三参数与七参数的区别

三参数与七参数的区别
三参数与七参数的区别

参数问题一直是测量方面最大的问题,我简单的解释一下,

首先说七参,就是两个空间坐标系之间的旋转,平移和缩放,这三步就会产生必须的七个参数,平移有三个变量Dx,Dy,DZ;旋转有三个变量,再加上一个尺度缩放,这样就可以把一个空间坐标系转变成需要的目标坐标系了,这就是七参的作用。如果说你要转换的坐标系XYZ三个方向上是重合的,那么我们仅通过平移就可以实现目标,平移只需要三个参数,并且现在的坐标比例大多数都是一致的,缩放比默认为一,这样就产生了三参数,三参就是七参的特例,旋转为零,尺度缩放为一。四参是应用在两个平面之间转换的,还没有形成统一的标准,说的有点乱,如果还是不明白可以给我留言。希望有帮助。

1.2 四参数

操作:设置→求转换参数(控制点坐标库)

四参数是同一个椭球内不同坐标系之间进行转换的参数。在工程之星软件中的四参数指的是在投影设置下选定的椭球内 GPS 坐标系和施工测量坐标系之间的转换参数。工程之星提供的四参数的计算方式有两种,一种是利用“工具/参数计算/计算四参数”来计算,另一种是用“控制点坐标库”计算。。需要特别注意的是参予计算的控制点原则上至少要用两个或两个以上的点,控制点等级的高低和分布直接决定了四参数的控制范围。经验上四参数理想的控制范围一般都在 5-7 公里以内。

四参数的四个基本项分别是:X 平移、Y 平移、旋转角和比例。

从参数来看,这里没有高程改正,所以建议采用“控制点坐标库”来

求取参数,而根据已知点个数的不同所求取的参数也会不同,具体有以下几种。

1.2.1 四参数+校正参数:所需已知点个数:2个

1.2.2 四参数+高程拟合

GPS 的高程系统为大地高(椭球高),而测量中常用的高程为正常高。所以 GPS 测得的高程需要改正才能使用,高程拟合参数就是完成这种拟和的参数。计算高程拟和参数时,参予计算的公共控制点数目不同时计算拟和所采用的模型也不一样,达到的效果自然也不一样。

高程拟后有三种拟合方式:

a.高程加权平均:所需已知点个数:3个

b.高程平面拟合:所需已知点个数:4 ~ 6个

c.高程曲面拟合:所需已知点个数:7个以上

二、七参数

操作:工具→参数计算→计算七参数

所需已知点个数:3个或3个以上

七参数的应用范围较大(一般大于 50 平方公里),计算时用户需要知道三个已知点的地方坐标和 WGS-84 坐标,即 WGS-84 坐标转换到地方坐标的七个转换参数。注意:三个点组成的区域最好能覆盖整个测区,这样的效果较好。七参数的格式是,X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比)。

七参数的控制范围和精度虽然增加了,但七个转换参数都有参

考限值,X、Y、Z 轴旋转一般都必须是秒级的(工程之星中限值为小于10秒);X、Y、Z 轴平移一般小于 1000。若求出的七参数不在这个限值以内,一般是不能使用的。这一限制还是比较苛刻的,因此在具体使用七参数还是四参数时要根据具体的施工情况而定。

三、总结

使用四参数方法进行 RTK的测量可在小范围(20-30 平方公里)内使测量点的平面坐标及高程的精度与已知的控制网之间配合很好,只要采集两点或两点以上的地方坐标点就可以了,但是在大范围(比如几十几百平方公里)进行测量的时候,往往转换参数不能在部分范围起到提高平面和高程精度的作用,这时候就要使用七参数方法,具体方法在下面介绍。

首先需要做控制测量和水准测量,在区域中的已知坐标的控制点上做静态控制,然后再进行网平差之前,在测区中选定一个控制点A做为静态网平差的 WGS84 参考站。

使用一台静态仪器在该点固定进行 24 小时以上的单点定位测量(这一步在测区范围相对较小,精度要求相对低的情况下可以省略),然后再导入到软件里将该点单点定位坐标平均值记录下来,作为该点的 WGS84 坐标,由于做了长时间观测,其绝对精度应该在 2米左右,然后对控制网进行三维平差,需要将 A点的 WGS84 坐标作为已知坐标,算出其他点位的三维坐标,但至少三组以上,输入完毕后计算出七参数。

栅格数据结构栅格结构是以规则的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。栅格结构的显著特点:属性明显,定位隐含,即数据直接记录属性的指针或数据本身,而所在位置则根据行列号转换为相应的坐标。栅格数据的编码方法:直接栅格编码,就是将栅格数据看作一个数据矩阵,逐行(或逐列)逐个记录代码;压缩编码,包括链码(弗里曼链码)比较适合存储图形数据;游程长度编码通过记录行或列上相邻若干属性相同点的代码来实现;块码是有成长度编码扩展到二维的情况,采用方形区域为记录单元;四叉树编码是最有效的栅格数据压缩编码方法之一,还能提高图形操作效率,具有可变的分辨率。

矢量数据结构矢量数据结构是通过记录坐标的方式尽可能精确地表示点、线和多边形等地理实体,坐标空间设为连续,允许任意位置、长度和面积的精确定义。矢量结构的显著特点:定位明显,属性隐含。矢量数据的编码方法:对于点实体和线实体,直接记录空间信息和属性信息;对于多边形地物,有坐标序列法、树状索引编码法和拓扑结构编码法。

什么是栅格图像?

栅格图像,也称光栅图像,是指在空间和亮度上都已经离散化了的图像。我们可以把一幅栅格图像考虑为一个矩阵,矩阵中的任一元素对应于图像中的一个点,而相应的值对应于该点的灰度级,数字矩阵中的元素叫做像素。

数字图像与马赛克拼图相似,是由一系列像素组成的矩形图案,如果所有的像素有且仅有两个灰度级(黑或白),则称其为二值图像,也即位图;否者称其为灰度图像或彩色图像。

什么是矢量图形?

