开关电源设计报告模板二方案框图

开关电源设计报告模板二方案框图
开关电源设计报告模板二方案框图

方案框图及叙述:

DC-DC

1、buck

降压型直流变换电路是开关变换中最基本的拓扑结构之一。输入电压在开关管Q1动作下调制成高频方波,经低通滤波器输出稳定的直流电压,且V o=Vin*D。其优点是结构简单,所需元件较少,损耗低,效率高。但由于输入输出之间没有电气隔离,输出电压受限于占空比,因此限制了其应用。

2、boost

升压型直流变换电路是从低压输入得到高压输出的开关调整器。其基本工作原理是,Q1导通时,电感L1储能,输出电容提供负载能量,Q1关断期间,电感和输入电压一起给负载供电,并且给输出电容充电。其优点是结构简单,使用器件较少,效率较高,但输出电流纹波较大,升压范围受到占空比的限制。

3、正激变换

正激变换是单开关管的变换电路。在开关管Q1导通时,利用变压器将能量从一次侧传递到二次侧,开关管关断期间,输出滤波电感和滤波电容给负载供

电。由于一、二侧之间用变压器传输能量,因此可以升压,可以降压,具备电气隔离,能很方便的输出多个绕组。但由于变压器的磁芯仅工作在磁滞回线的第一象限,因此需要施加去磁回路。而且一般的正激变换电路的占空比不能大于0.5,否则有可能不能完全去磁,使变压器磁芯饱和。

4、反激变换

反激变换是一种隔离的小功率变换拓扑。在开关管开通时,变压器原边存储能量,当开关管关断时,线圈中的磁场能量会在副边产生上正下负的感应电动势,将磁场能量转移到负载。其优点是结构简单,无需磁复位电路,相比其他的拓扑少了一个滤波电感,因此体积小,成本低。缺点是磁芯磁场直流成分大,需加入气隙防止磁芯饱和,造成较严重的电磁辐射。而且输出电流纹波较大。

5、推挽变换

推挽变换器由两个开关管和一个带中心抽头的变压器组成,两个开关的驱动脉冲相位相反,开关管交替导通,特别适合低压输入,升压输出的场合。其优点是驱动简单,容易实现。但其开关管的电压应力是2倍的输入电压,变压器的绕制也比较麻烦。

6、半桥变换

半桥变换是一种应用较广的拓扑结构,其开关管的电压应力仅为直流输入电压,而不是像推挽拓扑承受2倍电源电压。因此其适用于输入电压较高的场合。而且半桥的变压器初级线圈只需一个绕组,方便绕制。但半桥的电压利用率不高,不适合低压场合,并且驱动比较麻烦。

7、全桥变换

全桥变换同时具有推挽拓扑电压利用率高和半桥变换电压应力不高的优点,经常用于工作电压高,输出功率大的场合。其开关管Q1、Q4分为一组,Q2、Q3分为一组,工作时总是一组接通,一组关断。其适应性广,效率高。但由于有四个开关管交替工作,其开关损耗不可忽略,并且对驱动的一致性要求很高,使得驱动的制作比较复杂。

控制

1、单片机控制

系统的PWM用单片机产生,用单片机控制整个系统的运行。这种方案的优点的是可以省去大量的硬件电路设计,使电路结构简化。但对软件的编程要求高,难度大,并且单片机的可靠性影响系统的性能。

2、硬件电路和单片机共同控制

系统的闭环控制部分由硬件电路实现,而单片机进行辅助控制。其优点是可以充分发挥硬件电路的优势,而又可以用单片机数字调节,使系统具有更大的灵活性。其不足是硬件电路的设计较复杂。

整流

1、整流二极管整流

输出级采用不可控整流方式,并且依据不同的拓扑结构可以采用不同的形式。这种方法简单易行,可靠性好,但由于整流二极管本身的压降和反向恢复问题,使得其在低压输出的系统中损耗很大,影响了效率的提高。

2、同步整流

同步整流是指用低Ron的MOS管取代整流二极管,由于需要控制脉冲控制其通断,因此又称可控整流。其优点是损耗低,功率密度更大。但由于需要与电路结构的时序同步,因此其控制较复杂,还需做驱动整形电路。

