分立元件OCL功率放大电路原理分析

分立元件OCL功率放大电路原理分析
分立元件OCL功率放大电路原理分析

分立元件OCL功率放大电路原理分析

OCL是英文Output Capacitor Less的缩写,意思是没有输出电容器。OCL功率放大电路一般采用正、负对称的两组电源供电,电路内部直到负载扬声器全部采用直接耦合,中间无输入、输出变压器(人们将不用输入和输出变压器的功率放大电路称为单端推挽电路),也不需要输出电容器,其好处是通频带宽,信号失真最低。

(1)OCL功率放大器的结构组成

功率放大器的结构如图1所示。OCL功率放大电路分为输入级、激励级、功率输出级三级,此外还有为稳定电路工作而设置的负反馈网络和各种补偿电路,有些还设置有过载保护电路。

图2是一种实际的功放电路,早期一些低档功放机器采用了这一电路。下面结合该电路来认识一下功率放大器的各组成部分。

1)输入级:输入级主要起缓冲作用。输入级多采用差分对管放大电路(也有采用运算放大电路的),通常引入一定量的负反馈,增加整个功放电路的稳定性和降低噪声。差分放大器由两个特性相同的放大电路组成,其左、右两管的参数几乎完全相同。这种电路具有很高的稳定性,能抑制“零点漂移”,保证输出级中点电压的稳定。有些功放机器的差动管发射极采用恒流源电路,常见的有二极管和三极管组成的恒流源和两个三极管组成的镜像恒流源。输入级采用小功率管,工作在甲类状态,静态电流较小。

2)激励级:激励级的作用是给功率输出级提供足够的激励电流及稳定的静态偏压,整个功率放大器的增益主要由这一级提供。多数功放机的激励级采用单管放大电路,也有少数机器采用差分对管放大电路。这一级常采用恒流源负载,不仅能得到较高的电源抑制特性,而且具有工作状态稳定、线性好、失真度低等优点。激励级也是用小功率管,工作在甲类状态。

另外,激励级还要为后一级(功率输出级)提供稳定的偏置电压。功率输出级的偏置电压电路有多种类型。最简单的偏置电路是由激励管的集电极负载电阻构成的,其热稳定性和稳压性都比较差;有些功放采用恒压偏置电路,即由多个二极管串联而成的稳压钳位电路,使功率输出级的偏置电压保持稳定;而更多的则是采用带温度补偿的恒压偏置电路,这种偏置电路由一个三极管和几个电阻组成。

图2中,功率输出级的偏置电路是与激励管Q3的集电极负载串联在一起的。R5可看作Q3的集电极负载电阻,R4和Dl串联在集电极负载电路中,可看作集电极负载的一部分。Q3集电极电流流过R4、Dl和R5,在R4和Dl两端产生一定的电压降(电压高低决定了输出级的工作状态,一般为2.1V左右,此时输出级工作在甲乙类状态;如达到2.8V左右,输出级则工作在甲类状态),此电压加在Q4、Q5的基极上,为两管提供偏置电压。这时与Q4、Q5复合连接的Q6、Q7也获得了偏置电压而进入线性放大状态。

3)功率输出级:功率输出级简称输出级,主要起电流放大作用,以向扬声器提供足够大的激励电流,推动扬声器放音,因此,功率输出级也称为电流放大级。输出级还可细分为推动级和末级两级。

输出级常采用互补或准互补输出形式的单端推挽放大电路,其输出级由两组(称为上臂、下臂)不同极性的复合管构成。利用它们的偏置极性相反的特性,可以自动地分别放大正、负半周信号,即具有互补特性;又因为在工作时总是一臂导通放大信号,另一臂截止,工作在推挽状态,因此又被称为互补对称推挽放大电路。

一般功率放大器的前级(这里指输入级和激励级)均为电压放大级,输出的电流都不大。为了用较小的电流驱动功率输出管,以得到足够的输出功率,一般的功率输出级均采用半导体三极管复合连接的方式,即采用复合管。复合管是由两个或两个以上的三极管按一定的方式连接起来组成的一种功率管。输出级复合管中的大功率三极管称为功率管(也叫功放管或输出管),与之复合的另一个小功率(也有用中功率管的)三极管称为推动管(或驱动管),推动管、功放管分别构成了推动级、末级电路。一般的功放每个声道有两个功放管,而一些大功率

的功放为了增大输出功率,也采用了功放管并联的方法,这样每个声道就有四个

或更多的功放管。一些低档机中的两个功放管采用的是同极性的晶体管三极管,即两个管均为NPN型(或PNP型)管,需分别与两个不同极性(一个为NPN管,另一个为PNP管)的小功率三极管组成复合管配对使用,这样的互补输出电路常称为“准互补”推挽放大电路。

中、高档功放则采用专用音响对管(一个NPN管,一个PNP管,且特性很接近)作互补电路的输出管,以达到较高的技术水准。

功率输出级中,驱动管和功放管的工作状态有甲类、乙类、甲乙类之分。平常所说的甲类功放、乙类功放、甲乙类功放就是按功率输出级的工作状态来对功放机进行分类的。输出级的各管工作状态是由偏置电路所提供的工作电压所决定的,掌握其工作状态对维修功放有着极重要的意义。下面简要介绍一下这三类功放的特点。

甲类功放中,输出管的总静态电流较大(常为1A~2A),其工作点能保证在一定的输入信号幅度内,输出管在信号的正、负半周均处于导通状态,在无信号输入时,依然存在着相当大的静态电流,不会产生交越失真和开关失真,因此放音效果较好。但甲类放大器存在效率低、功放管发热非常厉害(除采用很大的散热器外,有的还需用风扇进行强制风冷)等缺点。甲类功放中,驱动管工作在甲类状态,静态电流较大(几十毫安),发热也较大,因此常采用中功率管作驱动管,并将其固定在散热器上。