在介绍矢量图形之前,我们首先阐述矢量对象的概念。矢量对象是以矢量的形式,即用方向和大小来综合表示目标的形式描述的对象。例如画面上的一段直线,一个矩形,一个点,一个圆,一个填充的封闭区域……等等。

矢量图形文件就是由这些矢量对象组合而成的描述性文件。矢量图形则是计算机软件通过一定算法,将矢量对象的描述信息在显示终端上重绘的结果。

为什么要将栅格地图矢量化?

纸质地图经扫描仪扫描后,初步保存为栅格图像(常见的格式有TIF F、BMP、PCX、JPEG等)。栅格图像在地理应用领域有着这样的缺陷:首先,栅格图像文件对图像的每一像素点(不管前景或背景像素)都要保存,所以其存储开销特别大。另外,我们不能对图像上的任一对象(曲线、文字或符号)进行属性修改、拷贝、移动及删除等图形编辑操作,更不能进行拓扑求解,只能对某个矩形区域内的所有像素同时进行图像编辑操作。此外,当图像进行放大或缩小显示时,图像

信息会发生失真,特别是放大时图像目标的边界会发生阶梯效应,正如点阵汉字放大显示发生阶梯效应的原理一样。

而矢量图形则不同。在矢量图形中每个目标均为单个矢量单位(点、线、面)或多个矢量单位的结合体。基于这样的数据结构,我们便可以很方便地在地图上编辑各个地物,将地物归类,以及求解各地物之间的空间关系。并有利于地图的浏览、输出。

矢量化则是利用数字图像处理算法,将源图上的各种栅格阵列识别为矢量对象,最后以一定格式保存的过程。矢量图形在工业、制图业、土地利用部门等行业都有广泛的应用。在这些领域的许多成功软件都基于矢量图形,或离不开矢量图形的参与,如AutoCAD、ARC/INF O、Corel Draw、GeoStar等等。

在Geoway中您可以利用矢量跟踪、手工添加、编辑等技术生成矢量图形,并输出为AutoCAD 所支持的DXF、ARC/INFO 的E00等格式的文件。

中海达七参数计算

HI-RTK道路版简易操作流程 一、架设基准站: 选择视野开阔且地势较高的地方架设基站,基站附近不应有高楼或成片密林(卫星接收不好)、大面积水塘(多路径效应严重)、高压输电线或变压器(有干扰)。基站一般架设在未知点上,后面的说明均征对这种情况。(此种情况下基站无需对中整平) 二、新建项目: 打开HI-RTK道路软件,进入“项目”,选定Unnamed,“套用”,输入项目名称后确认,(选择‘套用’而不是‘新建’的目的是为了使建立的项目里面不含任何人为参数) 然后:项目信息---坐标系统---(将坐标系统名称改为“中国-‘项目名’ ”)并确认每个选项的原始参数是否正确,需要改动的地方请改正---保存---退出---(弹出“是否更新点库”)是。 三、设置基准站: 1. GPS---接收机信息---连接GPS---连接---搜索(接收机)---(搜索到仪器后)停止---(选择仪器号)连接。 2.接收机信息---基准站设置---平滑---(采集10秒后)确认---(查看并确认另外两个选项内容是否正确)---确定---断开蓝牙连接。 四、移动站设置: 1. GPS---接收机信息---连接GPS---连接---搜索(接收机)---(搜索到仪器后)停止---(选择仪器号)连接。 2.接收机信息---移动站设置---(确认每个选项内容)---确定。 五、采集已知点并求取参数: 1.采集已知点:已知点采集的时候建议采用“平滑采集”,按钮为工具栏倒数第二个按钮。(最少采集两个已知点,计算七参数时至少需要三个已知点)

2.输入已知点理论坐标到点库:碎步测量---控制点库---添加(工具栏第一个按钮)---(输入点名,X,Y,H后确认)。 3.参数计算: (主界面)参数---坐标系统---参数计算---(选择计算类型,采集两个已知点时用‘四参数+高程拟合’)---添加---(‘源点’为外业采集的点,‘目标’为输入的已知点,按钮为调用点库信息。)---保存---(继续添加)---解算---运用---(坐标系统)保存---(是否覆盖)确定---确定---(更新点库)是---退出。(请确认点对配对正确) 4.进行碎步采集或者放样。 5.数据导出:从项目或者测量界面进入“记录点库”,点击工具栏最后一个按钮,输入导出文件名、选择导出文件类型后确定,然后手簿连接电脑拷贝出对应数据即可。 这个是最全面,最权威的说明书了。

