.: SAP2000测试的技术特性 ?壳单元的板弯曲分析,剪切变形明显。 ?面对象刚度修正 ?框架分布荷载 结果比较 手算解在参考文献Roark and Young 1975中376页。文献中弯曲变形为- 0.00521 in,剪切变形为-0.00521 in,弯曲和剪切共同作用变形为-0.00534 in。 模型输出参数SAP2000 手算解百分误差 A 薄板外边缘 U z 弯曲变形 in -0.00522 -0.00521 +0.2% A 厚板 外边缘 U z 弯曲加剪切变 形 in -0.00534 -0.00534 0% B 带剪切刚度修正的厚板外边缘 U z 弯曲变形 in -0.00521 -0.00521 0%

工程力学-组合变形

10 组合变形 1、斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22 y z z y 1z y0 i i ++?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图10.1 解题范例

[解](a)AD杆时压缩、弯曲组合变形,BC杆是压缩、弯曲组合变形;AC杆不发生变形。 (b)AB杆是压弯组合变形,BC杆是弯曲变形。 (c)AB是压缩弯曲组合变形,BC是压弯组合变形。 (d)CD是弯曲变形,BD发生压缩变形,AB发生弯伸变形,BC发生拉弯组合变形。 10.2分析图10.2中各杆的受力和变形情况。 图10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形.

(d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中(AB、BC和CD) 各段将发生哪些变形? 图10.3 [解] AB段发生弯曲变形,BC段发生弯曲、扭转变形;CD段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图10.4 所示,杆AB为18号工字钢(截面面积30.6cm2,Wz=185cm3),其长度为l=2.6m。试求当荷载F=25kN作用在AB的中点处时,杆内的最大正应力。设工字钢的自重可略去不计。 B l/2 F 20kN 300 C D A l 图10.4 [解]取AB为研究对象,对A点取矩可得 NBCY F12.5kN = 则3 2 25 = = NBCX NAB F F

10弯形矫正讲解

钳工工艺一体化授课计划

讲授新课:(工艺知识) 定义:将坯料弯成所需要形状的加工方法,称为弯形。 一、弯形 1.弯形概述 弯形是使材料产生塑性变形,因此只有塑性好的材料才能进行弯形。钢板弯形后它的外层材料伸长,内层材料缩短,而中间有一层材料弯形后长度不 变,则称为中性层。 弯形虽然是塑性变形,但也有弹性变形,为抵消材料的弹性变形,弯形过程中应多弯一些。 2.弯形坯料长度的计算 坯料经弯形后,只有中性层的长度不变,因此计算弯形工件坯料长度时,可按中性层的长度进行计算。但当材料弯形后,中性层并不在材料的正中,而是偏向内层材料一边。实验证明,中性层的实际位置与材料的弯曲半径r和枋料的厚度t有关。 钢板弯曲前后 a)弯曲前 b)弯曲后弯形时中性层位置当材料厚度不变时.弯形半径越大,变形越小,中性层的位置就越接近材料厚度的几何中心。弯形的情况不同时,中性层的位置也不同。 表为中性层系数x0的值。从表中r/t的比值中可以看出,当弯形半径r≥16t 时,中性层在材料的中间(即中性层与几何中心重合)。在一般情况下,为简化计算,当r/t≥8时,可取x0=0.5进行计算。

弯形的形式有多种,图中a 、b 、c 为内面带圆弧的制件,d 是内为直角的制件。 内面带圆弧制件的坯料长度等于直线部分(不变形部分)与圆弧中性层长度(弯形部分)之和。圆弧部分中性层长度的计算式为: A=π(r+ x0t )?180a 式中A ——圆弧部分中性层长度,mm ; r ——弯形半径,mm ; z 。——中性层位置系数; t ——材料厚度(或坯料直径),mm ; a ——弯形角(即弯形中心角),单位(°)。 内面弯形成不带圆弧的直角制件时,其坯料长度的计算可按弯形前后坯料的体积不变,采用A=0.5t 的经验公式求出。 例1厚度t=4mm 的钢板坯料,弯成图中的制件,若弯形角a=120°,内弯形半径r=16 mm ,边长l 1=60mm 、l 2=120 mm ,求坯料长度L 是多少? 解:r/t=6/4 得x 0=O.41 因为 L= l 1+ l 2+A A=π(r+ x 0t )? 180a =3.14×(16+0.41×4) × ??180120 =36.93mm 所以 L= l 1+ l 2+A