乙类功放指在静态下(无信号输入状态),功放管的基极无偏流,只有在较强的输入信号(电压的绝对值大于0.6V)作用下,功放管才导通工作。乙类功率放大电路采用推挽输出方式,利用两个特性相同的功放管,上臂功放管工作在正半周,下臂功放管工作在负半周,即一推一挽地轮流工作。而在输入信号电压+0.6V~-0.6V之间,无论是上臂功放管还是下臂功放管,均不能导通,所以,在信号的上半周与下半周的交接处将会出现失真,称为交越失真,推挽工作的晶体管交替导通截止时,由于载流子积聚效应,它的工作不能完全再现输入信号的变化,而是在输出信号中出现附加的脉冲,称为开关失真。即乙类功放存在交越失真和开关关真的缺点,但效率高、能耗低是其显着的优点。

甲乙类功放,实际上是甲类和乙类的结台,使输出级各管进入甲乙类工作状态,有一定的静态偏流。没有输入信号时,静态电流较小,功放管处于近似截止状态;工作时只要输入很微小幅度的信号电压,功放管就能立即进入正常放大状态。在这类功放中,输出管静态电流多数设计在几十毫安,也有设计得较大一些的,如在200mA左右(常将这种称为高偏甲乙类)。甲乙类功放电路解决了失真与效率的矛盾,因此,甲乙类功放是功放机中数量最大的一类。

4)负反馈网络:为了提高电路的稳定性和降低失真,OCL电路均要加入交直流负反馈,通常会同时采用局部负反馈(即本级的负反馈)和环路负反馈两种办法。各级放大器发射极所接的电阻,主要起稳定该级工作状态的作用,属于局部负反馈。环路负反馈则属于级间负反馈,可以提高整个放大器的稳定性。

环路负反馈有两种形式:一种是负反馈信号从末级(一般是输出端)取出,经反馈网络馈入差分输入放大器的一臂,称为“大环路负反馈”,这种负反馈使电路非常稳定,因而被大部分功放所采用;另一种是反馈信号从推动级(不是取自末级)取出,经反馈网络馈入差分输入放大器的一臂,称为“无大环路负反馈”,这种环路负反馈可以提高放大器的速率,使功放的瞬态失真减小,还可以消除扬声器的反电动势经环路反馈到输入级造成的失真。

5)各种补偿电路:OCL的补偿电路主要有以下几种:

一是为消除自激所加的各种补偿电容。

以图3所示电路为例,接在反馈电阻R11两端的C5为相位补偿电容,用来超前补偿,以抑制电路自激振荡;C3、C8、C9分别接在输入差分管Ql、推动管Q7、Q8的c、b极间,是消振电容(也称中和电容),用来抑制电路振荡、进行相位补偿,以消除电路高频自激。另外,有些功率放大器还在输入端接有一个低通滤波器(图3中由R2、C2组成),限制输入信号的通频带,让有用的音频信号通过,旁路高频信号,抑制输入信号中的高频杂波。

二是接在OCL电路输出端的扬声器阻抗补偿电路,也称为茹贝尔电路(图3中由R20和Cl0组成),用以抵消扬声器的感抗成分,使放大器的负载接近纯电阻,保证放大器稳定地工作。

三是温度补偿电路。输出功率较大的OCL电路工作时产生的热量对电路的影响较大,所以需要对电路进行温度检测和补偿,以纠正温度变化引起的静态工作点偏移。具体措施是输出级的基极采用带温度补偿功能的恒压偏置电路,这种偏置电路由一只三极管和几只电阻组成(如图3中,由Q6、R14、W2、R15组成),利用三极管的温敏特性,将Q6与功放管一起安装在散热器上,若功放管Q9、Ql0集电极电流上升,功放管发热量必然增大,Q6表面温度随之升高,并通过一系列的反馈过程(从略),最终使功放管的电流下降至正常范围。这样既保护了功放管,又可使输出级的稳定性进一步提高。

6)OCL功率放大器的供电:OCL功率放大器均采用正、负对称电源供电,使输出端直流电压为0V。供电电压通常为±28V、±35V、±45V等,且有两种供电方式:一种是前、后级电路(这里的前级指输入级、激励级,后级指输出级)供电电压相同,即由同一组电源供电,大部分机器采用这种供电方式;另一种是前、后级分开供电,即前级、后级各由电压不同的两组电源供电,电压一高一低。前、

后级分开供电既可降低前、后级电路的相互影响,又可提高电源的利用率。

(2)实际OCL功率放大电路分析

1)准互补输出形式的单端推挽OCL功率放大电路:图2电路是低档功放常采用的准互补输出形式的单端推挽功率放大电路。该电路采用正、负对称电源和差分输入放大等措施,使输出端的直流电压为0V,以便放大器与扬声器直接耦合。电路分为三级,Ql、Q2组成差分输入放大级,R3是发射极公共电阻;激励级是由一只PNP型管(Q3)组成的共发射极放大电路;Q4-Q7组成复合“准互补”推挽功率输出级,其中Q4、Q5为推动管,Q6、Q7为功放管,两个功放管为同极性的NPN型管。

Q3的集电极输出端接有NPN型的Q4和PNP型的Q5(中间经过R4和Dl),利用不同类型晶体管的互补作用,实现推挽放大所需的“倒相”要求。Q4与大功率管Q6接成NPN型复合管,Q5与大功率管Q7接成PNP型复合管。由它们共同完成接近乙类的准互补对称单端推挽功率放大任务。Q3集电极负载电阻R5、R4和二极管Dl组成推挽放大偏置电路。Rl是Q1的偏置电阻。 Rll既是Q2的偏置电阻,又是交直流负反馈电阻。