《经济评价方法与参数》(第三版)解读

《经济评价方法与参数》(第三版)解读 《建设项目经济方法与参数》(第三版)(以下简称《方法与参数》)包括《关于建设项目经济评价工作的若干规定》、《建设项目经济评价方法》和《建设项目经济评价参数》三个文件。它已由国家发改委和建设部于2006年7月3日以发改投资 [2006]1325号文批准发布,要求在开展投资建设项目经济评价工作中使用,这是我国投资建设、工程咨询和工程建设领域里的一件大事。笔者结合从事建设项目经济评价工作实践对《方法与参数》作如下解读。 一、《方法与参数》是2004年《国务院关于投资体制改革的决定》的一个配套文件,更是对“社会主义市场经济条件下经济评价工作已无必要”错误观点的矫正。 1、过去我国实行不分投资主体、不分资金来源、不分项目性质,一律按投资规模大小分别由各级政府及有关部门审批的企业投资管理办法,企业没有投资自主权,经济评价工作往往流于形式,致力于作表面文章以谋求项目的“可批性”,对于经济评价的主旨——项目的经济可行性分析反而不够深入,投资效果不好。《国务院关于投资体制改革的决定》规定,对于政府投资项目实行审批制,对于企业不使用政府投资建设的项目,一律不再实行审批制,区别不同情况实行核准制和备案制,以贯彻“谁投资、谁决策、谁收益、谁承担风险”的基本原则,落实企业投资自主权。投资决策权的下放,增强了企业投资决策的谨慎程度,甚至导致一些企业无所适从,迫切需要相关指导性文件。正是在这种背景下,有关部门对1993年发布的《建设项目经济评价方法与参数》(第二版)进行了修订。它对于审批制项目经济评价起着规范的作用,对于企业投资项目则起着参考文献的作用,“对于实行审批制的政府投资项目,应根据政府投资主管部门的要求,按照《建设项目经济评价方法》与《建设项目经济评价参数》执行;对于实行核准制和备案制的企业投资项目,可根据核准机关或备案机关以及投资者的要求,选用建设项目经济评价方法和相应的参数”。同时,十分重视市场这只“看不见的手”对经济评价工作的影响,强调“项目评价人员应认真做好市场预测”,项目经济评价参数“应进行定期测算、动态调整、适时发布”。 2、《方法与参数》借鉴了世界银行、亚洲开发银行和英国财政部等机构发布的经济评价指导手册和研究成果,表明了市场经济条件下,经济评价工作仍是必要的,并且仍然项目前期工作中的一项重要工作。 二、建设项目经济评价方法与参数的具体内容也有许多改进之处,一方面充分吸取了国内外经济评价各个环节的成功经验和先进理念,并明确了过去实践中的模糊观点;另一方面也使得经济评价与国家财税制度相匹配,经济评价工作更具操作性。主要体现以下方面: 1、在“总则”部分除了对经济评价的目的,作用、适用范围,评价原则、项目计算期和价格体系进行说明外,重点论述了建设项目的不同分类方法,并指出“建设项目经济评价的内容及侧重点,应根据项目性质、项目目标、项目投资者、项目财务主体以及项目对经济与社会的影响程度等具体情况选择确定”,“建设项目经济评价的深度,应根据项目决策工作不同阶段的具体要求确定”,表明经济评价工作应按需而取。 2、强化财务效益与费用估算的准确性对于提高项目经济评价结论准确性的重要性,专门安排独立章节对此进行分析,细化并补充了财务费用流和效益流的识别和估算方法,强调项目目标

FANUC 0系统如何保护你的参数和程序不被修改

FANUC 0系统如何保护你的参数和程序不被修改 保护你的程序 FANUC 0系统:修改参数:10.4改为1就可以保护9000~~9999的程序不被修改。 FANUC 0I系统:修改参数:3202#4(NE9)改为1 #0(NE8)改为1就可以保护9000~~9999和8000~~8999的程序不被修改。修改3210的值就可以设置密码了,只有在3211里输入和3210一样的密码才可以修改3020#4为0或1。 保护你的参数: 参数3290.7设定成1可以保护程序和参数,将3290.7设定成1后即无法设定PWE=1参数无法修改,通过设定画面(OFFSET画面)找到3290.7设定成0即可恢复(注意恢复时不是在SYSTEM画面设置参数3290.7而是在设定画面 FANUC系统维修中常用的参数 fanuc系统维修中常用的参数 1.手摇脉冲发生器损坏。一台fanuc 0td数控车床,手摇脉冲发生器出现故障,使对刀不能进行微调,需要更换或修理故障件。当时没有合适的备件,可以先将参数900#3置“0”,暂时将手摇脉冲发生器不用,改为用点动按钮单脉冲发生器操作来进行刀具微调工作。等手 摇脉冲发生器修好后再将该参数置“1”。 2.当机床开机后返回参考点时出现超行程报警。上述机床在返回参考点过程中,出现510 或511超程报警,处理方法有两种: (1)若x轴在返回参考点过程中,出现510或是511超程报警,可将参数0700lt1x1数值改为+99999999(或将0704lt1x2数值修改为-99999999)后,再一次返回参考点。若没有问题,则将参数0700或0704数值改为原来数值。 (2)同时按p和can键后开机,即可消除超程报警。 3.一台fanuc 0i数控车床,开机后不久出现alm701报警。从维修说明书解释内容为控制部上部的风扇过热,打开机床电气柜,检查风扇电机不动作,检查风扇电源正常,可判定风扇损坏,因一时购买不到同类型风扇,即先将参数rrm8901#0改为“1”先释放alm701报警,然后在强制冷风冷却,待风扇购到后,再将prm8901改为“0”。 4.一台fanuc 0m数控系统加工中心,主轴在换刀过程中,当主轴与换刀臂接触的一瞬间,发生接触碰撞异响故障。分析故障原因是因为主轴定位不准,造成主轴头与换刀臂吻合不好,

基于MATLAB的七参数坐标系统转换问题分析(精)

