220kv电网继电保护

220kv电网继电保护
220kv电网继电保护

摘要

继电保护是一门专门研究电力系统故障及反事故措施的技术学科。由于电力系统是一个整体,当某一设备或线路发生故障时,在瞬间就会影响到整个电力系统的其它部分,为此要求切除故障设备或输电线路的时间必须很短,只有借助于装设在每个电气设备或线路上的自动装置,即继电保护,才能实现。因此,继电保护的基本任务:当电力系统中发生短路故障时,继电保护能自动地、迅速地和有选择性地动作,使断路器跳闸,将故障元件从电力系统中切除;当电气设备出现不正常运行情况时,继电保护装置则发出信号,以便由值班人员及时处理或由装置自动进行调整。继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。

关键词:电力系统继电保护电气设备自动装置

目录

中文摘要…………………………………………………………………………………………I

1.引言 (2)

2.220KV电网元件参数的计算 (2)

2.1设计原则 (2)

2.2220KV电网元件参数计算原则 (2)

2.3发电机参数的计算 (2)

2.4变压器参数的计算 (3)

2.5输电线路线参数的计算 (5)

3.中性点接地的选择 (10)

3.1 输电线路上T A、TV变比的选择 (10)

3.2变压器中性点接地的选择 (11)

4短路电路的计算 (12)

4.1运行方式确定的原则 (12)

4.2网络等效图的化简 (13)

4.3关于相间距离保护的短路计算 (14)

5.自动重合闸 (18)

5.1自动重合闸的基本论述 (18)

5.1.1概述 (18)

5.1.2自动重合闸的配置原则 (18)

5.2自动重合闸的基本要求 (18)

6.总结 (20)

参考文献 (20)

1、引言

继电保护是一种电力系统的反事故自动装置,它在电力系统中的地位十分重要。电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的发展不断地注入新的活力,继电保护技术未来发展趋势是计算机化、网络化、智能化和数据通信一体化发展。

本次设计主要内容是220KV电网继电保护的配置和整定,设计内容包括:220KV 电网元件参数的计算、中性点接地的选择、短路电路的计算、自动重合闸等。

由于各种继电保护适应电力系统运行变化的能力都是有限的,因而,对于继电保护整定方案的配合不同会有不同的保护效果,如何确定一个最佳的整定方案,将是从事继电保护工作的工程技术人员的研究课题。总之,继电保护既有自身的整定技巧问题,又有继电保护配置与选型的问题,还有电力系统的结构和运行问题。尤其,对于本文中220KV高压线路分相电流差动保护投运前的现场试验,一直是困扰技术人员的一个问题,由于线路两端距离的限制,现场试验不能像试验室那样方便。另外,光纤保护在长距离和超高压输电线路上的应用还有一定的局限性,在施工和管理应用上仍存在不足,但是从长远看,随着光纤网络的逐步完善、施工工艺和保护产品技术的不断提高,光纤保护将占据线路保护的主导地位。

2 、 220KV电网元件参数的计算

2.1 设计原则

电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。应根据审定的电力系统设计(二次部分)原则或审定的系统接线及要求进行电网继电保护和安全自动装置设计,设计应满足《继电保护和安全自动装置技术规程(SDJ6-83)》、《110~220kV电网继电保护与安全自动装置运行条例》等有关专业技术规程的要求。

2.2 220KV电网元件参数计算原则

标幺值的归算

近似计算:标幺值计算的近似归算是用平均额定电压计算。标幺值的近似计算可以就在各电压级用选定的功率基准值和各平均额定电压作为电压基准来进

行。结合本网络选取基准值:S B =1000MV A ; U B =230KV ;

Ω===9.521000

2302

2B B B S U Z

2.3 发电机参数的计算 发电机的电抗有名值:

N

N S U X X d

100(%)2"= (2-7)

发电机的电抗标幺值:

N

B

d S S X X 100(%)"=* (2-8)

式中: (%)

"X d —— 发电机次暂态电抗; N U —— 发电机的额定电压;

B U ——基准电压230kv; B S —— 基准容量1000MV A; N S ——发电机额定容量235.294MV A.

已知: P N = 200MW U N =15.8 KV ?cos = 0.85 "d X =0.1444 则: S N =

Φ

COS P N

=85.0200= 235.294 MV A *G X = N

B

S S 100(%) Xd" =294.23510001444.0? =0.614

G X = N

B S U 100(%)X 2

"d =294.2352301444.02? =32.46(Ω)

表2-1 发电机参数结果

2.4 变压器参数的计算 (1) 双绕组变压器参数计算公式:

双绕组变压器电抗有名值:

N

N K T S U U X 100(%)2

= (2-9)

双绕组变压器电抗标幺值:

N

B

k T S S U X 100(%)=

* (2-10)

式中: (%)

K U ——变压器短路电压百分值; N U ——发电机的额定电压; B U ——基准电压230kv;

B S ——基准容量1000MV A;

N S ——变压器额定容量. (2) 三绕组变压器参数的计算公式 1)各绕组短路电压百分值

U K1(%)=21

〔Ud Ⅰ—Ⅱ(%)+Ud Ⅰ—Ⅲ(%)-Ud Ⅱ—Ⅲ(%)〕 (2-11)

U K2(%)=21

〔Ud Ⅰ—Ⅱ(%)+Ud Ⅱ—Ⅲ(%)-Ud Ⅰ—Ⅲ(%)〕 (2-12)

U K3(%)=2

1

〔Ud Ⅰ—Ⅲ(%)+Ud Ⅱ—Ⅲ(%)-Ud Ⅰ—Ⅱ(%)〕 (2-13)

式中:Ud Ⅰ—Ⅱ(%)、Ud Ⅰ—Ⅲ(%)、 Ud Ⅱ—Ⅲ(%)分别为高压与中压,高压与低压,

中压与低压之间的短路电压百分值。 2)各绕组的电抗有名值:

X T1 = N

N K S U U 100(%)2

1 (2-14)

X T2 =N N K S U U 100(%)2

2 (2-15)

X T3 =N

N K S U U 100(%)2

3 (2-16)

各绕组的电抗标幺值:

X T1* =

N B

k S S U 100(%)1 (2-17)

X T2* = N B

k S S U 100(%)2 (2-18)

X T3* = N

B

k S S U 100(%)3 (2-19)

式中: S B —— 基准容量1000MV A ;

S N —— 变压器额定容量;

N U —— 发电机的额定电压;

B U —— 基准电压230kv. (3) 大同厂变压器参数计算:

已知: S N = 240MW %12K U =14.12 则: 588.0240

1000

%12.14%111=?=?

=*N T B K T S S U X ()Ω=?=?=726.349.52588.0*

1

1B T T Z X X (4) 西万庄变压器参数计算:

已知: S N = 240MW %12K U =11.50 %23K U =7.60 %13K U =23.70 则: 各绕组的阻抗百分值为:

U K1% = 21

(%12K U +%13K U -%23K U )

= 2

1

( 11.50 + 23.7 - 7.60 )

= 13.8

U K2% = 21

(%23K U +%12K U -%13K U )

= 2

1

( 7.60 + 11.50 – 23.70 )

= –2.3

U K1% = 21

(%13K U +%23K U -%12K U )

= 21

( 23.70 + 7.60 – 11.50 )

= 9.9 X T1* = N

B

k S S U 100(%)1 = 24010010008.13?? = 0.575

X T2* = N

B

k S S U 100(%)2 = 24010010003.2??- =-0.096

X T3* =

N

B

k S S U 100(%)3 = 24010010009.9?? = 0.412

对于高碑店变压器参数计算原则与2.4(4)相同,计算结果如表2-2所示:

表2-2 各变压器参数计算结果

2.5 输电线路参数的计算 (1) 输电线路参数计算公式

线路零序阻抗为: Z 0 = 3Z 1 (2-20)

负序阻抗为: Z 2 = Z 1 (2-21) 线路阻抗有名值的计算:

正、负序阻抗: Z 1 = Z 2 = (1r +j 1x )L (2-22)

零序阻抗: Z 0 = 3Z 1 (2-23) 线路阻抗标幺值的计算:

正、负序阻抗: Z 1* = Z 2* =(1r +j 1x )L

2

B B U

S (2-24) 零序阻抗: Z 0* = 3Z 1* (2-25)

式中: 1r —— 每公里线路正序电阻值Ω/KM;

1x —— 每公里线路正序电抗值Ω/KM; L —— 线路长度 KM; S B —— 基准容量 1000 MV A; U B —— 基准电压 230 KV . (2) 大同——神头线(AB 段)

有名值:Z AB1= R AB1+ jX AB1= (R1+ jX1 ) ×L AB

=(0.0785+j0.4)×80=6.28+j32= 32.610?