剪切变形、弯曲变形

剪切变形、弯曲变形 弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由弯矩和抗弯刚度EI、剪力和抗剪刚度GA计算得到。 框架结构、剪力墙结构和框剪结构在侧向力作用下的水平位移曲线的特点: (1)框架结构 抗侧刚度较小,其位移由两部分组成:梁和柱的弯曲变形产生的位移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线呈弯曲型,自下而上层间位移增大。第一部分是主要的,第二部分很小可以忽略,所以框架结构在侧向力作用下的侧移曲线以剪切型为主,故称为剪切型变形,如下图1。 图1(a)剪切型变形图1(b)剪切型曲线 (2)剪力墙结构 抗侧刚度较大,剪力墙的剪切变形产生位移,侧向位移呈弯曲型,即层间位移由下至上逐渐增大,相当于一个悬臂梁,故称为弯曲型变形,如下图2。 图2(a)弯曲型变形图2(b)弯曲型曲线 (3)框剪结构 位移曲线包括剪切型和弯曲型,由于楼板的作用,框架和墙的侧向位移必须协调。在结构的底部,框架的侧移减小;在结构的上部,剪力墙的

侧移减小,侧移曲线呈弯剪型,层间位移沿建筑物的高度比较均匀,改善了框架结构及剪力墙结构的抗震性能,也有利于减少小震作用下非结构构件的破坏,此变形称为弯剪型变形,如下图3。 图3 弯剪型曲线 弯曲型或剪切型可由构件是否有反弯点来判别。 (1)由位移曲线与弯矩的关系可知道,弯曲型构件变形曲线连续,越往上曲率越大(y轴曲率为0),比如剪力墙、梁、悬臂构件; (2)剪切型构件,反弯点在构件高度或长度范围内,变形曲线有变化、不连续的,比如框架柱、连梁,当然有的框架柱反弯点不在层高范 围内,但《抗规》第6.2.2条规定,就算不在层高范围内柱端弯矩 也要乘以增大系数。 对于结构来说,主要构件为剪切型组成的结构就为剪切变形为主的结构;主要构件为弯曲变形组成的结构就为弯曲变形为主的结构。

公式及变形公式整理

公式及变形公式整理 路程=速度×时间s=vt 速度=路程÷时间t=s÷v 时间=路程÷速度t=s÷v 总价=单价×数量c=a×x 单价=总价÷数量a=c÷x 数量=总价÷单价x=c÷a 正方形的面积=边长×边长S=a2 正方形的周长=边长×4 C=4a 正方形的边长=周长÷4 a=C÷4 长方形的面积=长×宽S=ab 长方形的长=面积÷宽a=S÷b 长方形的宽=面积÷长b=S÷a 工作总量=工作效率×工作时间c=at 工作效率=工作总量÷工作时间a=c÷t 工作时间安=工作总量÷工作效率t=c÷a

《运算率》课前小研究1 请同学们认真自学课本P17——18页内容,认真完成下面的小研究。 1、举例说明什么是加法结合律: 2、举例说明什么是加法交换律: 3、我会运用:(用简便方法计算下面各题) 1234+700+300 287+36+13 用到的运算定律:用到的运算定律:

运算率整理 (1)加法交换率: 交换两个加数的位置,和不变,这叫加法交换率。 用字母表示:a+b=b+a (2)加法结合律: 先把前两个数相加再加第三个数,或者先把后两个数相加再加第一个数,和不变,这叫加法结合律。 用字母表示:(a+b)+c=a+(b+c) (3)减法的性质: 一个数连续减去两个数就等于这个数减去后两个数的和。用字母表示:a-(b+c)=a-b-c 一个数减去两个数的差就等于这个数减去第一个数,再加上第二个数。 用字母表示:a-(b-c)=a-b+c (4)乘法交换率: 交换两个因数的位置,积不变,这叫乘法交换率。 用字母表示:a×b=b×a (5)乘法结合律: 先把前两个数相乘再乘第三个数,或者先把后两个数相乘再乘第一个数,积不变,这叫乘法结合律。 用字母表示:(a×b)×c=a×(b×c)