基于 MATLAB 的七参数法坐标系统转换问题分析 1 张鲜妮 21, ,王磊 21, 1、中国矿业大学环境与测绘学院,江苏徐州 (221008 2、江苏省资源环境信息工程重点实验室,江苏徐州 (221008 E-mail: 摘要:GPS 测量的坐标是基于 WGS-84坐标系下的,而我国实用的测量成果大多都是基于北京 54坐标系下的。随着 GPS 测量技术的广泛使用,由 WGS-84坐标向北京 54坐标系下坐标的转换问题一直是一个可探讨的问题, 坐标系统转换的现有模型很多, 但常用的还是经典的七参数转换模型。随着不断的实践研究, 发现七参数在进行坐标系统转换时有一定的局限性。本文采用 MATLAB 语言编写了七参数法坐标系统转换程序,并对七参数坐标系统转换的若干问题进行了分析讨论。分析结果表明, 小区域范围内用正常高代替大地高对坐标转换精度影响很小; 公共点分布情况对坐标转换精度影响显著; 合适的公共点密度有利于提高坐标转换精度。 关键词:七参数法;坐标系统; MATLAB ;转换问题 1. 引言 随着 GPS 空间定位技术的发展, GPS 技术以其快速、精确、全天候在测量中的应用变的越来越广泛, GPS 成为建立基础控制网的首选手段 ]1[,由于 GPS 系统采用的是 WGS-84坐标系, 是一种地心坐标系, 而我国目前常用的两个坐标系 1954年北京坐标系 (以下称 BJ54 和 1980年国家大地坐标系,是一种参心坐标系,采用克拉所夫斯基椭球为参考椭球,并采用高斯克吕格投影方式进行投影, 我国的国土测量成果和在进行工程施工时大都是基于这两个坐标系下的。所以在利用 GPS 技术进行测量过程中必然存在由 WGS-84坐标向北京 54坐标系下的转换问题。现有的转换模型已经成熟,归纳起来主要有布尔莎 -沃尔夫模型(七参数法、莫洛登斯基 -巴代卡

串级控制系统

习题六 1.什么叫串级控制系统?画出一般串级控制系统的典型方块图。 答:串级控制系统是由其结构上的特征而得名的。它是由主、副两个控制器串接工作的。 主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。 2.串级控制系统有哪些特点?主要使用在哪些场合? 答串级控制系统的主要特点为: (1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统; (2)系统的目的在于通过设置副变量来提高对主变量的控制质量} (3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响; (4)系统对负荷改变时有一定的自适应能力。 串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。 3.串级控制系统中主、剧变量应如何选择? 答主变量的选择原则与简单控制系统中被控变量的选择原则是一样的。 副变量的选择原则是:. (1)主、副变量间应有一定的内在联系,副变量的变化应在很大程度上能影响主变量的变化; (2)通过对副变量的选择,使所构成的副回路能包含系统的主要干扰; (3)在可能的情况下,应使副回路包含更多的主要干扰,但副变量又不能离主变量太近; (4)副变量的选择应考虑到主、副对象时间常数的匹配,以防“共振”的发生 4.为什么说串级控制系统中的主回路是定值控制系统,而副回路是随动控制系统? 答串级控制系统的目的是为了更好地稳定主变量,使之等于给定值,而

主变量就是主回路的输出,所以说主回路是定值控制系统。副回路的输出是副变量,副回路的给定值是主控制器的输出,所以在串级控制系统中,副变量不是要求不变的,而是要求随主控制器的输出变化而变化,因此是一个随动控制系统。5.怎样选择串级控制系统中主、副控制器的控制规律? 答串级控制系统的目的是为了高精度地稳定主变量,对主变量要求较高,一般不允许有余差,所以主控制器一般选择比例积分控制规律,当对象滞后较大时,也可引入适当的微分作用。 串级控制系统中对副变量的要求不严。在控制过程中,副变量是不断跟随主控制器的输出变化而变化的,所以副控制器一般采用比例控制规律就行了,必要时引入适当的积分作用,而微分作用一般是不需要的。 6.如何选择串级控制系统中主、副控制器的正、反作用? 答副控制器的作用方向与副对象特性、控制阀的气开、气关型式有关,其选择方法与简单控制系统中控制器正、反作用的选择方法相同,是按照使副回路成为—个负反馈系统的原则来确定的。 主控制器作用方向的选择可按下述方法进行:当主、副变量在增加(或减小时),如果要求控制阀的动作方向是一致的,则主控制器应选“反”作用的;反之,则应选“正”作用的。 从上述方法可以看出,串级控制系统中主控制器作用方向的选择完全由工艺情况确定,或者说,只取决于主对象的特性,而与执行器的气开、气关型式及副控制器的作用方向完全无关。这种情况可以这样来理解:如果将整个副回路看作是构成主回路的一个环节时,副回路这个环节的输入就是主控制器的输出(即副回路的给定),而其输出就是副变量。由于副回路的作用总是使副变量跟随主控制器的输出变化而变化,不管副回路中副对象的特性及执行器的特性如何,当主控制器输出增加时,副变量总是增加的,所以在主回路中,副回路这个环节的特性总是“正”作用方向的。由图可见,在主回路中,由于副回路、主测量变送这两个环节的特性始终为“正”,所以为了使整个主回路构成负反馈,主控制器的作用方向仅取决于主对象的特性。主对象具有“正”作用特性(即副变量增加时,主变量亦增加)时,主控制器应选“反”作用方向,反之,当主对象具有“反”作用特性时,主控制器应选“正”作用方向。

ArcGis中三参数和七参数转换

在ArcGIS Desktop中进行三参数或七参数精确投影转换ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。下面介绍两种办法来在ArcGIS Desktop中进行这种转换。方法1:在ArcMap 中进行动态转换(On the fly) 假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations...

点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明了我们想从什么坐标系统转换到什么坐标系统。

在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输入各个转换参数。 输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对当前地图的动态投影转换。这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,再使用数据导出,导出时选择投影为当前地图的投影即可。

转坐标系详细步骤

转坐标系详细步骤

————————————————————————————————作者:————————————————————————————————日期: ?