78Ω

∠9.

Z AB2 =Z AB1 =6.28+j32= 32.610?

78Ω

∠9.

Z AB0= R AB0+ jX AB0=3 Z AB1

= 3×(6.28+j32)=18.84+j96=97.830?

78Ω

∠9.

标幺值:Z AB1*= Z AB1/ Z B=(6.28+j32) /52.9 =0.119 +j0.605=0.617?

78

∠9.

Z AB2* =Z AB1* =0.119 +j0.605=0.617?

78

∠9.

Z AB0*= R AB0*+ jX AB0*=3 Z AB1*

=3×(0.119 +j0.605)=0.357+j1.815=1.851?

78

∠9.

对于其它线路:大同——西万庄线(BC段),神头——西万庄线(AC段),神头——南郊线(AD段),南郊——高碑店线(DE段),高碑店——房山线(EF段),房山——天津线Ⅰ回(FG段),房山——天津线Ⅱ回(FG段)的计算原则与2.5(2)相同,计算结果如表2-3所示:

3、 中性点接地的选择

3.1 输电线路上T A 、TV 变比的选择 (1) TA 的配置原则

①型号:电流互感器的型号应根据作用环境条件与产品情况选择。 ②一次电压:Ug=Un

Ug —电流互感器安装处一次回路工作电压; Un —电流互感器的额定电压.

③一次回路电流:I 1n ≥Igmax

Igmax —电流互感器安装处一次回路最大电流; I 1n —电流互感器一次侧额定电流.

④准确等级:用于保护装置为0.5级,用于仪表可适当提高。 ⑤二次负荷:S2≤Sn

S2—电流互感器二次负荷; Sn —电流互感器额定负荷ф.

⑥输电线路上CT 的选择: 根据最大极限电流来选择。

(2) TA 变比及型号的选择 TA 二次侧的电流为5A 1) 对大神线而言 其最大工作电流为:

I gmax =

N

U S 3max =

230

3250000?= 628A

所以线路AB 上TA 变比选为1200/5。

对于大西线,神西线,神南线,南高线,房高线同3.1(2)的选择原则及结果相同,TA 变比均为:1200/5,由《发电厂电气部分课程设计参考资料》查的型号为LCW —220型 其中, L —电流互感器; C —瓷绝缘; W —户外式。 2) 对房天1线及房天2线而言 其最大工作电流均为:

I gmax =

N

U S 3max =

230

350000?= 125A

所以线路DE 上TA 变比选为600/5, 由《发电厂电气部分课程设计参考资料》查

的型号为LCLWD 2—220型。

其中, L —电流互感器; C —瓷绝缘; L (第三个字母)—电缆型 ;

W —户外式; D 2—差动保护用。

(3) TV 的配置原则

①型式:电压互感器的型式应根据使用条件选择,在需要检查与监视一次回

路单相接地时,应选用三相五柱式电压互感器或具有三绕组的单相互感器组。

②一次电压的波动范围:1.1Un>U 1>0.9Un ③二次电压:100V

④准确等级:电压互感器应在哪一准确度等级下工作,需根据接入的测量仪 表。继电器与自动装置及设备对准确等级的要求来确定。 ⑤二次负荷:S 2≤Sn

(4)TV 变比及型号的选择

线路电压均为220KV ,由《发电厂电气部分课设参考资料》查得变比为

100/3

100

/3220000 , 型号为YDR —220; Y —电压互感器;D —单相; R —电容式。

表3-1 TA 、TV 选择结果

3.2变压器中性点接地方式的选择

通常,变压器中性接地位置和数目按如下两个原则考虑:一是使零序电流保护装

置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠性;二是不使变压器承受危险的过电压。为此,应使变压器中性点接地数目和位置尽可能保持不变。

(1) 变压器中性点接地的位置和数目的具体选择原则

1)对单电源系统,线路末端变电站的变压器一般不应接地,以提高保护的灵敏度和简化保护线路;对多电源系统,要求每个电源点都有一个中性点接地,以防止接地短路的过电压对变压器产生危害。

2)电源端的变电所只有一台变压器时,其变压器的中性点应直接接地;变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,再将另一台中性点不接地的变压器改为中性点直接接地运行。若由于某些原因,变电所正常情况下必须有二台变压器中性点直接接地运行,则当其中一台中性点直接接地变压器停运时,应将第三台变压器改为中性点直接接地运行。

3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地的方式运行,并把他们分别接于不同的母线上。当其中一台中性点直接接地的变压器停运时,应将另一台中性点不接地的变压器改为中性点直接接地运行;低电压侧无电源的变压器中性点应不接地运行,以提高保护的灵敏度和简化保护接线。

4)对于其他由于特殊原因不满足上述规定者,应按特殊情况临时处理。例如,可采用改变保护定值、停运保护或增加变压器接地运行台数等方法进行处理,以保证保护和系统的正常运行。

根据变压器的台数和接地点的分布原则,结合该系统的具体情况,中性点接地的选择结果如下:大同发电厂A的两台为T1

、T2;西万庄变电站C端的一台为T3;

T5。

高碑店变电站E端的两台为T4

T1—接地;T2—不接地;T3—接地;T4—接地;T5—不接地。

4、短路电流的计算

4.1 运行方式确定的原则

保护的运行方式是以通过保护装置的短路电流的大小来区分的。

(1)最大运行方式

根据系统最大负荷的需要,电力系统中的发电设备都投入运行(或大部分投入运行)以及选定的接地中性点全部接地的系统运行方式称为最大运行方式。对继电保护来说,是短路时通过保护的短路电流最大的运行方式。

(2)最小运行方式

根据系统最小负荷,投入与之相适应的发电设备且系统中性点只有少部分接地的运行方式称为最小运行方式。对继电保护来说,是短路时通过保护的短路电流最小的运行方式。

表4-1 系统运行方式的结果

4.2 网络等效图的化简

(1)正序等效图

图4-1 正序等效网络图

(2)零序等效图

图4-2 零序等效网络图

4.3 关于相间距离保护的短路计算

(1)对1QF而言:

1) 最小分支系数K b,min的计算

运行方式:开机容量最小,AC断线,系统1-6最大运行方式,双回线.

网络等效图如下所示:

调整上图位置!

b,min

化简得:

图4-3 关于最小分支系数K b,min 等效网络化简图

()111(0.2340.726)0.309// 3.340.962 1.6750.40222X ????

=+?+++=????????

()210.478//0.5170.756//0.30.6050.840X X =+++=????

30.5880.614 1.202X =+= ∴ 623,min 130.840 1.202 1.6991.202

b I X X K I X ++=

=== 2) 最大分支系数K b,max 的计算

运行方式:开机容量最大,闭环,系统1-6最小运行方式,单回线. 网络等效图如下所示:

b,max

图4-7 关于最大分支系数K b,max 等效网络化简图(2)

()601.0614.0588.02

1

4=+=

X 204.0122.1229

.0139.0378.0605.0378.0605.03212112==++?=++=

X X X X X X

075.0122

.1139

.0605.03213113=?=++=

X X X X X X

047.0122

.1139

.0378.03213223=?=++=

X X X X X X

()[]()424.0675.1962.02143.5//309.0168.0//726.0234.0=??