DC-AC

总体方案

1、单级变换结构。使用单级变换将输入直流电压直接转换成交流电,由于输入电压有限,必须用工频变压器升压。此方案结构简单,使用器件少,可靠性好,效率高。但由于需要工频变压器升压,其绕制麻烦,体积笨重。

2、多级变换结构。采用两级级联结构完成系统的设计,前级采用推挽升压变换,后级采用桥式逆变电路将直流电压变换成交流电。由于前后两级相对独立,使得后级的逆变环节灵活性很大。而其高频化的应用也有利于减小体积,达到更高的功率密度。因多级变换是每个子系统的级联,因此其整体的效率不如单级变换结构。

逆变主体电路

1、半桥型逆变拓扑

半桥逆变电路是结构最简单的逆变电路。其中D1、D2是续流二极管,C1、C2是分压电容,要求其值相等并且足够大。半桥逆变的优点是结构简单,使用开关器件少。但其输出交流电的幅值只有直流电源电压的一半,因此半桥电路常用于小功率的逆变场合。

2、全桥型逆变拓扑

全桥型逆变电路可以看做两个半桥电路的组合,是逆变电路中应用最多的结构。全桥逆变电路开关器件电压应力不高,输出功率大,控制方式灵活,在较低的开关频率下可以得到较好的谐波抑制。但使用器件多,驱动较复杂。

控制方案

1、SPWM硬件电路加单片机辅助控制。

采用全硬件电路实现SPWM的产生和控制,或者采用专用的SPWM控制芯片,而单片机根据变频要求输出频率变化的标准参考正弦波供给硬件电路调制,最终输出频率变化的正弦波。此方法实时性能好,系统响应快,缺点是电路复杂,难于实现。

3、采用单片机控制。

使用性能良好的单片机产生基波频率可以调节的SPWM波,经隔离驱动全桥电路,滤波后输出变频正弦波。如此则逆变环节可大大简化,系统运行灵活性高,控制方便。但缺点是单片机实时性能欠佳,并且在强开关干扰下一旦进入不稳定运行,则系统易出现控制故障,影响系统性能。

电压反馈方式

1、采用输出电压平均值反馈

逆变输出交流电压经整流转化为平均值,与输出给定比较后,产生误差信号改变SPWM。平均值反馈控制方式简单易行,对输出可连续调节并可以保持较

好的稳态误差。但其动态响应慢,负载适应性不佳。

2、采用输出电压瞬时值反馈

瞬时值反馈采样的是输出电压的同步峰值。将输出采样电压过零比较后可以得到采样的同步触发信号,单片机根据触发信号延时后采样峰值。瞬时值控制可以在运行过程中实时的调控输出电压,提高逆变的供电质量。瞬时值采样的缺点是输出电压存在一定的稳态误差。

SPWM调制方式

1、单极性调制

单极性调制的特点是调制信号和SPWM波形具有相同的正负极性。由于其载波的对称性,输出电压中没有偶次谐波,因此高频分量易于滤除。但其中却含有少量的低频谐波分量。因为其输出电压中包含零电平,因此单极性SPWM只能应用于全桥逆变电路。

2、双极性调制

双极性调制的主电路比较简单,可以用于半桥或全桥电路。并且双极性的驱动设计也比单极性的容易处理。但是其输出信号的谐波含量随着调制比的减小而大幅度增加,因此不适合用于调制比变化范围较大的场合。

单片机选择

1、MSP430 16位单片机

MSP430单片机是德州仪器公司推出的16位超低功耗,具有精简指令集的混合信号处理器。其主频为8MHz,内设资源丰富,功耗极低。但运算能力不高,不能有效的处理快速变化的信号。

2、STM32 是基于ARM Cortex-M3内核的高性能,低功耗的32位处理器。其工作频率为72MHz,内置高速存储器,具有丰富的增强型I/O端口。STM32工作可靠,编程灵活,软件编程可以实现复杂控制算法和逻辑控制,实用性强。

提高效率的方法与实现论证

在开关电源中,影响效率的因素主要有整流管损耗,变压器损耗和开关管损耗。本系统中的输出电压较高,为了达到较好的效率,减少整流的功率消耗,副边整流使用肖特基二极管,其正向压降低,反向恢复时间小,有利于减少输出整流损耗。

变压器损耗主要是铜损和铁损,铜损主要考虑导线的载流密度和温升,铁损主要是变压器磁芯的涡流损耗。因此合理的选用载流导线和磁通变化可以提高变压器的效率。同时,采用一定的绕法可以减小漏感,提高变压器的利用率。