“北京54坐标系”转“西安80坐标系”一、数据说明 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面讲述利用已知的3个以上(本例采用4个点计算)的公共点计算七参数方法转换: 二、利用4个已知公共点计算转换七参数 1、数据准备 (1)将已知54、80坐标系直角坐标拷贝到文本文档,其排列格式如下(图1、图2):不加带号。 图1 54直角坐标 图2 80直角坐标 (2)将已知54、80坐标系直角坐标利用MAPGIS“投影变换”转换为经纬度坐标,且坐标单位为“秒”,这样计算出的参数用来转换为80坐标系时更精确。具体操作步骤如下: 1)启动MAPGIS下“投影变换模块”,点击“投影变换”下“用户文件投影转换”弹出“用户数据点文件投影转换”对话框,如图3; 2)点击“打开文件”,选择已准备的“54直角坐标.txt”文本文档,打开后选择“按指定分隔符”后弹出的对话框点击确定激活“设置分隔符”选项,点击“设置分隔符”,其设置方式为:①“Tal键”、“空格”两个选

图3 图4

项前画勾,②修改“属性名称所在行”,点击其下拉箭头选择“无”字下面一组数据,③将“属性名称”修改为x、y,④“数据类型”修改为“5双精度”,⑤“小数位”修改为“5”或其他均可,但最好至少为“2”,其设置与最终转换出坐标的小数位数相关。设置完成后点击“确定”。如图4。 3)设置“用户投影参数”及“结果投影参数”其设置方式如图5、图6。注意:投影中心点经度一定要输入,如经度为105°,其格式为1050000,“用户投影参数”为“投影平面直角坐标”;“结果投影参数”为“地理坐标系”,且“比例尺分母”为“1”,“坐标单位”为“妙”,“投影中心点经度”要输入。二者“椭球参数”均为“54坐标系”。 图5用户投影参数 图6 结果投影参数 4)以上参数设置完成后点击“投影变换”——“写到文件”,弹出对话框如图7 ,先新建“54经纬度坐标.txt”,选中后点击保存,选择替换。 5)按照上述1)—4)步骤将已知的80直角坐标转换为以“秒”为单位的经纬度坐标。注意:在“用户投影参数”及“结果投影参数”设置时,二者“椭球参数”均为“80坐标系”,其他参数同上。 转换后的54和80坐标系以“秒”为单位的经纬度坐标如下:图7、图8。坐标中小数点前为“6位数”的是“经度”,小数点前为“5位数”的是“纬度”。 图7 54经纬度坐标图8 80经纬度坐标

建设项目经济评价方法与参数(第三版)

建设项目经济评价方法与参数(第三版) 建设项目经济评价方法与参数(第三版)(以下简称方法与参数三)主要由建设项目经济评价方法和建设项目经济评价参数两部分组成。其中建设项目经济评价参数主要由指标的计算方法和各指标的标准参考值组成。建设项目经济评价方法包括总则、财务效益与费用估算、资金来源与融资方案、财务分析、经济费用效益分析、费用效果分析、不确定性分析与风险分析、区域经济与宏观经济影响分析、方案经济必选、改扩建项目与并购项目经济评价特点、部分行业项目经济评价的特点。综合起来看,根据方法与参数三中的有关规定,需要对于“工程造价计价与控制”教材的内容做以下调整: 一、流动资金的估算 流动资金估算方法可采用扩大指标估算法或分项详细估算法。分项详细估算法的具体计算公式为: 1. 周转次数的计算: 各类流动资产和流动负债的最低周转天数参照同类企业的平均周转天数并结合项目特点确定,或按部门(行业)规定,在确定最低周转天数时应考虑储存天数、在途天数,并考虑适当的保险系数。

2. 流动资产的估算。 (1)存货的估算。存货是指企业在日常生产经营过程中持有以备出售,或者仍然处在生产过程,或者在生产或提供劳务过程中将消耗的材料或物料等,包括各类材料、商品、在产品、半成品和产成品等。为简化计算,项目评价中仅考虑外购原材料、燃料、其他材料、在产品和产成品,并分项进行计算。计算公式为:

(2)应收账款估算。应收账款是指企业对外销售商品、提供劳务尚未收回的资金,计算公式为: (3)预付账款估算。预付账款是指企业为购买各类材料、半成品或服务所预先支付的款项,计算公式为: (4)现金需要量估算。项目流动资金中的现金是指为维持正常生产运营必须预留的货币资金,计算公式为: 3. 流动负债估算。流动负债是指将在一年(含一年)或者超过1年的一个营业周期内偿还得债务,包括短期借款、应付票据、应付账款、预收账款、应付工资、应付福利费、应付股利、应交税金、其他暂收应付款项、预提费用和一年内到期的长期借款

FANUC系统参数的输入方法

第五节:FANUC系统参数的输入方法 数控系统的参数是机床的重要数据,丢失后将造成机床无法正常运行。这些数据在运行时,是存储在数控系统的内存中的。长时间停电期间,参数靠电池保存。当系统电源受到干扰或电池电压过低时,参数容易丢失或出错。为此,数据应做出书面或磁盘备份。当数据一旦丢失时,可以快速恢复数据。 有时,我们也可能仅需要修改部分数据。下面,我们结合几种典型的系统,说明根据已有备份恢复参数的方法。 一.FANUC 3T系统的手动参数输入(数控车床)该系统数据丢失或出错时,屏幕显示“PARITY ERROR”(校验错误)报警。这时首先要清除原错误数据,再重新输入。要注意的是,这时的NC程序也一起被清除掉了。 恢复系统数据和程序的方法是两个人配合做如下操作: 1.系统停电。 2.把电箱数控主板上端的“PARAMETER INPUT”(参数输入)开关拨到ON位置。屏幕出现“PS100”报警。 3.一个人在操作面板MDI键盘上同时按住RESET键和DEL键。另一个人在数控电箱上启动数控系统。系统启动后,松开两个键,“校验错误”报警可以消除。 4.按下急停按钮,面板开关选择“手动数据输入(MDI)”方式。按键盘上PARAMETER键,进入参数画面。选择参数,相应参数后出现“=”号。5.逐一输入正确参数,INPUT键确认。 6.参数输入完成后,把前面板“程序保护”钥匙开关打开。 7.按下PROGRAM键,调出程序界面,输入正确程序。 8.把主板“参数输入”和前面板“程序保护”开关关掉。 9.按RESET键复位所有故障。 完成上述操作后,重新启动机床,调试设备。 部分修改数据时,可按照2、4、5、8、9几步进行。 二.FANUC 0系统的参数输入(日平磨床) 该系统参数丢失后,不影响数控程序。因此,恢复数据或修改参数,都可以按如下操作进行: 1.面板上选择MDI方式。 2.按下PARAM/DGNOS键,切换到参数界面。 3.翻页到设定参数页面(左上角显 示“PARAMETER(SETTING2)),移动光标到“PWE”,键入“1”,用