?

???++++=A X

()[]12'

123.0//756.052.0//478.0X X X A +++=

()[]439

.0204.03.0//756.052.0//478.0424.0=+++= 676.0601.0075.0413'13=+=+=X X X

313.0047.0676.0//439.0//23'

13'12=+=+=X X X X C

∴ 195.3313

.01

123===

C X I 936.1195.3606.0676.0439.0676

.0195.313

'12'13'23

12=?=+?=+=X X X I I

259.1936.1195.3122313=-=-=I I I

∴ ()()809.0605.0/075.0259.1204.0936.1/1131312121=?+?=+=X X I X I I ()()760.1139.0/047.0195.3075.0259.1/3232313133=?+?=+=X X I X I I ∴ 176.2809

.0760

.1 K 13max b,===

I I

对2QF ,7QF 和8QF 最大和最小分支系数的计算原理同4.4(1)相同,计算结果如表4-2所示。

表4-2 相间距离保护中分支系数的计算结果

5、自动重合闸

5.1 自动重合闸的基本概述

5.1.1 概述

在110KV级以上电压的大接地电流系统中,由于架空线路的线间距离较大,相间故障的机会比较少,而单相接地短路的机会比较多。在高压输电线路上,若不允许采用快速非同期三相重合闸,而采用检同期重合闸,又因恢复供电的时间太长,满足不了稳定运行的要求时,就采用单相重合闸方式。

单相重合闸是指只把发生故障的一相断开,然后再进行单相重合,而未发生故障的两相仍然继续运行,这样就可大大提高供电的可靠性和系统并列运行的稳定性。如果线路发生的是瞬时性故障,则单相重合闸成功即恢复三相的正常运行。如果是永久性故障,单相重合不成功,则根据系统的具体情况,如不允许长期非全相运行时,则应再次切除单相并不再进行自动重合。目前一般都是采用重合不成功时跳开三相的方式。当采用单相重合闸时,如线路发生相间短路时,一般都跳开三相断路器,不进行三相重合;如有其它原因断开三相断路器时,也不进行重合。

5.1.2 自动重合闸的配置原则

自动重合闸的配置原则根据电力系统的结构形状、电压等级、系统稳定要求、负荷状况、线路上装设的继电保护装置及断路器性能,以及其它技术经济指标等因素决定。其配置原则:

(1)1KV及以上架空线路及电缆与架空混合线路,在具有断路器的条件下,当用电设备允许且无备用电源自动投入时,应装设自动重合闸装置;

(2)旁路断路器和兼作旁路的母联断路器或分段断路器,应装设自动重合闸装置;(3)低压侧不带电源的降压变压器,可装设自动重合闸装置;

(4)必要时,母线故障也可采用自动重合闸装置。

总结多年来自动重合闸运行的经验可知,线路自动重合闸的配置和选择应根据不同系统结构、实际运行条件和规程要求具体确定。在本此所设计的220kv中性点直接接地电网中,采用综合自动重合闸装置。

5.2 自动重合闸的基本要求

(1) 自动重合闸装置不应动作的情况有:

①由值班人员手动操作或通过遥控装置将断路器断开时。

②手动投入断路器,由于线路上存在故障,随即由保护动作将其断开.因为在这

种情况下,故障大多都是属于永久性的。它可能是由于检修质量不合格、隐患未能消除或者是保安地线没有拆除等原因造成的。因此,即使再重合一次也不可能成功。 .

③在某些不允许重合的情况下例如,断路器处于不正常状态(如气压、液压降低等)以及变压器内部故障,差动或瓦斯保护动作使断路器跳闸时,均应使闭锁装置不进行重合闸。

(2)除上述条件外,当断路器由继电保护动作或其他原因而跳闸后,重合闸都应该动作,使断路器重新合闸。在某些情况下(如使用单相重合闸时),也允许只在保护动作于跳闸后进行重合闸。

(3)基于以上的要求,应优先采用断路器操作把手与断路器位置不对应启动方式,即当断路器操作把手在合闸位置而断路器处在跳闸位置时启动重合闸。这种方式可以保证无论什么原因使断路器跳间后(包括偷跳和误跳),都能进行一次重合闸。当手动操作断路器跳闸,由于两者的位置是对应的,因此,不会启动重合闸。

当利用保护来启动重合闸时,由于保护动作很快,可能使重合闸来不及启动。因此,必须采取措施(如设置自保持回路或记忆回路等)来保证装置可靠动作。

(4)自动重合闸装置的动作次数应符合预先的规定。如一次重合闸就只应该动作一次。当重合于永久性故障而再次跳间后,就不应该再动作。

装置本身也不允许出现元件损坏或异常时,使断路器多次重合的现象,以免损坏断路器设备和扩大事故范围。

(5)自动重合闸在动作以后,应能够自动复归。

对于10kV及以下的线路,当经常有值班人员时,也可采用手动复归方式。

(6)自动重合间时间应尽可能短,以缩短停电的时间.因为电源中断后,电动机的转速急剧下降,停电时间越长,电动机转速越低,重合闸后自起动就越困难,会拖延恢复正常工作的时间。但重合闸的时间也不能太短,因为:

①要使故障点的绝缘强度来得及恢复。

②要使断路器的操作机构来得及恢复到能够重新合闸的状态。重合闸的动作时间一般采用0.5~1.5s。

(7)自动重合闸装置应有与继电保护配合加速切除系统故障的回路。加速方式可分为前加速和后加速。

前加速方式就是在重合闸前保护以瞬时或缩短ΔT时间,快速切除故障。重合于永久性故障时保护将延时切除故障。

后加速方式就是在重合闸前保护瞬时或后备时间切除故障,重合于永久性故障时,保护将瞬时或后备缩短△T时间,快速切除故障。

(8)在两侧电源的线路上采用重合闸时应考虑同步问题。

结论

本文针对220kv中性点直接接地电网中的线路,根据<<继电保护和安全自动装置的技术规程>>规定,在满足继电保护“四性”要求的前提下,对本电网中的线路AB和AD的继电保护编制了一个220KV电网继电保护整定方案,可分为光纤差动保护方案,相间距离保护方案,接地零序保护方案,重合闸方案。

本设计根据给定的220KV电网接线图和相关数据,进行了如下的具体设计,其内容为:计算系统中各元件参数;确定输电线路上TA,TV变比的选择及变压器中性点接地的选择;绘制电力系统等值阻抗图,确定系统运行方式并进行短路计算;确定电力系统继电保护的主保护和后备保护的选择及整定计算:主保护采用两套独立的、厂家不同的、能保护线路全长的保护装置(第一套CSC-103B光纤纵差保护;第二套PSL-603(G)分相电流差动保护),后备保护采用相间距离保护和接地零序电流保护;输电线路的自动重合闸采用单相自动重合闸方式。

通过本次设计,掌握和巩固了电力系统继电保护的相关专业理论知识,熟悉了电力系统继电保护的设计步骤和设计技能并掌握了运用各种整定原则,提高了设计电力系统继电保护整定的计算能力。

对于各种继电保护适应电力系统变化的能力都是有限的,因此继电保护整定方案也不是一成不变的,加之本文在设计时由于时间仓促,设计者能力有限,难免有一些漏洞,希望各位老师指出错误,我将虚心地接受并加以改进。