信号流程:从前级来的音频信号从Vi端输入后,经耦合电容Cl加到差分放大管Ql的基极;差分输入级的另一臂(即Q2的基极)引入输出级的负反馈信号。经Ql、Q2差分放大后的信号由Ql集电极直接耦合到激励三极管Q3基极,进行激励放大后也直接耦合到电流放大级。从Q3集电极取出的信号分为两路:一路直接送互补对称放大电路的上臂(由Q4、Q6组成的)NPN型复合管的基极(Q4基极),当信号为正半周时,NPN型复合管导通,输出电流经正电源、Q6、扬声器到地,当信号为负半周时,NPN复合管截止;另一路经R4、Dl(二极管Dl在导通状态,其内阻很小,对交流信号的传递几乎无影响)送互补对称放大电路的下臂PNP型复合管(由Q5、Q7组成的)的基极(Q5基极),当信号为负半周时,PNP型复合管导通,电流经地、扬声器、Q7到负电源,当信号为正半周时,PNP 复合管截止这样,两只功放管一推一挽地工作,在输出端合成完整的音频信号,驱动扬声器发声。

为提高整个放大器的稳定性、减小谐波失真、降低放大器的动态输出阻抗,还从末级的输出中点取出负反馈电压,经由R11、R12、C4构成的反馈网络馈入差分输入级的一臂(Q2基极),其直流负反馈是由输出中点电压经Rll直接加至Q2基极的;而交流负反馈电压则经Rll、R12分压(C4对交流而言视为短路)后加到Q2基极,这个交流负反馈电压的大小,决定着放大电路的增益(放大倍数)。

C2、C3为防振电容,用来抑制放大器可能出现的高频自激。C2、C3分别是Q3、Q5的中和电容(负反馈电容,也叫滞后补偿电容),可降低Q3、Q5的高频增益,破坏自激的幅值条件。

2)带温度补偿的OCL功率放大电路:图3是飞达牌F-9603功放的右声道功率放大电路,音乐输出功率为300W(8Ω)。

该功率放大电路由10个晶体管组成:

Ql、Q2组成差动放大输入级.Q5是激励级,Q6组成偏置电路.Q7、Q9、Q8、Ql0组成复合互补输出级。

在差分输入放大电路的输入端,Rl、R2、C2组成了低通滤波电路,用于滤除音频范围以外的高频信号,提高电路的稳定性,抑制电路的高频噪声和自激。在Ql、Q2的发射极引入了电流负反馈电阻R5和W1(合用一个电位器W1),以扩大输入级的有效输入电压范围;差分输入放大器的发射极公共电阻改成了由Q3、

R6、R7、Dl、D2组成的恒流源电路,以使电路更加稳定。Q3是恒流源三极管,Dl、D2为恒流管的基极提供偏置基准电压。R5是保险电阻,万一恒流源晶体管击穿短路,可使差动放大级维持工作;R3、R4是Ql、Q2的集电极负载电阻,R3兼作激励管Q5的基极偏置电阻。

激励级Q5采用恒流源负载的放大器,以保证放大电路的增益和线性。Q4、R9、Rl0、D3、D4组成Q5集电极的恒流源负载.为激励级的稳定工作提供条件,同时对稳定输出级的静态工作点也起了很大的作用。

因为该电路的输出功率较大,所以需要进行温度检测和补偿,以纠正因温度变化引起的静态工作点偏移。Q6与R14、W2、R15组成具有温度补偿功能的恒压偏置电路。利用激励管Q5的集电极电流在上述元件上形成的电压降,为Q7、Q8,也为Q9、Ql0提供适当的基极偏置,大大降低放大器的交越失真。在一般情况下,输出级所需的偏置电压(从Q6集电极与发射极两端测得)为2.1V左右。本电路利用Q6正向导通时的稳压作用,使输出级得到较稳定的偏置电压;同时,还利用三极管的温敏特性,将Q6与功放管一起安装在散热器上,对功放管的温度变化进行监测和补偿,使偏置电压得到适当的温度补偿,保证电路稳定地工作。调节W2,就可调节功放管的偏置电压,使它工作在甲类、甲乙类、乙类工作状态,本电路工作在甲乙类工作状态。

信号流程:从前级来的右声道的信号,经Cl、R2送Ql、Q2组成的差分输入放大器放大后从Ql的集成极取出,送激励级三极管Q5进行激励放大。从Q5集电极取出的信号,分为两路;一路直接送互补对称放大电路的上臂(由Q7、Q9组成的)NPN型复合管的基极(Q7基极),当信号为正半周时,NPN型复合管导通,输出电流经正电源、Q9、扬声器到地,当信号为负半周时,NPN复合管截止;另一路经Q6送互补对称放大电路的下臂(由Q8、Ql0组成的)PNP型复合管的基极(Q8基极),当信号为负半周时,PNP型复合管导通,电流经地、扬声器、Q10到负电源,当信号为正半周时,PNP复合管截止。这样,两只功率管一推一挽地工作,在输出端合成完整的音频信号,驱动扬声器发声。

本电路的级间直流负反馈从输出端通过Rll(C6对直流等于开路)加到Q2基极上,反馈量很大,再加上差动放大器本身的高稳定性,保证了整个放大器的稳定工作。

而音频交流信号的级间负反馈则经R11、R12分压后(C6的容量较大,对于反馈过来的音频信号相当于通路)加到Q2基极上,使功率放大电路获得稳定的增益,性能也得到改善。调整Rll可改变反馈量,达到调整增益的目的。