开关管的损耗主要有开关损耗和导通损耗。导通损耗与开关管的平均电流和导通内阻有关,推挽拓扑的原边峰值电流较低,比较适合升压。同时采用低导通内阻的开关管可以减小开关导通损耗。开关管的开关损耗与开关频率成正比,在硬开关的使用条件下,可以降低开关频率,减少开关损耗。

恒功率控制框图

输入电压经功率变换电路变频整流(开关管高频斩波,再经二次整流)后输出;采样电路检测输出端电压、电流信号,输入到单片机后,通过做乘法运算,合成为功率信号电平,该信号通过脉宽控制电路、驱动电路去控制、调节功率变换电路中的占空比,使得由于某种原因造成输出功率增大时,占空比变小:

反之输出功率降低时,占空比增大,这样形成一个闭环负反馈,调节输出占空比,进而调节输出的平均值,达到稳定输出功率的目的。

恒流控制

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源实验报告

开关电源实验报告 一开关电源原理 如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。

MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 (3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

1.2功率变换电路 (1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。(2)常见的原理图: (3)工作原理 R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

东元 海利普开关电源电路分析

两例变频器开关电源电路实例 ——兼论电容C23在电路中的重要作用 先看以下电路实例: 图1 东元7200PA 37kW变频器开关电源电路 CN4 图2 海利普HLPP001543B型15kW变频器开关电源电路

图1、图2电路结构和原理基本上是相同的,下面以图1电路例简述其工作原理。 开关电源的供电取自直流回路的530V直流电压,由端子CN19引入到电源/驱动板。 电路原理简述:由R26~R33电源启动电路提供Q2上电时的起始基极偏压,由Q2的基极电流Ib的产生,导致了流经TC2主绕组Ic的产生,继而正反馈电压绕组也产生感应电压,经R32、D8加到Q2基极;强烈的正反馈过程,使Q2很快由放大区进入饱合区;正反馈电压绕组的感应电压由此降低,Q2由饱合区退出进入放大区,Ic开始减小;正反馈绕组的感应电压反向,由于强烈的正反馈作用,Q2又由放大状态进入截止区。以上电路为振荡电路。D2、R3将Q2截止期间正反馈电压绕组产生的负压,送入Q1基极,迫使其截止,停止对Q2的Ib的分流,R26-R33支路再次从电源提供Q1的起振电流,使电路进入下一个振荡循环过程。 5V输出电压作为负反馈信号(输出电压采样信号)经稳压电路,来控制Q2的导通程度,实施稳压控制。稳压电路由U1基准电压源、PC1光电耦合器、Q1分流管等组成。5V输出电压的高低变化,转化为PC1输入侧发光二极管的电流变化,进而使PC1输出测光电三极管的导通内阻变化,经D1、R6、PC1调整了Q2的偏置电流。以此调整输出电压使之稳定。 这是我的第二本有关变频器维修的书中,对图1电路原理的简述,由于疏漏了对电容C23作用的讲解,给读者带来了一些疑问:1)N2绕组负电压是如何加到Q2基极的?2)电路中C23的作用是什么?3)C23的充、放电回路是怎样走的?这3问题涉及到电路原理的关键部分,无它,开关电管Q2即无法完成由饱和导通→进入放大区→快速截止→重新导通的工作状态转换,三个问题其实又只是一个问题,即图1的C23(或图2中的C38)究竟对电路的工作状态转换起到怎样的重要作用?先不要忙,将这个问题暂且按下不表,先说几句题外话。 在由3844(42/43/34)PWM脉冲芯片为核心构成的开关电源电路,大行其道的今天,像图1、图2这样由两只双极型晶体管构成的开关电源电路(对比于集成器件,或称之为分立元件构成的开关电源),仍占有一席之地,在数个变频器厂家的产品中,得到应用。难道是厂家技术人员有怀旧情结吗?还是为了降低生产成本?其实都不是!采用分立元件做开关电源,设计人员肯定有更全面和深入的考虑。 而我的维修经验而论,我比较倾向和首肯于由分立元件构成的开关电源,理由是其工作可靠性高,故障率低,使用和维修都比较让人放心。电路的质量,并不取决于采用集成器件或分立元件,也不取决于电路采用元器件的数量多少,这些都是形式而非本质。相对于分立元件组成的电路,集电器件是否就具有技术上的先进性和工作上的可靠性?则真的是一个问号,不可一概而论。比较二者电路的设计难度,分立元件的电路,恐怕难度要更高一些。 与分立元件的电源相比,用3844做成的电源电路,更像一个“傻瓜型”电路,有固定的电路模式,与成型外围作成一个电路单元,可以应急取代任意开关电源电路,达到修复目的(有的技术人员已经这样做了)。 电路的元件数量愈少,电路结构越是精简,电路的故障率就越低,这是一个被实践验证的法则。实际维修中,采用图1电路形式的开关电源,故障率和可靠性,要优于用集成器件做成的开关电源。个别电源,停电时还好好儿的,一上电,开关管就炸掉了,说明即使“傻瓜型”电路,在设计上也不可掉以轻心,关