参考文献

1、崔家佩.等电力系统继电保护与安全自动装置整定计算[M].北京:水利电力出

版社,1993

2、李骏年.电力系统继电保护[M].北京:中国电力出版社,1993

3、王维俭.电气主设备继电保护原理与应用[M].北京:中国电力出版社,1996

4、吕继绍.继电保护整定计算与实验[M].湖北华中理工大学出版社,1983

附录

电力网主接线图

变电站继电保护培训

变电站、继电保护基础知识 培训资料 二零一二二月

第一章变电站基础知识 1. 电力系统概述: 1.1 电力系统定义: 电力系统是电能生产、变换、输送、分配、消费的各种设备按照一定的技术和经济要求有机组成的一个统一系统的总称。简言之,电力系统是由发电机、变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。 1.2 电力系统的构成 动力系统是由锅炉(反应堆)、汽轮机(水轮机)、发电机等生产电能的设备,变压器、输电线路等变换、输送、分配电能的设备,电动机、电热电炉、家用电器、照明等各种消耗电能的设备以及测量、保护、控制乃至能量管理系统所组成的统一整体。 煤

1.3电力系统的电压等级 1.3.1 额定电压等级 我国国家标准规定的部分标准电压(额定电压)如下表: T +5% -5% 通常取线路始末电压的算术平均值作为用电设备以及电力网的额定电压。 由于用电设备的允许电压偏移为±5%,而延线路的电压降落一般为10%,这就要求线路始端电压为额定值的105%,以保证末端电压不低于95%。发电机往往接于线路始端,因此发电机的额定电压为线路的105%。通常,6.3KV 多用于50MW 及以下的发电机;10.5KV

用于25~100MW的发电机;13.8KV用于125MW的汽轮发电机和72.5MW 的水轮发电机;15.75KV用于200MW的汽轮发电机和225MW的水轮发电机;18KV用于300MW的汽轮发电机。 变压器的一次额定电压:升压变压器一般与发电机直接相连,故与发电机相同,见表中有“*”降压变压器相当于用电设备,故与线路相同。 变压器的二次额定电压:考虑到变压器内部的电压降落一般为5%,故比线路高5%~10%。只有漏抗很小的、二次测线路较短和电压特别高的变压器,采用5%。 习惯上把1KV以上的电气设备称为高压设备反之为低压设备。 1.3.2 电压等级的使用范围: 500、330、220KV多半用于大电力系统的主干线;110KV既用于中小电力系统的主干线,也用于大电力系统的二次网络;35、10KV既用于大城市或大工业企业内部网络,也广泛用于农村网络。大功率电动机用3、6、10KV,小功率电动机用220、380V;照明用220、380V。 1.4电力系统中性点的运行方式 1.4.1 中性点非直接接地系统 小电流接地系统,也称小接地短路电流系统。 供电可靠性高,但对绝缘水平要求高。电压等级较高的系统,绝缘费用在设备总价格中占相当大比重,故多用于60KV级以下的系统。

220KV变电站变压器运行及其继电保护措施 艾岳武

220KV变电站变压器运行及其继电保护措施艾岳武 发表时间:2018-04-19T10:47:32.497Z 来源:《电力设备》2017年第33期作者:艾岳武 [导读] 摘要:随着我国社会经济的飞速发展,有效的推动了现代化和城乡一体化建设发展,人们对电力系统的提出了较高的要求。 (国网吉林省电力有限公司辽源供电公司吉林辽源 136200) 摘要:随着我国社会经济的飞速发展,有效的推动了现代化和城乡一体化建设发展,人们对电力系统的提出了较高的要求。目前,在我国电力系统中,220KV变电站是主要的组成部分,其运行效率对整个电网系统的安全和稳定有着直接的影响。但是220KV变电站变压器的运行存在一定的问题,不能满足人们的生活需求。对此,本文针对220KV变电站变压器的运行故障进行分析,同时提出相应的继电保护措施。 关键词:220KV变电站;变压器运行;继电保护 电网是维系国家在经济领域中一切活动的核心环节,也是改善人民的物质生活条件,为社会带来经济上快速革新的最有力工具。而变压器作为电力系统中非常重要的一部分,其能否安全运行直接影响着电网是否能高效、安全的运行。变压器若是发生故障,给电力系统带来的损害将是相当严重的。所以对变电站变压器采取保护措施尤为重要。首先变电站是国家的财产,是一个国家服务行业的代表性机构,主要担负的社会功能就是供电。对于变电站的保护,不仅要求供电技术能力上的精确,也要求在每一个细节处做到最好。外部环境对变电站的影响也是极其重要的,空气湿度和气候干燥直接影响输出源。所以也要对其基本保护措施加以重视。我们不仅要做好变压器的管理维护工作,保证其安全高效的运行,同时也要做好对其运行状况的记录工作,及时发现问题,并妥善解决,消除潜在隐患,保障电力系统的正常运转。继电保护装置就是为了及时发现故障并进行切除而装设的一种对变压器和变电站甚至整个电力系统的保护装置。本文针对 220 k V 变电站变压器的运行和继电保护措施的相关问题作进一步的探讨分析。 1、变电站概况 变电站是改变电压的场所。为了将发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低,该升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。按规模大小不同,又可称为变电所、配电室等。变电站就是中转站,它支配着一个国家所有电力的分配情况。而电力又是驱动现代性国家、城市转型和发展的主要源动力之一,第二产业和第三产业都需要电力作支撑,对电力的制造和输出,是衡量一个国家发展程度的重点考核标准,变电站同时也是体现国家经济结构的标志之一。对电力的需求虽然不再以变电站作为核心,各种发电的方式随着相关科技成果的普及使用也越来越为更多的人所接受和熟知,但作为国家经济驱动的源头,变电站依然在电力供应方面占有举足轻重的地位,国家支柱产业的领头集团无一不与电网有着千丝万缕的联系和深入的合作,同时,其可被看作是经济发展与产业结构优化的缩影。 2、变压器运行继电存在的问题 变压器是变电站的主要设备,可分为升压变压器和降压变压器。主要通过电磁场对电压进行主体调节,按分接头切换方式,对输电线路中的负荷进行控制调节。在这个过程中,变压器可能出现变电问题,导致变电后电压不稳、电压未达到固定值等问题,对输电造成阻碍。 2.1变压器运行电压异常 变电器在进行运转的过程中受很多因素影响,例如气体、温度、水分等。这些在很大程度上对我国变电站变压器的输电进行阻断,导致输电电压出现异常。其气体状况可能导致信号存在跳跃现象,导致变压器油箱发生内部故障,整体油面出现异常;当变压器负荷或者外部出现短路现象时,很容易引起变压器温度升高,导致变压器油面降低,出现电压不稳状况。除此之外,变压器还容易出现负荷过重导致的电压问题。由于变压器的负荷过重,通过电荷量过大,导致整体内部信号、磁场出现问题,很容易使变压器对内部电压的调节出现混乱,导致电压不稳,导致变压器对电力系统造成的损失。 2.2变压器继电干扰异常 目前我国使用的 220k V 变电站变压器中,保护继电装置受到电磁干扰的主要因素有:电网出现短路故障;客观干扰,例如人为因素或自然因素等;变压器的内部结构出现问题导致故障发生;工作人员没有妥善施工处理,在施工时接触到外壳设备,导致内部设备或其它设备出现放点干扰。当变电站变压器受到电磁干扰时,整个输电线路都会受到干扰甚至出现阻断的现象。电磁干扰源通过各种渠道和受到干扰的回路、设备相连接,形成的闭合的回路,这样会超负荷的增加变压器的输电电压,使变压器发生严重故障。变压器的辐射干扰来源主要分为高压开关场的干扰和移动设备幅射干扰两个方面,而在 220k V 变电站变压器中,都是采取直接在开关场中安装继电保护设备以及自动控制设备的方法,如此一来,造成电磁干扰的主要原因就来自于高压开关场。 3、220k V变电站变压器继电保护措施 3.1运行保护 在对变压器采取运行保护知识,大多是借助于继电保护装置,综合应用继电保护手段,以促使 220k V 变电站的变压器能够得以正常运行。如在某一 220k V 变电站当中其变压器运行保护完全按照继电保护运行原则,先对装置性能进行检查,以保障其能够切实具备相应的防护性能,对继电保护装置行为予以规范化处理,确定有关安全行为的主要方式;之后确定继电保护的装置运行范围,促成一体化操作的达成,确定继电保护装置能够达到较好的工作效率;最终就针对继电保护装置加强维护工作,以确保其能够给予变压器的正常运行提供以良好的基础保障,避免变压器发生短路等有关故障问题。 3.2状态保护 为了消除 220k V 变电站变压器状态异常带来的不良影响,相关工作人员应该针对常见的风险因素,采取相应的机电保护措施,强化继电保护装置过流继电保护、气体保护、差动保护等性能。针对跳闸引起的故障,应该深入研究故障产生的原因,并改善 220k V 变电站变压器运行条件,使 220k V 变电站变压器免受跳闸故障的影响。此外,油箱也是变压器运行当中容易出现问题的部分,相关工作人员应该制定相应的预防措施,并根据日常的检查情况,对潜在的风险因素加以排除,保证 220k V变电站变压器具有良好的运行状态。 3.3抗干扰措施 为了确保 220KV 以上变电站继电保护和自动装置的正常运行,应该保证二次电子设备本身具有基本的抗电磁干扰能力,在设计和建设变电站的过程中采取措旅,确保传送到二次设备上的电磁干扰低于这些设备的承受水平。第一,在干扰源处降低干扰。降低设备的接地