C2、C3、C8、C9为防振电容,用来防止自激振荡。其中,C2为限制输入信号的通频带,让有用的音频信号通过,旁路无用的音频范围以外的高频信号,抑制高频杂波;C3、C8、C9分别是Q1、Q7、Q8的中和电容。

放大器输出端增加了一个与扬声器串联的小电感L1,其作用一是抵偿扬声器导线的分布电容,提高放大器的高频稳定性,二是防止信号变化时出现较高的瞬时电压,抑制尖峰杂波,改善输出信号的幅频特性。

电阻R20、电容Cl0组成容性负载,成为扬声器阻抗补偿电路,用以抵偿扬声器的感抗成分,使放大器的负载较接近于纯电阻,放大器工作稳定,不易自激,输出级晶体管不易出现过电压,运行比较安全。

3)全对称式OCL功率放大电路

图4是中宝(ZBO)KB-18A功放的右声道功率放大电路。

该功放采用全对称式OCL电路,使功率放大器的性能得到了进一步的提高。它除了采用复合管、恒流源、恒压温度补偿等措施外,还把OCL电路里的差分输入、激励、功率放大三级电路都设计成互补对称形式,充分发挥了NPN型和PNP 型三极管能够互补工作的优点,让信号从输入到输出均处于推挽放大之中,使电路获得了很好的稳定性和保真度。

电路中,Q3、Q4构成NPN差分放大器,Ql、Q2构成PNP差分放大器,它们共同组成互补对称的差分输入放大级。R32~R40组成输入级的偏置电路,其中R35~R38为各管发射极的电流负反馈电阻;Q5、Q6分别为其恒流源,用来稳定工作点,保证电路工作的稳定。R33、R34,R39、R40为差分管的集电极负载电阻。

Q7、Q8构成单端推挽电压放大级,并作为功率放大级的激励级,提供足够的电压增益。

Ql0、Qll为功率放大级的推动管,Ql0与Q13组成NPN复合管.Qll与Q12组成PNP复合管,以获得高放大倍数,这两组复合管构成功率输出级。

Q9、R48、W2、R49组成输出级的基极恒压偏置电路,为输出级提供适当的偏置电压。调节W2,可以调整功放管的静态工作点,即可以使功率管工作在甲

类、甲乙类、乙类工作状态,本电路工作在甲乙类工作状态。另外,还利用三极

管的温敏特性,把Q9安装在功放管旁,使偏置电压得到适当的温度补偿,保证电路稳定地工作。

R41、R42和C36、C37构成负反馈电路,决定整机的闭环增益。C37为交流负反馈提供通路;C36接在反馈电阻R41两端,是相位补偿电容,用来超前补偿,以抑制电路自激振荡。

C32用于限制输入信号的通频带,旁路无用的音频范围以外的高频信号,抑制高频杂波。C35、C33分别跨接在Q7、Q8的c、b极间,是消振电容(也称中和电容),用来进行相位补偿、抑制电路振荡,以消除高频自激振荡。R57、C38组成扬声器阻抗补偿电路,用以抵偿扬声器的感抗成分,使放大器的负载接近纯电阻,保证放大器稳定地工作。

信号流程:当输入的音频信号处于“正半周”时,Q3导通、Ql截止,“正半周”信号经Q3、Q4差分放大后,从Q3集电极直接耦合给Q7的基饭,经Q7放大到足够的幅度,激励Q10和Q13输出正半周的功率信号。同理,当输入的音频信号处于“负半周”时,Ql导通、Q3截止,“负半周”信号经Ql、Q2.Q8放大,激励Qll和Q12输出负半周的功率信号。级间直流负反馈从输出端通过R41反馈到Q4,Q2的基极;交流负反馈则从输出端通过R41和R42分压后,再反馈给Q2、Q4基极。

运放差分放大电路

差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点: (1)A1和A2提高了差模信号与共模信号之比,即提高了信噪比; (2)在保证有关电阻严格对称的条件下,各电阻阻值的误差对该电路的共模抑制比K CMRR 没有影响; (3)电路对共模信号几乎没有放大作用,共模电压增益接近零。 因为电路中R1=R2、 R3=R4、 R5=R6 ,故可导出两级差模总增益为: 3 5P 1p i2i1o vd R R R 2R R u u u A ???? ??+-=-= 通常,第一级增益要尽量高,第二级增益一般为1~2倍,这里第一级选择100倍,第二级为1倍。则取R3=R4=R5=R6=10K Ω,要求匹配性好,一般用金属膜精密电阻,阻值可在10K Ω~几百K Ω间选择。则 A vd =(R P +2R 1)/R P 先定R P ,通常在1K Ω~10K Ω内,这里取R P =1K Ω,则可由上式求得R 1=99R P /2=49.5K Ω 取标称值51K Ω。通常R S1和R S2不要超过R P /2,这里选R S1= R S2=510,用于保护运放输入级。 A1和A2应选用低温飘、高K CMRR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试

负反馈放大电路的设计方案与制作

信息工程系课程设计报告 课程_____________题目_____________课时_____________专业_____________班级_____________姓名_____________学号_____________指导教师_____________ 年月日

目录 一、摘要 (4) 二、设计任务及要求 (4) 三、负反馈放大电路设计的一般原则 (1)反馈方式的选择 (4) (2)放大管得选择 (5) (3)级数的选择 (6) (4)电路的确定 (6) 四、设计过程 (1)确定方案 (7) (2)电路参数的计算 (9) (3)计算技术指标 (13) 五、调试要点 (15)