串级控制系统的构成投运和参数整定及控制质量研究

实验一串级控制系统的构成、投运和参数整定及控制质量 研究 一、实验目的 1、加深理解串级控制系统的工作原理及特点。 2、掌握串级控制系统的设计和组成。 3、学习相关的组态软件 4、初步掌握串级控制系统的控制器参数调整方法。 二、实验设备 1、A3000-FS现场总线型过程控制现场系统4套 2、A3000-CS上位控制系统4套 三、实验要求 1、根据工艺要求和工况条件,设计出合理可行的串级控制系统。 (1)要求及条件 工艺要求:下水箱液位控制在某一高度上。 对下水箱液位产生影响的扰动量:若干变量。 (2)控制方案 主被控变量c1(t)、副被控变量c2(t)及操纵变量q(t)等的选择;主控制器和副控制器控制算法的选择及正、反作用的确定等。 2、掌握串级控制系统的控制器参数整定方法和系统投运步骤。 3、经过参数调整,获得最佳的控制效果,并通过干扰来验证。 四、实验内容 1、液位流量串级控制系统方案及工作原理 实验以串级控制系统来控制下水箱液位,以第二支路流量为副被控变量,右边水泵直接向下水箱注水,流量变动的时间常数小、时延小,控制通道短,从而可加快提高响应速度,缩短过渡过程时间,符合副回路选择的超前,快速、反应灵敏等要求。 以下水箱为主被控对象。流量的改变需要经过一定时间才能反应到下水箱液位的变化,时间常数比较大(时延较大)。如图2-1所示,

图2-1 液位-流量串级控制系统 设计好下水箱和流量串级控制系统。将主控制器的输出送到副控制器的外给定输入端,而副控制器的输出去控制执行器。经反复调试,使第二支路的流量快速稳定在给定值上,这时给定值应与副反馈值相同。待流量稳定后,通过变频器快速改变流量,加入扰动(即,使干扰落入串级控制系统的副回路)。若控制器的各参数设置比较理想,且扰动量较小,经过副回路的及时控制校正,基本不会影响下水箱的液位。如果扰动量较大或控制器的各参数设置不理想,虽然经过副回路的校正,还将会影响主回路的液位,此时再由主回路进一步调节,从而完全克服上述扰动的影响,使液位调回到给定值上。当用第一动力支路把扰动加在下水箱时(即,干扰落入串级控制系统的主回路),扰动使液位发生变化,主回路产生校正作用,克服扰动对液位的影响。由于副回路的存在加快了校正作用,使扰动对主回路的液位影响较小。该串级控制系统框图如图2-2所示。 图2-2 液位-流量串级控制系统原理方框图 2、液位流量串级控制系统组态 表2-1 液位流量串级控制系统连接示意 测量或控制量测量或控制量标号使用控制器端口 电磁流量计FT102 AI0 下水箱液位LT103 AI1 调节阀FV101 AO0 3、液位流量串级控制系统实验内容与步骤

施工测量坐标转换中的七参数详谈

施工测量坐标转换中的七参数详谈 坐标转换永远是测绘工作离不开的一个话题。坐标转换的方法很多,有的方法可以用相应的参数来描述,其中使用较广的一个是七参数。七参数大多用于不同坐标系统间的基准变换。 七参数的由来 对于非测绘的专业人士可能不太能理解“基准”这个词语。简单的理解就是坐标数值的零点,比如空间坐标的原点,再比如大地坐标的起算面。定义一个坐标系的三个基本要素是原点、指向、尺度。原点即坐标系的原点,指向即坐标轴的指向,尺度即长度单位和椭球。由于各个坐标系,或者说定义坐标系的组织所确定的这三个要素都有所区别,这就产生基准的变换,并且使用七参数在空间坐标中进行基准变换。

什么是七参数,又有哪七个参数呢? 七参数主要分为3类参数,旋转、缩放和平移。缩放,表示为k,主要是由于测量误差产生的;平移为3个坐标轴方向上的平移,表示为dX、dY、dZ,这是由于原点不一样产生的;旋转为3个坐标轴的旋转,表示为rX、rY、rZ,这是坐标轴指向不一致产生的。 值得注意的是,旋转存在方向的问题;不同的软件,或者说不同地域的人的习惯差异,致使旋转方向不一致,比如南方集团与天宝七参数旋转方向一致,但与ArcGIS的就相反。因此同一个七参数在不同软件中使用时需要考虑旋转方向的问题,适当的时候做相应的变换才能完成正确的坐标转换,即旋转方向定义相反时,旋转角取其相反数。 平移的单位为对应的长度单位,我们常用米;旋转的单位为秒,原因是各个坐标系间指向的差异都很小;缩放的单位是PPM(part(s)

per million,百万分之一),也就是说缩放是一个特别小的数值,这是因为坐标转换前我们都会率先统一单位,所以缩放数值也就体现了测量误差等因素的影响。 七参数的应用 参数的应用过程细分为旋转、缩放、平移三个过程。这三个过程的顺序是如何的,我们来看一下公式: 简化为: 上式中,X1为原始空间坐标,X2为目标空间坐标,K为缩放,R为旋转,dX为平移。 可以看出,该顺序是先旋转,再缩放,最后平移。当然与之相反的是先平移,再缩放,最后旋转,这是一个可逆的过程,方便了两个空间坐标来回的转换。这里为了方便说明,我们将旋转、缩放、