简易风力摆报告设计

设计了一个简易风力摆控制装置,由直流风机组,陀螺仪,直流减速电机以及激光笔等组成。以MSP430F14单片机为核心,用PW波控制控制电机转速,调节风力大小,并以四个风机上下与左右同面两两并在一起对碳素管及激光笔进行工作,使细杆及激光笔在 风机的作用下可进行自由摆动且进一步可控摆动在地上划线,具有很好的重复性,并且可 以设定摆动方向且画短线,已经能够在将风力摆拉起一定角度放开后可以在规定时间内达到平衡。 关键词:风力控制摆、陀螺仪、轴流风机、PWM B速、MSP43C单片机 风力摆控制系统(B题) 1方案设计与选择 1.1设计内容 要求一个下端悬挂有(2~4只)直流风机的细管上端固定在结构支架上,只由风机提供动力,构成一个风力摆,风力摆上安装一个向下的激光笔。通过单片机代码指令控制驱动风机使风力摆按照一定的规律运动,并使激光笔在地面画出要求的轨迹,风力摆结构图如图1所示。 图1风力摆结构图 1.2设计要求 1.2.1基本要求 (1)从静止开始,15s内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm的直线段,其线性度偏差不大于土 2.5cm,并且具有较好的重复性; ⑵从静止开始,15s内完成幅度可控的摆动,画出长度在30~60cm间可设置,长度偏差不大于土 2.5cm的直线段,并且具有较好的重复性; (3)可设定摆动方向,风力摆从静止开始,15s内按照设置的方向(角度)摆动,画

出不短于20cm的直线段; (4)将风力摆拉起一定角度(30~45 ° )放开,5s内使风力摆制动达到静止状态。 1.2.2发挥部分 (1) 以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s内 需重复3次;圆半径可在15~35cm范围内设置,激光笔画出的轨迹应落在指定半径 ± 2.5cm的圆环内; (2) 在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m距离内用一台50~60W台扇在水平方向吹向风力摆,台扇吹5s后停止,风力摆能够在5s内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹; (3) 其他。 2总体方案设计与选择 2.1单片机选择 方案一:采用STC89S51芯片,该款芯片具有高性能低功耗的特点,具有32位输入/ 输出,可以实现处理、存储等功能⑴,但是其灵活性不高,需实时保护软件现场,否则易丢失信息,存储能力较弱。 方案二:采用MSP430F14芯片,该款芯片具有高性能,低功耗的特点,其抗干扰能力比较强,存储空间较大,稳定性较强。 二者比较之下,选择方案二作为此次设计的核心控制部分。 2.2直流风机选择 方案一:采用12V 4.5A的轴流风机,风力很大,可以将自身轻松吹起,但是体积较大,质量较重。 方案二:采用12V 1.5A的小风机,体积小,质量轻。但是风力足够大,单电机产生 的风力可吹起4个相同电机

典型半导体案例失效分析

典型半导体案例失效分析 Author:朱秋高 光宝电子(东莞)有限公司 E-mial: Collins.zhu@https://www.360docs.net/doc/6610935987.html, 摘要: 开关电源与地之间走线的电感对主开关Mosfet 驱动影响和失效案例 关键词: PWM 驱动信号的布线要点: 在开关转换期间,某些走线 (PCB上的敷铜线路) 电流会瞬间停止,而另外一些走线电流同时瞬间导通(均在开关转换时间100ns 之内发生). 这些走线被认为是开关调整器PCB布线的”关键走线”. 每个开关转换瞬时,这些走线中都产生很高的Di/dt .如图1-1所示,整个线路混杂着细小但不低的电压尖峰.由经验可知,不难理解这是方程V=L*Di/dt 在走线中起作用,L是PCB走线的寄生电感.根据经验,每英寸走线的寄生电感约为20nH 图1-1 确定三种拓扑中的关键走线 噪声尖峰一旦产生,不仅传递到输入/输出(影响电源性能),而且渗透到IC控制单元,使控制功能失稳失常,甚至使控制的限流功能失效,导致灾难性后果. 199