负反馈放大电路的设计与制作 摘要 本文是负反馈放大电路的设计,而设计需要根据技术指标及 要求来确定放大电路的结构、级数和电路元件参数及型号等,此 次要求电路的输入电阻高输出电阻小,稳定性要好,频带宽度适 中,尽量小的失真等等...。因而我们会根据这些要求,一一计 算出技术指标和元件的参数,确定反馈类型,选取三种预选方案,通过比较选择符合要求,我们最终选择了方案一,经过布线、焊 接、调试等工作后负反馈放大电路设计制作成功。 关键词:负反馈放大电路 电路设计 电路制作 一、设计任务及要求 用分离元器件设计一个交流放大电路,用于指示仪表放大弱信 号,具体指标如下: (1) 工作频率:kHz Hz f 30~30=。 (2) 信号源:mV U i 10=(有效值),内阻Ω=50s R 。 (3) 输出要求:V U 10≥(有效值),输出电阻小于Ω10,输出电 流mA I o 1≤(有效值)。 (4) 输入要求:输入电阻大于ΩK 20。

运放差分放大电路原理

Differens Amplifier 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都 能见到其踪迹。 nz R4 R2 R T V I R1//R2 = R3//R4 For mini mum offset error due to input bias current TL/H/7057-3

从图中可以看到 A1、A2两个同相运放电路构成输入级, 在与差分放大器 A3串联组成三运放差分 防大电路。电路中有关电阻保持严格对称 ,具有以下几个优点: (1) A1和A2提高了差模信号与共模信号之比 ,即提高了信噪 比; (2) 在保证有关电阻严格对称的条件下 ,各电阻阻 值的误差对该电路的共模抑制比 K CMRR 没有 影响; (3) 电路对共模信号几乎没有放大作用 ,共模电压增益接近零。 因为电路中 R1=R2、R3=R4、R5=R6,故可导岀两级差模总增益为: 通常,第一级增益要尽量高,第二级增益一般为 1~2倍,这里第一级选择 100倍,第二级为1 倍。则取 R3=R4=R5=R6=10Q ,要求匹配性好,一般用金属膜精密电阻,阻值可在 10KQ ?几百K Q 间选择。贝9 Ad =(R p +2Ri)/R P 先定 通常在1KQ ?10KQ 内,这里取 R== 1KQ ,则可由上式求得 R 1=99R/2=49.5K Q 取标称值51KQ 。通常R S 1和R S 2不要超过F P /2,这里选Rs 1= R S 2= 510,用于保护运放输入级。 A1和A2应选用低温飘、高 K CMR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试 vd U o U il U i2 R p 2R I R 5 R P R 3 A1

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示:

图6-1 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N 沟道结 图6-2 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数U △U △I g DS GS D m == 表6-1列出了3DJ6F 的典型参数值及测试条件。

表6-1 2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量, S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路 实验名称:负反馈放大电路设计 学院:信息工程学院 专业:信息工程班级: 组号:指导教师:田明 报告人:学号: 实验地点 N102 实验时间: 实验报告提交时间: 教务处制

一.实验名称: 负反馈放大电路设计 二.实验目的: 加深对负反馈放大电路原理的理解. 学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法. 三.实验仪器: 双踪示波器一台/组 信号发生器一台/组 直流稳压电源一台/组 万用表一台/组 四.实验容: 设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下: 闭环电压放大倍:30---120 输入信号频率围:1KHZ-------10KHZ. 电压输出幅度≥1.5V 输出电阻≤3KΩ 五.实验步骤: 1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集 成运算负反馈放大电路.

为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。本设计可以采用共发射极-共基极-共集电极放大电路。对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。本设计采用电压并联负反馈形式。 2.设计电路,画出电路图. 下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。 整体原理图如下: 从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给

运放差分放大电路原理知识介绍

运放差分放大电路原理 知识介绍 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量 0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 o v ??I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。

缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b)所示。在两管发射极接入稳流电阻 R。使其即有高的 e 差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c)所示。 差分放大电路 一. 实验目的: 1.掌握差分放大电路的基本概念; 2.了解零漂差生的原理与抑制零漂的方法; 3.掌握差分放大电路的基本测试方法。 二. 实验原理: 1.由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点:

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

利用场效应管实现放大电路

利用场效应管实现放大电路 一、设计题目 设计一个场效应管放大器,要求电压增益大于40,输出阻抗小与500欧姆,电源电压15V,输出信号峰峰值不小于8 V,非线性失真度小于10%。 二、技术参数要求 1, 要求电压增益大于40 2,输出阻抗小与500欧姆 3,电源电压15V 4,输出信号峰峰值不小于8 V 5,非线性失真度小于10% 三、所用设备、仪器及清单 示波器一个、信号发生器一个、直流稳压电源一个、数字万用表一个、3DJ6F场效应管三个、47μF电容五个、面包板一个、电阻若干。 四、电路图 五、原理介绍

(1)转移特性栅极电压对漏极电流的控制作用称为转移特性,若用曲线表示,该曲线就称为转移特性曲线。它的定义是:漏极电压UDS恒定时,漏极电流ID同栅极电压UGS的关系,即结型场效应管的转移特性曲线如图所示。图中的Up为夹断电压,此时源极与漏极间的电阻趋于无穷大,管子截止。在UP电压之后,若继续增大UGS就可能会出现反向击穿现象而损坏管子。 (2)输出特性UDS与ID的关系称为输出特性,若用曲线表示,该曲线就称为输出特性曲线。它的定义是:当栅极电压UGS恒定时,ID随UDS的变化关系,即结型场效应管的输出特性曲线如图所示。结型场效应管的输出特性曲线分为三个区,即可变电阻区、饱和区及击穿区。当UDS较小时,是曲线的上升部分,它基本上是通过原点的一条直线,这时可以把管子看成是一个可变电阻。当UDS增加到一定程度后,就会产生预夹断,因此尽管UDS再增加,但IS基本不变。因此预夹断点的轨迹就是两种工作状态的分界线。把曲线上UDS=UGS-UP的点连接起来,便可得到预夹断时的轨迹。轨迹左边对应不同UGS值的各条直线,通称为可变电阻区;