MAPGIS中坐标转换中七参数法

MAPGIS 中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,丫平移,Z平移,X旋转(WX,丫旋转(WY,Z旋转(WY,尺度变化(DM。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命 令,将演示数据“演示数据_北京54.WT、“演示数据_北京 54.WL、“演示数据—北京54.WP打开。1、单击“投影转换” 菜单下“S坐标系转换”命令,系统弹出“转换坐标值” “话框⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位—米”;⑵、在“输出”一栏中,坐标系设置为“西 安80坐标系”,单位设置为“线类单位—米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中, 输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z), 如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一

栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、 单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。 3、单击“投影转换”菜单下“ MAPGI毀影转换/选转换线文件”命令,系统弹出“选择文件”对话框 选中待转换的文件“演示数据_北京54.WL',单击“确定”按 钮; 4、设置文件的Tic点,在“投影变换”模块下提供了两种方法:手工设置和文件间拷贝,这里不作详细的说明; 5、单击“投影转换”菜单下“编辑当前投影参数”命令,系统弹出 “输入投影参数”对话框,如图6所示,根据数据的实际情况来设置 其地图参数坐标系类型:大地坐标系 椭球参数:北京54投影类型:高斯-克吕格投影比例尺分母:1坐标单

串级控制系统参数整定

实验三:串级控制系统参数整定 PID 控制器由于自身具有的相对容易理解和实现的特点而被广泛应用于过程控制工业中。 在实践中,它经常被融入一个复杂的控制结构中,以达到一个更好的控制效果。在这些复杂的控制结构中,通常利 用串级控制组合来减小干扰引起的最大偏差和积分误差。容易实现的优点和潜在的大控制性能的提高导致串级控制广泛应用达数十年。它已经成为一个由工业过程控制器提供的标准应用。 串级控制系统由两个控制回路构成:一个可以快速动态消除输入干扰的内部回路,和一个可以调节输出效果的外部 回路。通常,他们是通过一个连续的方式来整定的。首先,外部回路控制器设置为手动,对内部回路进行整定。随后, 启用内部回路的整定结果,接着整定外部回路。如果控制效果不理想,应该调换整定的顺序。所以,整定串级控制系统 是一项相当笨重耗时的任务,特别是具有大时间常数和时间延迟的系统。 PID 自整定解除了手动整定控制器的烦恼,并且已经成功的应用于很多工业领域中。但是,到目前为止,却很少有关于串 级系统自整定技术的发展的文学报道。其中,Li et al 利用模糊逻辑进行串级控制器的自整定。Hang et al. 应用一个重复的延迟自动整定方法来整定串级控制系统,延迟反馈测试被验证了两次,一次在内部回路,另一次在外部回路。虽然特 殊的控制器整定已经被自动化,但整定过程的自然顺序并没有改变。Tan 提出了一个在一个实验中实行整体整定过程的方法,但是这个实验需要过程的过去的信息。而且,外部回路设计时所用的极限频率是基于未考虑内部回路控制参数改 变的初始极限频率。这篇论文提供了串级控制系统自整定的一种新方法。通过利用串级控制系统的基本性能,在外部回 路中利用一个简单的延迟反馈测试来确定内部和外部回路过程模型参数。 一个基于Pade 系数和Markov 参数,匹配PID 控制器整定方法的模型,被提出来控制整体系统效果。两个例子来说明该方法的有效性。 2.串级控制系统的基本原理 图1 串级控制组合的结构如图1,内部回路嵌套于外部回路里,外部回路的输出变量是被控对象。控制系统由两个过程 和两个控制器组成。分别为外部回路传递函数1p G ,内部回路传递函数2p G ,外部回路控制器1c G 和内部回路控制器2c G 。 串级控制系统的两个控制器都是标准的反馈控制器。通常情况下,内部回路为一个比例控制器,当内部回路过程包 含基本时间延迟时需要用到积分作用,外部过程使内部回路增益是有限的。 为了在它影响到外部回路之前减小或消除内部回路干扰 d 2,内部回路比外部回路应该有一个更快的动态响应(工业经验法则里,至少应快5倍以上)。因此,内部闭环回路的相位滞后应该比外部回路小。这个特点就是应用串级控制的基本原理。内部回路的交叉频率比外部回路高,使内部回路控制器有更高的增益,能够在没有危及系统的稳定性的情况下

已知七参数输入方法

已知七参数输入方法 我们在测量过程中,常常会遇到要求我们利用已知的七参数进行测量的情况,下面我们来看一下如何在仪器中输入七参数。 1、在主菜单屏幕上选择管理: 七参数:使用严格3D 经典方法产生转换的参数. 该方法使用GPS 测量点(WGS84 椭球 )的直角坐标,并将这些坐标与地 方坐标的直角坐标相比较.通过这种方法,计算出用来将坐标从一个系统转换到另一个系统中平移量,旋转量和尺度因子.经典 3D 转换方法可确定最多7个转换参数(3个平移参数,3个旋转参数,和1个尺度因子). 2、选择坐标系: 3、新建一个坐标系:

4、在名称行里输入一个坐标系统的名字: 5、将光标移至转换一行,点击回车键: 6、点击F2新建:

7、在概要界面输入一个七参数名称,然后点击参数: 8、输入已知的七参数,(也有输入四参数的,即不输旋转参数): 9、在更多界面下选择莫洛金斯基或布沙-沃尔夫,一般选择后者,然后保存: Molodensky-Badekas ——莫洛金斯基 一种转换模型,其旋转原点是系统A 中公共点的重心. Bursa-Wolf ——布沙-沃尔夫 对系统A 来说,旋转原点为笛卡儿坐标系统原点的转换模型.