220KV电网线路继电保护设计及整定计算

1.1 220KV 系统介绍 KV 220系统由水电站1W ,2W 和两个等值的KV 220系统1S 、2S 通过六条 KV 220线路构成一个整体。整个系统最大开机容量为MVA 29.1509,此时1W 、2W 水电厂所有机组、变压器均投入,1S 、2S 两个等值系统按最大容量发电,变压器均投入;最小开机容量位MVA 77,1007,此时1W 厂停MVA 302 机组,2W 厂停 MVA 5.77机组一台,1S 系统发电容量为MVA 300,2S 系统发电容量为MVA 240。 KV 220系统示意图如图1.1所示。 1.2 系统各元件主要参数 (1) 发电机参数如表1.1所示: 表1.1 发电机参数 电源 总容量(MVA ) 每台机额定功率 额定电压 额定功率 正序 图1.1 220kV 系统示意图

最大 最小 (MVA ) (kV ) 因数cos φ 电抗 W 1厂 295.29 235.29 235.29 15 0.85 0.35 2*30 11 0.83 0.25 W 2厂 310 232.5 4*77.5 13.8 0.84 0.3 S 1系统 476 300 115 0.5 S 2系统 428 240 115 0.5 对水电厂12 1.45X X =,对于等值系统12 1.22X X = (2) 变压器参数如表1.2所示: 表1.2 变压器参数 变电站 变压器容量(MVA ) 变比 短路电压(%) Ⅰ-Ⅱ Ⅰ-Ⅲ Ⅱ-Ⅲ A 变 20 220/35 10.5 B 变-1 240 220/15 12 B 变-2 60 220/11 12 C 变 3*120 220/115/35 17 10.5 6 D 变 4*90 220/11 12 E 变 2*120 220/115/35 17 10.5 6 (3) 输电线路参数 KM AB 60=,上端KM BC 250=,下端KM BC 230=,KM CD 185=, KM CE 30=,KM DE 170=;KM X X /41.021Ω==,103X X =,080=ΦL 。 (4) 互感器参数 所有电流互感器的变比为5/600,电压互感器的变比为100/220000。由动稳定计算结果,最大允许切除故障时间为S 2.0。 2 整定计算 2.1 发电机保护整定计算 2.1.1 纵联差动保护整定计算 (1)发电机一次额定电流的计算 式中 n P ——发电机额定容量; θ c o s ——发电机功率因数; n f U 1——发电机机端额定电压; (2)发电机二次额定电流的计算 式中 f L H n ——发电机机电流互感器变比; (3)差动电流启动定值cdqd I 的整定:

变电所继电保护

目录工程概况1 第一章35KV变电所继电保护2 1.1继电保护的重要性2 1.2继电保护的基本原理2 1.3继电保护装置的任务2 1.4对继电保护的基本要求3 第二章35KV变电所继电保护设计3 2.1三段式电流保护原理3 2.2线路的保护整定计算4 第三章继电保护装置的选择7 3.1电流互感器的确定7 3.2电压互感器的选定7 3.3中间继电器8 3.4电流继电器8 3.5时间继电器8 3.6信号继电器9 3.7熔断器9 参考文献10 致谢词11

工程概况 目前国家正致力于打造强力的电网建设力度,以实现资源优化配置,使全国的电力供应得到更好的发展。我国是产电地区主要是在西部,而西部并不发达,所以要把电力送到东部地区,使全国经济能更好的发展。为了保证电力的输送更加的可靠,就要求一次系统的坚强、科学与合理,此外对一次系统的操控需要二次系统提出了更高的要求,这就促使了二次系统的技术发展与进步。 变电所二次系统主要是由继电保护和微机监控(远动技术)所形成,发电厂与变电所自动化技术获得了显著的发展与进步。变电所综合自动化技术将继电保护、测量系统、控制系统、调节系统、信号系统和远动系统等多个独立的功能系统配成的综合系统。对于本设计中,主要是针对35KV变电所继电保护的结构、运行的设计。 主变压器型号的选定为HKSSPZ-25000-35/10,额定电流为0.412/38.49KA,所用变压器额定电压为35/0.23KV(50-100KVA)。 本设计采用两台35KV的变压器并联供电方式,总共引出线两组线进入变电室内。通过电流、电压互感器再次取电源给其相应的电气元件回路。 继电保护的基本要求是可靠性、选择性、快速性、灵敏性,即通常所说的“四性”这些要求之间,有的相辅相成、有的相互制约,需要对不同的使用条件分别进行协调。 第一章35KV变电所继电保护 继电器是一种反应与传递信息的自动电气元件,是电力系统保护与生产自动化的自动、远动、遥控测和遥讯等自动装置的重要组成部分。 变电所继电保护能够在变电站运行过程中发生故障(三相短路、两相短路、单相接地等)和出现不正常现象时(过负荷、过电压、低电压、低周波、瓦斯保护、超温、控制与测量回路断线等),迅速有选择性发出跳闸命令将故障切除或发出报警,从而减少故障造成的停电范围和电气设备的损坏程度,保证电力系统稳定运行。 1.1 继电保护的重要性 电力规程规定:任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。所有运行设备都必须有两套交、直流输入和输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能有另一套继电保护装置操作另一组断路器切除故障。在所有情况下,要求这两套继电保护装置和断路器所取的直流电源都有不同的熔断器供电。可见,虽然继电保护不是电力系统的一次设备,但在保证一次设备安全运行方面担负着不可或缺的重要角色。 1.2 继电保护的基本原理 电力系统发生故障时,会引起电流的增加和电压的降低,以及电流、电压间相位角的变化。因此,利用故障时参数与正常运行时的差别,就可以构成各种不同原理和类型的继电保护。 变电所继电保护是根据变配电站运行过程中发生故障时,在整定时间内,有选择的发出跳闸命令或报警信号。 可靠系数为一个经验数据,计算继电器保护动作值时,要将计算结果再乘以可靠系数,