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

运放差分放大电路原理知识介绍

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 21 v v v =-=, =-=C2 1C v v I 2 1 v A v 放大器双端输出电压 o v = I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 be c I I I O v d r R A v v A v v A V v β-==== 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 c d CMR v v A A K = 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模

典型差分放大电路

典型差分放大电路 1、典型差分放大电路的静态分析 (1)电路组成 (2)静态工作点的计算 静态时:v s1=v s2=0, 电路完全对称,所以有 I B Rs1+U BE +2I E Re=V EE 又∵ I E =(1+β)I B ∴ I B1=I B2=I B = 通常Rs<<(1+β)Re ,U BE =0.7V (硅管): I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc 静态工作电流取决于V EE 和Re 。同时,在输入信号为零时,输出信号电压也为零(u o= Vc1-VC2=0),即该差放电路有零输入——零输出。 2、差分放大电路的动态分析 (1)差模信号输入时的动态分析 ()e s BE EE R 12R U V β++-

如果两个输入端的信号大小相等、极性相反,即 v s1=- v s2= 或 v s1- v s2= u id u id 称为差模输入信号。 在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小。在电路理想对称的条件下,有:i c1=- i c2。 Re 上的电流为: i E =i E1+i E2=(I E1+ i e1)+(I E2+ i e2 ) 电路对称时,有I E1= I E2= I E 、i e1=- i e2,使流过Re 上的电流i E =2I E 不变,则发射极的电位也保持不变。差模信号的交流通路如图: 差模信号下不同工作方式的讨论: ① 双端输入—双端输出放大倍数: 当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压增益与单管放大电路的电压增益相同,无负载的情况下: be s c s1o1s2s1o2o1id o ud r R R 22u u A +-==--== βv v v v v v

差分放大电路

方案三差分放大电路 【项目目标】 知识目标 掌握场效应管的类型、场效应的电压控制作用及共源极放大电路的分析与应用。 能力目标 具有识别场效应管的能力,具有共源极放大的分析能力。

将J8、J9与 J6、J7之间分别加一毫安表,J10、J11连接与J12 改变电位器RP6.将测量的结果记录如下: A1间的电流 A2间的电流 知识点导入 镜像电流源的基本特性。 知识点讲解 基本镜像电流源电路如图所示。 T 1、T 2参数完全相同(即β1=β2,I CEO1=I CEO2)。 原理:因为V BE1=V BE2,所以I C1=I C2 β C1 C1B C1REF 2 2I I I I I +=+= I REF ——基准电流:C2REF C1/21I I I =+=β 推出,当β>>2 时,I C2= I C1≈ I REF ()6060B1 Rp R U U Rp R V BE CC ++--=+-= ≈6 CC Rp R V + 优点: (1)I C2≈I REF ,即I C2不仅由I REF 确定,且总与I REF 相等。 (2)T 1对T 2具有温度补偿作用,I C2温度稳定性能好(设温度增大,使I C2增大,则I C1增大,而I REF 一定,因此I B 减少,所以I C2减少)。 缺点: (1)I REF (即I C2)受电源变化的影响大,故要求电源十分稳定。 (2)适用于较大工作电流(mA 数量级)的场合。若要I C2下降,则R 就必须增大,这在集成电路中因制作大阻值电阻需要占用较大的硅片面积。 (3)交流等效电阻R o 不够大,恒流特性不理想。 (4)I C2与I REF 的镜像精度决定于β。当β较小时,I C2与I REF 的差别不能忽略。 巩固训练:将电路图中的值按照电位的阻值代入进行计算?看测量结果与理论之间的误差? 电路测试2 将J8、J9与 J6、J7之间分别加一毫安表,改变电位器RP6.将测量的结果A1间的电流 图3.1.4 基本镜像电流源电路

功率放大器电路设计资料

电子技术课程设计论文 ---功率放大器电路设计 院系:电气工程学院 专业:测控技术与仪器 班级: 姓名: 学号: 指导教师: 2014 年 6 月 24 日

目录 第一章绪论 (1) 第二章系统总体设计方案 (2) 2.1 功率放大电路 (2) 2.2放大器原理 (2) 2.3方案设计 (3) 2.3.1 前置放大极 (4) 2.3.3 三极管性能的简单测试 (4) 2.3.3 电路形式的选择 (4) 2.3.4 电路原理 (5) 第三章仿真及电路焊接及调试 (6) 3.1 Protues 简介 (6) 3.2 原理图绘制的方法和步骤 (6) 3.3 电路板的制作 (9) 3.4 电路焊接 (9) 3.5 元器件安装与调试 (10) 第四章元器件介绍 (11) 4.1 LM386 (11) 4.2 9013晶体管 (12) 4.3电容 (13) 4.4 扬声器 (13) 4.5驻极体 (14) 第五章总结 (15) 致谢 (16) 附录 (17)

第一章绪论 现在多用于高校功放课程设计的有两种电路,一种是集成功放 LM386组成的音频功率放大电路,一种是集成功放TDA2030A组成的音频功率放大电路。我们此次的课程设计所用的芯片是集成功放LM386。 本次音频功率放大系统的设计,我们采用了LM386音频功率放大器作为核心元件。它具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器,主要应用于低电压消费类产品,广泛应用于录音机和收音机之中。应用LM386时,为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。