最新弯曲变形和剪切变形的区别

弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由弯矩和抗弯刚度EI、剪力和抗剪刚度GA计算得到。 框架结构,剪力墙结构和框剪结构在侧向力作用下的水平位移曲线的特点: 1、框:抗侧刚度较小,其位移由两部分组成:梁和柱的弯曲变形产生的位移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线呈弯曲型,自下而上层间位移增大.第一部分是主要的,第二部分很小可以忽略,所以框架结构在侧向力作用下的侧移曲线以剪切型为主,故称为剪切型变形. 2、剪:抗侧刚度较大,剪力墙的剪切变形产生位移,侧向位移呈弯曲型,即层间位移由下至上逐渐增大,相当于一个悬臂梁; 3、框剪:位移曲线包括剪切型和弯曲型,由于楼板的作用,框架和墙的侧向位移必须协调.在结构的底部,框架的侧移减小;在结构的上部,剪力墙的侧移减小,侧移曲线呈弯剪型,层间位移沿建筑物的高度比较均匀,改善了框架结构及剪力墙结构的抗震性能,也有利于减少小震作用下非结构构件的破坏. 剪切滞后 在受剪力作用的薄壁梁中,距剪力作用点较远的突缘上的正应力(见应力)小于按平截面假设求得值的现象。剪切滞后取决于结构中力的扩散(传播)。力的扩散是指作用在结构某一部分上的非自身平衡的力系,向结构其他部分传递,直至与外力或约束反力相平衡的过程。 图1为一宽突缘工字形悬臂梁,它由上下各五根细长突缘杆、上下各四块突缘板和中间一块薄腹板组成。在剪力Q的作用下,梁中出现剪切滞后现象,这可由下面的力的扩散过程来说明。在杆仅受正应力而板仅受剪应力的简化假设下,当剪力Q作用于腹板的自由端时,整个腹板具有剪应力τ。此剪应力直接作用于与腹板相连的中心杆A1B1上,所以在自由端附近的截面上仅A1B1杆中有正应力和正应变。而A2B2杆和A3B3杆均无正应力和正应变。但A1B1杆的正应变引起突缘板A1B1B2A2的剪应变和剪应力,此剪应力又使突缘杆 A2B2产生正应力。在A2B2杆受力变形的基础上,通过同样方式又使A3B3杆受力。图1中在工字梁的左侧用阴影线表示突缘杆中的正应力,右侧绘出突缘板中的剪应力。由于内力是由受剪腹板经与其相连的突缘杆逐步向远处承力突缘杆传播的,所以在力的扩散过程结束后,远离受剪腹板的杆所受的力在空间上有一定落后,而且受力的值小于按平截面假设求得的值,这就是剪切滞后。而根据平截面假设,各杆的受力情况没有差别,这与实际情况相差较远。因此,在计算薄壁梁的应力时,一般不能采用平截面假设。 剪切滞后造成结构内部受力不均匀,影响结构材料的利用率。例如,由于剪力Q的作用,在图2所示的箱形薄壁结构的上下盖板中就出现剪切滞后现象 (正应力在腹板附近大,中间部分小)。甚至当腹板附近的盖板接近破坏时,盖板的中间部分还处于低应力状态。为了估计剪切滞后对盖板利用率的影响程度,可采用折合宽度概念。即假定宽为 W0的一块板的承载能力恰好相当于一块宽仅为Wb 而充分发挥了承载能力的板,Wb称为折合宽度,而比值嗞=Wb/W0称为减缩系数。嗞值小说明材料的利用率低。通常盖板越宽嗞值越小。在工程设计中,应考虑减少腹板的间距,以提高材料的利用率。 很常见的四个概念,弯曲变形、剪切变形,弯曲型变形、剪切型变形。注意,一个字之差,意思却大不相同。弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由

相关文档
最新文档