国网考试电力系统继电保护 习题库

欢迎阅读 第一章绪论 习题 1-1在图1-1所示的网络中,设在d点发生短路,试就以下几种情况评述保护1和保护2对四项基本要求的满足情况: (1)保护1按整定时间先动作跳开1DL,保护2起动并在故障切除后返回; (2)保护1和保护2同时按保护1整定时间动作并跳开1DL和2DL; (3)保护1和保护2同时按保护2整定时间动作并跳开1DL和2DL; (4)保护1起动但未跳闸,保护2动作跳开2DL; )、 dz·J K lm(1)、 被 =1.5, zq 3种 t10=2.5s。 1 求电流I段定值 (1)动作电流I’dz I’dz=K’k×Id·B·max=1.3×4.97=6.46(kA) 其中Id =E S/(X s+X AB)=(37/3)/(0.3+10×0.4)=4.97(kA) ·B·max (2) 灵敏性校验,即求l min l min = 1/Z b×((3/2)·E x/ I’dz-X s,max) = 1/0.4×( (37/2) / 6.46 -0.3)=6.4 (km)

l min % = 6.4/10 ×100% = 64% > 15% 2 求电流II段定值 (1) 求动作电流I’’dz 为与相邻变压器的瞬动保护相配合,按躲过母线C最大运行方式时流过被整定保护的最大短路电流来整定(取变压器为并列运行)于是 =E S/(X s+X AB+X B/2)=(37/3)/(0.3+4+9.2/2)=2.4(kA)Id ·C·max I’’dz=K’’k·Id·C·max=1.1×2.4=2.64(kA) 式中X B=U %×(U2B / S B)=0.075×(352/10)=9.2(Ω) d (2)灵敏性校验 K’’lm=Id·B·min / I’’dz=3/ 2×4.97/2.64=1.63 > 1.5满足要求(3 t’’ 3 (1) I 式中 (2) K lm (1) 考虑C 4. (1) Ig 取n1=400/5 (2)继电器动作电流 I段I’dz·J=K jx×I’dz/ n1=6.46×103/80 = 80.75(A) II段I’’dz·J =2.64×103/80 = 33(A) III段I dz·J = 523 / 80 = 6.54(A) 5 求当非快速切除故障时母线A的最小残压 非快速保护的动作区最靠近母线A的一点为电流I段最小保护范围的末端,该点短路时母线A的残余电压为

220KV变电站继电保护设计

本/专科毕业设计(论文) 题目:220KV变电站继电保护设计 专业:电气工程及其自动化 年级: 学生姓名: 学号: 指导教师: 2012年9月

220KV变电站继电保护设计 摘要:电力系统由发电厂、变电所、输电线路和用户组成。变电所是联系发电厂和用户的中间环节,起着转换和分配电能的作用。变电所根据它在电力系统中的地位,变电所分为枢纽变电所、中间变电所、地区变电所、终端变电所。本设计主要对变电站的继电保护进行分析设计,通过合理的继电保护装置来了提高供电的安全可靠性。本变电站的电压等级为220kV,站内安装两台240MVA变压器,其中220kV线路为两进两出;110kV线路为8条出线;10kV线路为10条出线。 关键字:220kV 变电站继电保护

目录 引言 (4) 1 设计说明书 (5) 2 主变压器保护设计 (5) 2.1主变压器保护设计分析 (6) 2.2变压器容量选择 (7) 2.3变压器主保护 (7) 2.4压器后备保护 (10) 2.5变压器其他保护 (15) 3 母线保护 (16) 3.1母线保护设计分析 (16) 3.2 220kV母线保护 (16) 3.3 110kV母线保护 (16) 4 线路保护 (16) 4.1线路保护设计分析 (16) 4.2 220kV线路保护 (16) 4.3 110kV线路保护 (16) 4.4 10kV线路保护 (16) 结语 (16) 致谢 (17) 参考文献 (17)

引言 随着电力系统和自动化技术的不断发展,继电保护技术也在不断的发展.几十年来,目前,我国的电力系统正在不断向高电压、大机组、现代化大电网的发展方向前进,与之相伴的继电保护技术及其保护装置的应用水平也在大幅提升。继电保护的发展按时间经历了三个时代, 20世纪50年代及以前,继电保护装置大多以电磁型的机械元件、整流型元件和半导体元件构成; 70年代以后出现了集成电路构成的继电保护装置并在电力系统中得到广泛的运用;80年代,微机保护逐渐应用,继电保护逐渐走向了数字化与智能化,保护的可靠性也在不断提高。 在电力系统实际运行中,由于雷击、设备制造上的缺陷、设计和安装的错误、运行维护不当等不可抗拒因素,往往会导致各种故障的发生。而性能完善的继电保护装置合理的应用就可大大提高电力系统安全运行的可靠性,减少因停电造成的损失。继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信息量进行数值整定,当突变量达到一定值时,自动启动控制环节,发出相应的动作信号。 无论什么继电保护装置,一般由测量部分、逻辑部分、执行部分三部分组成。测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。如发生信号,跳闸或不动作等。继电保护装置的基本要求体现在选择性、速动性、灵敏性、可靠性四个方面。 随着技术与工艺的不断进步与更新换代,继电保护装置的可靠性、运行维护方便性等性能也将不断提升,进而促进电力系统的安全可靠性到达一个更高的水平。

电力系统继电保护的作用

1.1电力系统继电保护的作用 电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种型式的。在发生短路时可能产生一下的后果: (1)通过故障点的很大的短路电流和所燃起的电弧,使故障元件损坏; (2)短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命; (3)电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品的质量; (4)破坏电力系统并列运行的稳定性,引起系统震荡,甚至使整个系统的瓦解。 电力系统中电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态。例如,因负荷超过电气设备的额定值而引起的电流升高(一般又称过负荷),就是一种最常见的不正常运行状态。由于过负荷,使元件载流部分和绝缘材料的温度不断升高,加速绝缘的老化和损坏,就可能发展成故障。此外,系统中出现功率缺额而引起的频率降低,发电机突然甩负荷而产生的过电压,以及电力系统发生震荡等,都属于不正常运行状态。 故障和不正常运行状态,都可能在电力系统中引起事故。事故,就是指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备损坏。 系统故障的发生,除了由于自然条件的因素(如遭受雪击等)以外,一般都是由于设备制造上的缺陷、设计和安装的错误,检修质量不高或运行维护不当而引起的。因此,只要充分发挥人的主观能动性,正确地掌握客观规律,加强对设备的维护和检修,就可以大大减少事故发生的机率,把事故消灭在发生之前。 在电力系统中,除应采取各项积极措施消除或减少发生故障的可能性以外,故障一旦发生,必须迅速而有选择性地切除故障元件,这是保证电力系统安全运行的最有效方法之一。切除故障的时间常常要求小到十分之几甚至百分之几秒,实践证明只有装设在每个电气元件上的保护装置才有可能满足这个要求。这种保护装置直到目前为止,大多是由单个继电器或继电器与其附属设备的组合构成的,故称为继电保护装置。在电子式静态保护装置和数字式保护装置出现以后,虽然继电器已被电子元件或计算机所代替,但仍沿用此名称。在电业部门常用继电保护一词泛指继电保护技术或由各种继电保护装置组成的继电保护系统。继电保护装置一词则指各种具体的装置。 继电保护装置,就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作与断路器跳闸或发出信号的一种自动装置。它的基本任务是: (1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行; (2)反应电气元件的不正常运行状态,并根据运行维护的条件(例如有无经常值班人员),而动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据对电力系统及其元件的危害程度规定一定的延时,以免不必要的动作和由于干扰而引起的误动作。

变电站继电保护

景新公司变电站继电保护知识手册 编写人:唐俊 编写日期:2009年2月5号

目录 1.主变差动保护-----------------------------------(4) 2.主变气体保护-----------------------------------(5) 3.主变过流保护-----------------------------------(6) 4.中性点间隙接地保护------------------------------(6) 5.零序保护--------------------------------------(7) 6.母线差动保护-----------------------------------(9) 7.距离保护-------------------------------------(10) 8.备用电源自投----------------------------------(11) 9.重合闸---------------------------------------(13) 10.母线充电保护-------------------------------(15) 11.故障录波----------------------------------(15) 12.电流闭锁失压保护---------------------------(17) 13.低周减载----------------------------------(17) 14.过电流保护---------------------------------(17) 15.阶段式过电流保护---------------------------(18) 16.复合电压闭锁过电流保护----------------------(18) 17.过电压保护---------------------------------(19) 18.速断过流保护-------------------------------(19) 19.过负荷保护--------------------------------(19) 20.速断保护----------------------------------(19) 21.电流速断保护-------------------------------(20)