2.4G放大器电路原理图

2.4G 射频双向功放的设计与实现 在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。前者实现成本较高,而后者则相对较便宜,且容易实现。现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。 双向功率放大器的设计 双向功率放大器设计指标: 工作频率:2400MHz~2483MHz 最大输出功率:+30dBm(1W) 发射增益:≥27dB 接收增益:≥14dB 接收端噪声系数:< 3.5dB 频率响应:<±1dB 输入端最小输入功率门限:

实验十三基于Multisim的场效应管放大器电路设计

南昌大学实验报告 学生姓名:学号:专业班级:生医091 实验类型:□验证□综合□设计□创新实验日期:20110615 实验成绩:实验十三基于Multisim的场效应管放大器电路设计 一、实验目的: 1、场效应管电路模型、工作点、参数调整、行为特征观察方法 2、研究场效应放大电路的放大特性及元件参数的计算 3、进一步熟悉放大器性能指标的测量方法 二、实验原理: 1.场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 和双极型晶体管相比场效应管的不足之处是共源跨导gm。值较低(只有ms级),MOS管的绝缘层很薄,极容易被感应电荷所击穿。因此,在用仪器测量其参数或用烙铁进行焊接时,都必须使仪器、烙铁或电路本身具有良好的接地。焊接时,一般先焊S极,再焊其他极。不用时应将所有电极短接。 2.偏置电路和静态工作点的确定 与双极型晶体管放大器一样,为使场效应管放大器正常工作,也需选择恰当的直流偏置电路以建立合适的静态工作点。 场效应管放大器的偏置电路形式主要有自偏压电路和分压器式自偏压电路(增强型MOS管不能采用自偏压电路)两种。 三、实验内容及步骤 1.场效应管共源放大器的调试 (1)连接电路。按图2.4.1在模拟电路实验板上插接好电路,场效应管选用N沟道结型管

3DJ6D,静态工作点的设置方式为自偏压式。直流稳压电源调至18V并接好(注意:共地) (2)测量静态工作点 调节电阻R使V D为2.43V左右,并测量此时的Vg、Vs ,填入表2.4.1,并计算。 表2.4.1静态工作点 将函数发生器的输出端接到电路的输入端。使函数发生器输出正弦波并调=2mV,f=lkHz。用示波器观察输出波形,(若有失真,应重调静态工作点,使波形不失真),并用示波器测量输出电压Vo,计算Av (4)测量输入及输出阻抗 用换算法测量放大器的输入电阻,在输入回路串接已知阻值的电阻R,但必须注意,由于场效应管放大器的输入阻抗很高,若仍用直接测量电阻R两端对地电Vs 和Vi进行换算的方法,将会产生两个问题: (1)由于场效应管放大器Ri高,测量时会引人干扰; (2)测量所用的电压表的内阻必须远大于放大器的输入电阻Ri,否则将会产生较大的测量误差。为了消除上述干扰和误差,可以利用被测放大器的隔离作用,通过测量放大器输出电压来进行换算得到Ri。图为测量高输入阻抗的原理图。方法是:先闭合开关S(R=0),输入信号电压Vs,测出相应的输出电压V01,然后断开S,测出相应的输出电压V02,因为两次测量中和是基本不变的,所以 R i=V O2/(V O1-V O2)R 输出电阻测量:在放大器输入端加入一个固定信号电压Vs ,分别测量当已知负载R L断开和接上的输出电压V0和V0L。则 R0=(V0 / V0L -1)R L

运放差分放大电路原理知识介绍精编

运放差分放大电路原理 知识介绍精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即 C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=,

= -=C21C v v I 2 1 v A v 放大器双端输出电压 o v I v I v I v C2C1)2 1(2 1v A v A v A v v =--=- 差分放大电路的电压放大倍数为 be c I I I O v d r R A v v A v v A V v β-==== 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 c d CMR v v A A K = 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。

功率放大器,功率放大器的特点及原理

功率放大器,功率放大器的特点及原理是什么? 利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 一、功率放大器的特点 向负载提供信号功率的放大器,通常称为功率放大器。功率放大器工作时,信号电压和电流的幅度都比较大,因此具有许多不同于小信号放大器的特点。 l.功率放大器的效率 功串放大的实质是通过晶体管的控制作用,把电源提供给放大器的直流功率转换成负载上的交流功率。交流输出功串和直流电源功率息息相关。一个功率放大器的直流电源提供的功率究竟能有多少转换成交流输出功率呢?我们当然希望功率放大器最好能把直流功率(PE= EcIc)百分之百转换成交流输出功率(Psc=Uscisc)实际上却是不可能的。因为晶体管自身要有一定的功率消耗,各种电路元件(电阻、变压器等)要消耗一定的功率,这就有个效率问题了。放大器的效率η指输出功率Psc与电源供给的直流动率PE之比,即通常用百分比表示: η=Psc/PE 通常用百分比表示: η=Psc/PE×100% 效率越高,表示功率放大器的性能越好。 晶休管在大信号工作条件下,工作点会上下大幅度摆动。一旦工作点跳出输入或输出特性曲线的线性区,就会出现非线性失真。所以对声频功率放大器来说,输出功率总要和非线性失真联系在一起考虑。一般声频功率放大器都有两个指标棗最大输出功率和最大不失真输