10、选择做好参数的转换文件,继续: 11、将光标移至椭球行,回车: 在大地测量中,除非特别定义,椭球是 指椭圆绕短半轴旋转形成的数学图形 (有时也称回转椭球体),两个量定义一 个椭球,它们是长半轴的长度; 扁率 f. The Flattening is one of the quantities to specify an ellipsoid. f = (a-b)/a = 1 - sqrt(1-e2) where: a ... semi-major axis b ... semi-minor axis e ... eccentricity 12、选择要用的椭球(西安-80或北京-54) 如果没有需要的椭球,请点击 SHIFT键,在点击F5键即可调 阅所有椭球 13、将光标移至投影行,回车,然后新建,选择横轴莫卡托,然后输入投影参数,保存: 假定东坐标:为避免坐标出现负值,我 国将坐标原点东坐标规定为500,000 米。 中央子午线:定义地图投影经度的中央 线。是使用在地图投影中的带常数。 带宽:投影带的宽度。 注意:投影参数一定要在开始工作前落 实清楚,否则将影响投影后坐标。

MAPGIS中坐标转换中七参数法

MAPGIS中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开。1、单击“投影转换”菜单下“S坐标系转换”命令,系统弹出“转换坐标值”“话框 ⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位-米”;⑵、在“输出”一栏中,坐标系设置为“西安80坐标系”,单位设置为“线类单位-米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中,输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z),如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来; 2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示; 在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:

第1章建设项目财务评价(经济评价方法与参数(第三版)

附件: 建设项目经济评价方法与参数(第三版)中的主要内容一、流动资金的估算 流动资金估算方法可采用扩大指标估算法或分项详细估算法。分项详细估算法的具体计算公式为: 流动资金=流动资产—流动负债 流动资产=应收账款+预付账款+存货+现金 流动负债=应付账款+预收账款 流动资金本年增加额=本年流动资金—上年流动资金 1. 周转次数的计算: 周转次数=360天/最低周转天数 各类流动资产和流动负债的最低周转天数参照同类企业的平均周转天数并结合项目特点确定,或按部门(行业)规定,在确定最低周转天数时应考虑储存天数、在途天数,并考虑适当的保险系数。 2. 流动资产的估算。 (1)存货的估算。存货是指企业在日常生产经营过程中持有以备出售,或者仍然处在生产过程,或者在生产或提供劳务过程中将消耗的材料或物料等,包括各类材料、商品、在产品、半成品和产成品等。为简化计算,项目评价中仅考虑外购原材料、燃料、其他材料、在产品和产成品,并分项进行计算。计算公式为: 存货=外购原材料、燃料+其他材料+在产品+产成品 外购原材料、燃料=年外购原材料、燃料费用/分项周转次数 其他材料=年其他材料费用/其他材料周转次数 在产品=(年外购原材料、燃料动力费用+年工资及福利费 +年修理费+年其他制造费用)/在产品周转次数 产成品=(年经营成本—年营业费用)/产成品周转次数 其他制造费用是指由制造费用中扣除生产单位管理人员工资及福利费、折旧费、修理费后的其余部分。 (2)应收账款估算。应收账款是指企业对外销售商品、提供劳务尚未收回的资金,计算公式为: 应收账款=年经营成本/应收账款周转次数 (3)预付账款估算。预付账款是指企业为购买各类材料、半成品或服务所预先支付的款项,计算公式为: 预付账款=外购商品或服务年费用金额/预付账款周转次数(4)现金需要量估算。项目流动资金中的现金是指为维持正常生产运营必须预留的货币资金,计算公式为: 现金=(年工资及福利费+年其他费用)/现金周转次数 年其他费用=制造费用+管理费用+营业费用 —(以上三项费用中所含的工资及福利费、 折旧费、摊销费、修理费) 3. 流动负债估算。流动负债是指将在一年(含一年)或者超过1年的一个营业周期内偿还得债务,包括短期借款、应付票据、应付账款、预收账款、应付工资、应付福利费、应

模型1 输入参数和输出参数 (修改)

1. 模型概况 (1)模型输入参数总览 (2)模型风荷载信息 风压单位: kN/m2迎风面积单位: m2 本层风荷载、楼层剪力单位:kN 楼层弯矩单位: kN.m

表1 X向顺风向风荷载信息 (3)工况组合 表2 工况设定

表3 组合系数

(4)模型配筋信息 ①一、二、三、四层配筋

②五层配筋

2. 分析结果 (1)结构周期 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-65-6-5 G 0.4-0.45-0-65-6-5 G 0.4-0.45-0-65-6-5 G 0.4-0.45-0-65-6-5 G 0.4-0.45-0-65-6-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-65-6-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-55-6-5 G 0.4-0.45-0-55-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-65-6-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-65-5-5 G 0.4-0.46-0-55-6-5 G 0.4-0.45-0-55-5-5 G 0.4-0.4 6-0-55-6-5 G 0.4-0.46-0-55-6-5 G 0.4-0.46-0-55-6-5 G 0.4-0.46-0-55-6-5 G 0.4-0.46-0-55-6-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 G 0.4-0.45-0-55-5-5 (0.03) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.03) 2.0 8 8G 1.3-0.0 1.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.0 1.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.09) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.0 1.2 (0.03) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.05) 2.0 8 8G 1.3-0.01.2 (0.03) 2.0 8 8G 1.3-0.0 1.2

相关文档
最新文档