220kV变电所变压器差动保护设计

课程设计(论文) 一、设计题目:220kV变电所变压器差动保护设计 二、原始资料 某降压变压器采用差动保护,系统等值网络图如图所示。 图1 网络结构示意图 三、设计内容: 1. 对变压器T1进行继电保护配置; 2. 结合变压器差动保护装置选型,对其工作原理进行分析; 3.对差动保护进行整定计算; 4.线路保护均采用微机保护装置。 I

220KV变电所变压器差动保护设计 四、设计成品要求: 1、保护装置配置说明 2、所配保护基本原理说明 3、保护整定计算详细计算说明 4、按要求绘制的有关图纸 五、编写设计说明书 1.格式 1)参考教材(前言、目录、正文、结论、参考文献等) 2)格式规范(参看毕业设计(论文)撰写规范》) 2.内容:设计内容全面,说明部分条理清晰,计算过程详略得当。 1)原始资料分析 2)保护配置方案 3)保护原理说明 4)保护整定计算方案 5)整定计算过程 6)画出保护的原理图、交流展开图、直流展开图。 3.课程设计说明书装订顺序为:封面、任务书、成绩评审意见表、前言、目录、正文、结论、参考文献、附录。 六、时间进度安排

课程设计(论文) 七、参考书目录 1.《电力系统继电保护》谷水清中国电力出版社2.电网继电保护装置运行整定规程 3.《电力工程设计手册(一)》中国电力出版社 4.《电力工程设计手册(二)》中国电力出版社 5.继电保护和安全自动装置技术规程 GB/T 14285—2006 III

220KV变电所变压器差动保护设计 前言 继电保护的发展是随着电力系统和自动化技术的发展而发展的.几十年来,随着我国电力系统向高电压、大机组、现代化大电网发展,继电保护技术及其装置应用水平获得很大提高。在20世纪50年代及以前,差不多都是用电磁型的机械元件构成。随着半导体器件的发展,陆续推广了利用整流二极管构成的整流型元件和半导体分立元件组成的装置。 在电力系统中,由于雷击或鸟兽跨接电气设备、设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当等原因,往往发生各种事故。为了保证电力系统安全可靠地运行,电力系统中的各个设备必须装设性能完善的继电保护装置。 继电保护虽然种类很多,但是一般由测量部分、逻辑部分、执行部分三部分组成。测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。如发生信号,跳闸或不动作等。 继电保护的基本性能要求是选择性、速动性、灵敏性、可靠性。随着新技术、新工艺的采用,继电保护硬件设备的可靠性、运行维护方便性也不断得到提高。继电保护技术将达到更高的水平。

220kv电网继电保护设计

220kv电网继电保护设计

目录 一、题目 (1) 二、系统中各元件的主要参数 (2) 三、正序、负序、零序等值阻抗图 (4) 四、继电保护方式的选择与整定计算 (6) (A)单电源辐射线路(AB)的整定计算 (6) (B)双回线路BC和环网线路主保护的整定计算 11 (C)双回线路CE、ED、CD主保护的整定计算(选做)12 (D)双回线路和环网线路后备保护的整定计算(选做) 14 五、220kV电网中输电线路继电保护配置图 (22)

一、题目 选择图1所示电力系统220kV线路的继电保护方式并进行整定计算。图1所示系统由水电站W、R和两个等值的110kV系统S、N,通过六条220kV线路构成一个整体。整个系统的最大开机总容量为1509.29MVA,最小开机总容量为1007.79 MVA,两种情况下各电源的开机容量如表1所示。各发电机、变压器容量和连接方式已在图1中示出。 表1 系统各电源的开机情况

图1 220kV系统接线图 二、系统中各元件的主要参数 计算系统各元件的参数标么值时,取基准功率S b=60MVA,基准电压U b=220kV,基准电流I b=3 b b S U=0.157kA,基准电抗x b = 806.67。 (一)发电机及等值系统的参数 用基准值计算所得的发电机及等值系统元件的标么值参数见表2所列。 表2 发电机及等值系统的参数 发电机或系统发电机及系统的总 容量MVA 每台机额定 功率MVA 每台机额 定电压 额定功 率因数 正序电抗负序电抗

cos 注:系统需要计算最大、最小方式下的电抗值;水电厂发电机2 1.45d x x '=,系统2 1.22d x x '=。 (二) 变压器的参数 变压器的参数如表3所列。 表3 变压器参数

电网继电保护复习题

继电保护复习题 第一章绪论 一、基本问答题 1.什么是继电保护装置?其基本任务是什么? 答:继电保护装置就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。 继电保护装置基本任务是: (1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证无故障部分迅速恢复正常运行。 (2)反应电气元件的不正常运行状态,并根据运行维护的条件而动作于信号,以便值班员及时处理。 2.继电保护基本原理是什么? 答:继电保护的原理就是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。如根据短路故障时流过电气元件上的电流增大而构成电流保护,根据故障时被保护元件两端电流相位和大小的变化,可构成差动保护,根据接地故障时出现的电流﹑电压的零序分量,可构成零序电流保护,根据电力变压器部故障产生的气体数量和速度而构成瓦斯保护。 3.什么是主保护和后备保护? 答:主保护是指被保护元件部发生的各种故障时,能满足系统稳定及设备安全要求的、有选择的切除被保护设备或线路故障的保护。 后备保护是指当主保护或断路器拒绝动作时,用以将故障切除的保护。 远后备保护是指主保护或断路器拒绝动作时,由相邻元件的保护部分实现的后备。 近后备保护是指当主保护拒绝动作时,由本元件的另一套保护来实现的后备。如当断路器拒绝动作时,由断路器失灵保护实现的后备。 4.对继电保护装置的基本要什么? 答: (1)选择性:当电力系统中的设备或线路发生故障时,其继电保护仅将故障的设备或线路从电力系统中切除,尽量减小停电面积,以保证系统中的无故障部分仍能继续安全运行。 (2)速动性:是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压情况下运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。 (3)灵敏性:是指电气设备或线路在被保护围发生故障或不正常运行情况时,保护装置的反应能力。 (4)可靠性:是指对继电保护装置既不误动,也不拒动。 5.继电保护装置通过哪些主要环节完成预定的保护功能?各环节的作用是什么? 答:继电保护装置由三个部分组成,即测量部分、逻辑部分、执行部分。测量部分的作用是测量与被保护电气设备或线路工作状态有关的物理量的变化,以确定电力系统是否发生了短路故障或出现不正常运行情况;逻辑回路的作用是当电力系统发生故障时,根据测量回路的输出信号,进行逻辑判断,以确定保护是否应该动作,并向执行元件发出相应的信号;执行回路的作用是根据逻辑回路的判断,发出切除故障的跳闸脉冲或指示不正常运行情况的信号。

110KV电网继电保护设计

黑龙江交通职业技术学院毕业设计(论文)题目110KV电网继电保护设计 专业班级: 姓名: 学号:

2017年月日

摘要 这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。中国的电力工业作为国家最重要的能源工业,一直处于优先发展的地位,电力企业的发展也是令人瞩目的。电力系统的飞速发展对继电保护不断提出新的要求,也使得继电保护得以飞速的发展。电力系统继电保护是电力系统的重要组成部分,没有继电保护的电力系统是不能运行的。电力系统继电保护的设计电网直接影响到电力系统的安全稳定运行。如果设计与配置不当,继电保护将不能正确动作,从而会扩大事故的停电范围。因此,要求继电保护有可靠性、选择性、快速性和灵敏性四项基本性能,需要整定人员针对不同的使用条件,分别进行协调。 本次设计以对110kV单电源环形网络的继电保护配置,整定计算。设计内容包括:系统主要元件的参数,短路电流的计算,中性点接地的选择,距离保护方式选择和整定计算,零序电流保护方式配置与整定计算,及主变压器保护的设计。 关键词:110kV继电保护;短路电流计算;变压器保护