差分放大器的工作原理

差分放大器的工作原理 差分放大器也叫差动放大器是一种将两个输入端电压的差以一固定增益放大的电子放大器,有时简称为“差放”。差分放大器通常被用作功率放大器(简称“功放”)和发射极耦合逻辑电路 (ECL, Emitter Coupled Logic) 的输入级。 如果Q1 Q2的特性很相似,则V a,V b将同样变化。例如,V a变化+1V,V b也变化+1V,因为输出电压VOUT=V a-V b=0V,即V a的 变化与V b的变化相互抵消。这就是差动放大器可以作直流信号放大的原因。若差放的两个输入为,则它的输出V out为: 其中Ad是差模增益 (differential-mode gain),Ac是共模增益 (common-mode gain)。 因此为了提高信/噪比,应提高差动放大倍数,降低共模放大倍数。二者之比称做共模仰制比(CMRR, common-mode rejection ratio)。共模放大倍数AC可用下式求出: A c=2R l/2R e 通常以差模增益和共模增益的比值共模抑制比 (CMRR, common-mode rejection ratio) 衡量差分放大器消除共模信号的能力: 由上式可知,当共模增益Ac→0时,CMRR→∞。Re越大,Ac就越低,因此共模抑制比也就越大。因此对于完全对称的差分放大器来说,其Ac = 0,故输出电压可以表示为: 所谓共模放大倍数,就是V a,V b输入相同信号时的放大倍数。如果共模放大倍数为0,则输入噪声对输出没有影响。 要减小共模放大倍数,加大R E就行通常使用内阻大的恒流电路来带替R E

差分放大器是普通的单端输入放大器的一种推广,只要将差放的一个输入端接地,即可得到单端输入的放大器。很多系统在差分放大器的一个输入端输入反馈信号,另一个输入端输入反馈信号,从而实现负反馈。常用于电机或者伺服电机控制,稳压电源,测量仪器以及信号放大。在离散电子学中,实现差分放大器的一个常用手段是差动放大,见于多数运算放大器集成电路中的差分电路。 单端输出的差动放大电路 (不平衡输出) 称为单端Single ended或不平衡输出Unbalance Output。 单端较差动输出之幅度小一倍,使用单端输出时,共模讯号不能被抑制,因Vi1与Vi2同时增加,VC1与VC2则减少,而且VC1=VC2,但Vo =VC2,并非于零(产生零点漂移)。 但是加大RE阻值可以增大负回输而抑制输出,并且抑制共模讯号,因Vi1=Vi2时, Ii1及Ii2也同时增加,IE亦上升而令VE升高,这对Q1和Q2产生负回输, 令Q1和Q2之增益减少,即Vo减少。 当差动讯号输入时,Vi1 = -Vi2,IC1增加而IC2减少,总电流IE = IC1 + IC2便不变, 因此VE也不变,加大RE电阻值之电路会将差动讯号放大,不会对Q1及Q2产生负回输 及抑制。 。 b)减低功率消耗(相对纯电阻来说)。 c)提高差动放大之输出电压。 d)提高共模抑制比CMRR。 即差动输入,则IC1升而IC2下降(并且,ΔIC1 = ΔIC2) 因电流镜像原理,IC4 = IC1 故此,Io = IC4 IC2 = IC1 IC2 (ΔIo = 2ΔIC1或2ΔIC2) 这说明了输出电流是IC1和IC2的相差,即将输出变为具有双端差动输出性能的单端输出 (故对共模讯号之抑制有改善因双端差动输出才能产生消除共模讯号作用)。

LM3886功率放大器原理图及PCB

LM3886原理图: LM3886 _PCB: LM3886 3D效果图:

元器件清单: 说明封装序号0.1U R AD0.2 C14 0.1U R AD0.2 C13 0.1U R AD0.2 C12 0.1U R AD0.2 C11 0.47U RAD0.2 C4 0.47U RAD0.2 C2 0.47U RAD0.2 C3 0.47U RAD0.2 C1 0.7UH AXIAL0.6 L2 0.7UH AXIAL0.6 L1 10 AXIAL0.6 R12 10 AXIAL0.6 R11 100U RB.2/.4 C18 100U RB.2/.4 C17 10A BRIDGE-H1 DBR1 10K AXIAL0.4 R8 10K AXIAL0.4 R7 1K AXIAL0.4 R4 1K AXIAL0.4 R2 1K AXIAL0.4 R3 1K AXIAL0.4 R1 2.7 AXIAL0.5 R10 2.7 AXIAL0.5 R9 20K AXIAL0.4 R16

20K AXIAL0.4 R15 20K AXIAL0.4 R13 20K AXIAL0.4 R14 220P RAD0.2 C16 220P RAD0.2 C15 22K AXIAL0.4 R6 22K AXIAL0.4 R5 22U RAD0.2 C20 22U RAD0.2 C19 4.7U R AD0.2 C10 4.7U R AD0.2 C9 470U RB.2/.4 C8 470U RB.2/.4 C6 470U RB.2/.4 C7 470U RB.2/.4 C5 50P RAD0.2 C22 50P RAD0.2 C21 6800U RB.3/.6 C26 6800U RB.3/.6 C25 6800U RB.3/.6 C24 6800U RB.3/.6 C23 LM3886 ZIP-11V U2 LM3886 ZIP-11V U1 Output PORT2 J1 POWER FLY3 J3 SIG_INPUT PHONE J2

场效应管放大电路设计

* 课程设计报告 题目:场效应管放大电路设计 学生姓名: *** 学生学号: ******** 系别:电气信息工程院 专业:通信工程 届别: 2014届 指导教师: ** 电气信息工程学院制 2013年3月

场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 场效应管电路模型、工作点、参数调整、行为特征观察方法 1.2 研究场效应放大电路的放大特性及元件参数的计算 1.3 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1 场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET 是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P 沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体MOS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015 之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。它属于电压控制型

相关文档
最新文档