目录 第1章绪论 (1) 1.1什么是继电保护 (1) 1.2 继电保护整定计算的目的及基本任务 (1) 1.2.1整定计算的目的 (1) 1.2.2 整定计算的基本任务 (1) 第2章电力系统继电保护概论 (3) 2.1 电力系统继电保护的作用 (3) 2.2电力系统继电保护的基本要求 (3) 2.3 继电保护的发展现状 (4) 第3章线路保护的整定计算 (6) 3.1 110kV线路保护的配置 (6) 3.1.1 110~220kV线路保护的配置原则 (6) 3.2 相间距离保护 (6) 3.2.1 距离保护的基本概念和特点 (6) 3.2.2 相间距离保护整定计算 (7) 3.2.3 相间距离保护II段整定计算 (8) 3.2.4 相间距离保护III段整定计算 (9) 3.2.3 线路A-BD2,B-BD2 相间距离保护整定计算结果: (10) 3.2.4相间距离保护装置定值配合的原则 (11) 3.3 零序电流保护方式配置 (12) 3.3.1 110中性点直接接地电网中线路零序电流保护的配置原则 (12) 3.4 零序电流保护整定计算的运行方式分析 (12) 3.4.1 接地短路电流、电压的特点 (12) 3.4.2 接地短路计算的运行方式选择 (12) 3.4.3 流过保护最大零序电流的运行方式选择 (13) 3.4.4 最大分支系数的运行方式和短路点位置的选择 (13) 3.4.5 零序电流保护的整定计算 (13) 3.4.6零序电流保护整定计算结果表 (16) 第4章线路保护整定 (17) 4.1电力系统短路计算的目的及步骤 (17) 4.1.1 短路计算的目的 (17) 4.1.2 计算短路电流的基本步骤 (17) 4.2 运行方式的确定 (18) 4.2.1 最大运行方式 (18) 4.2.2 最小运行方式 (18) 第5章主变压器保护的设计 (19) 5.1 主变压器保护的配置原则 (19) 5.2 本设计的主变保护的配置及说明 (19) 5.3 纵差保护的整定计算 (20)

变电站及线路继电保护设计和整定计算

继电保护科学和技术是随电力系统的发展而发展起来的。电力系统发生短路是不可避免的,为避免发电机被烧坏发明了断开短路的设备,保护发电机。由于电力系统的发展,熔断器已不能满足选择性和快速性的要求,于1890年后出现了直接装于断路器上反应一次电流的电磁型过电流继电器。19世纪初,继电器才广泛用于电力系统保护,被认为是继电保护技术发展的开端。1901年出线了感应型过电流继电器。1908年提出了比较被保护元件两端电流的电流差动保护原理。1910年方向性电流保护开始应用,并出现了将电流与电压相比较的保护原理。1920年后距离保护装置的出现。1927年前后,出现了利用高压输电线载波传送输电线路两端功率方向或电流相位的高频保护装置。1950稍后,提出了利用故障点产生的行波实现快速保护的设想。1975年前后诞生了行波保护装置。1980年左右工频突变量原理的保护被大量研究。1990年后该原理的保护装置被广泛应用。与此同时,继电保护装置经历了机电式保护装置、静态继电保护装置和数字式继电保护装置三个发展阶段。20世界50年代,出现了晶体管式继电保护装置。20世纪70年代,晶体管式保护在我国被大量采用。20世纪80年代后期,静态继电保护由晶体管式向集成电路式过度,成为静态继电保护的主要形式。20世纪60年代末,有了用小型计算机实现继电保护的设想。20世纪70年代后期,出现了性能比较完善的微机保护样机并投入系统试运行。80年代,微机保护在硬件结构和软件技术方面已趋成熟。进入90年代,微机保护以在我国大量应用。20世纪90年代后半期,继电保护技术与其他学科的交叉、渗透日益深入。为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的定值,以保持各保护之间的相互配合关系。做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新活力。未来继电保护的发展趋势是向计算机化、网络化保护、控制、测量、数据通信一体化智能化发展。 随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

国家电网继电保护柜屏制造规范

国家电网继电保护柜、屏制造规范 1. 继电保护屏柜加工制造标准 1.1.引用技术标准: DL/T 720-2000 《电力系统继电保护柜、屏通用技术条件》 满足国家其它相关规程、规定的要求 1.2.适用范围 本标准适用于继电保护屏柜加工。为保证工程整体视觉效果,在新建工程中测控、调度自动化等屏柜亦应参照执行。 1.3.屏柜参数 屏柜尺寸:2260×800×600(高×宽×深)mm,柜净高2200mm,门楣高60mm。 屏柜颜色: GSB05-1426-2001 77# GY09 冰灰桔纹。静电喷涂。 屏柜结构:门板内嵌式钢结构柜。

防护等级:不低于IP30 柜体材料:冷轧板折弯焊接结构,板厚1.5mm。 1.4.屏柜正面要求 屏柜上部为60mm高的不锈钢拉丝门楣,板厚2mm,用三只M4螺丝固定在柜体上。柜体净高2200mm,左右立柱宽40mm,上部横梁高65mm,下部底横梁高为85mm,中间大门尺寸为2045×715mm,玻璃为通长带有导电屏蔽功能的4mm厚无色透明钢化玻璃,尺寸为2045×528mm,玻璃需符合国家GB/T9963-1998钢化玻璃标准。玻璃左右两边有20mm宽的横条形装饰条,门轴在右手侧(以人面对屏柜正面为准),在大门的下部要装有气弹簧缓冲器。大门锁采用MS828型号门锁(钥匙通用),门锁最上边距离屏柜底面高1140mm,大门采用三点式锁紧结构。在玻璃左上角可以印制生产厂家的公司标志,但屏柜正面其他地方不得出现公司名称等标志。在屏柜的内面板下部有一直径为Φ30mm的调试孔,孔中心距离屏柜底部高度不得超过145mm。大门与柜体用4 mm2透明导线可靠连接,以上要求具体尺寸见附图1-1。

220kV35KV变电站继电保护课程设计

新疆农业大学机械交通学院 《发电厂电气设备》 课程设计说明书 题目 220kV/35KV变电站继电保护课程设计 专业班级:电气工程及其自动化122班 学号: 123736211 学生姓名:孔祥林 指导教师:李春兰艾海提·塞买提 时间: 2015年12月

目录 概述 (1) 1.电气主接线的设计 (1) 1.1主接线的设计原则和要求 (1) 2 主要电气器件选择汇总表 (2) 3短路电流的计算 (2) 3.1短路电流 (2) 3.1.1短路电流计算的目的 (2) 3.2 各回路最大持续工作电流 (3) 3.3短路电流计算点的确定 (3) 3.3.1 当K1点出现短路时 (5) 3.3.2当K2点出现短路时 (6) 4电保护分类及要求 (7) 5电力继电器继电保护 (8) 5.1电力变压器故障及不正常运行状态 (8) 5.2 电力变压器继电保护的配置原则 (8) 6选用变压器继电保护装置类型 (9) 7选用的母线继电保护装置类型 (9) 8各保护装置的整定计算 (10) 8.1变压器纵差保护整定计算及其校验 (10) 8.1.1差动继电器的选型 (10) 8.1.2纵差动保护的整定计算 (10) 8.1.3差动保护灵敏系数的校验 (11) 8.2变压器过电流保护的整定计算 (12) 8.2.1 DL-21CE型电流继电器 (12) 8.2.2过电流保护整定原则 (12) 8.2.3过电流保护整定的动作时限器 (13) 8.2.4保护装置的灵敏校验 (13) 8.2.5过电流保护整定计算 (13) 8.3过负荷保护 (15) 8.4变压器一次侧零序过电流保护的整定计算 (15) 8.4.2 DS-26E型时间继电器 (15) 8.4.2零序电流的整定计算 (16) 9防雷保护 (17) 10心得体会 (17) 参考文献: (18)

相关文档
最新文档