引言: 设计开关调整器PCB时,需知最终产品的好坏完全取决于它的布线,当然,有些开关IC可能会比其他开关IC对干扰更敏感.有时,从不同供应商购得的 “ 同类” 产品也可能有完全不同的噪声敏感度,.此外,某些开关IC结构本身也会比其他IC对噪声更敏感(如电流模式控制芯片比电压模式控制芯片”布线敏感度”高很多). 事实上,用户必须面对这样的现实: 半导体器件生产商不会提供其产品噪声敏感度的资料. 而作为设计人员,往往对布线不够重视,结果将似乎可稳定工作的IC弄得波形震荡,易受干扰,以致误动作,甚至导致灾难性的后果(开关烧掉). 另外,这些问题在调试后期往往很难纠正或补救,因此开始阶段就正确布线非常重要. 试验方法: 1. MOSFET 的驱动信号通常由IC内的驱动级产生,故MOSFET的源极应接至IC接地端.但MOSFET的实际表现并不由施加在栅极与参考间的电压所决定, 而是取决于栅极与源极间的电压,即完全取决于实际的V GS. 实例1,如果源极与地之间的走线有点长的话,在开关转换瞬间它上面会出现很大的电感反冲, 不严重的话只是降低开关转换的速度,严重时会使MOSFET错误地开通或关断,导致管子毁坏. 图1-2 是在关断瞬间可能发生的相当安全的情形.栅极控制MOSFET关断,但源极的PCB走线阻抗刚才也流过了电流,并产生小电压源(尖峰) 以阻止电流减小,电流持续流动直到能量消耗光.这使V GS波形发生改变从而使开关转换速度降低.然而,这种降低转换速度的方法并不值得推荐,根据我所知其结果不可预知,因为它本质上是基于寄生参数的. 图 1-2 关断时源极寄生电感的影响 2. 实例2, 图1-3 是一款使用在网络产品上的电源布线图,我们不难发现驱动信号到MOSFET的栅极之间的走线过长,(约为63mm) .且高频电感离驱动信号非常近,而导致在系统使用时,不时发生MOSFET 烧毁和PCB板大面积烧黑的现象, 200

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析)

经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析) PI公司的众多LED驱动电源解决方案中,高效率、低功耗,外围简单、可调光、高稳定性是最大的特点,涉及工业、商业、家用等应用领域。不管是应客户需求设计,还是按相关标准设计,还是基于对行业发展趋势把握所做的前瞻性设计,都同样的出色,其方案、设计、想法具有行业指引性。 其众多的驱动电源参考设计中蕴含很多电源基本理论,就算不用其公司的IC也可以作为设计参考,对工程师有超强的指导意义。 1.开关电源设计软件- PI Expert? 操作/设计指南 PI Expert可提供构建和测试工作原型所需的所有必要信息。这些信息包括完整的交互式电路原理图、物料清单(BOM)、电路板布局建议以及详细的电气参数表。PI Expert还可提供完整的变压器设计,包括磁芯尺寸、线圈圈数、适当的线材规格以及每个绕组所用的并绕线数。此外,还可生成详细的绕组机械装配说明。该程序可以将设计时间从数天缩短至几分钟。 2.采用LYTSwitch的带功率因数校正(PFC)的23 W T8电源设计 适用于430 mA V (50 V) T8灯管的隔离式、低输入电压、超薄驱动器设计(DER-338)现已推出。这款新设计采用了PI新推出的LYTSwitch? LED驱动器系列器件LYT4215E。 3.一款高功率因数、可控硅调光的非隔离LED驱动器 PI推出了一份新的设计报告((DER-364),介绍的是一款使用广受好评的LYTSwitch IC设计的高功率因数、可控硅调光的非隔离LED驱动器。其效率额定值高达85%以上,具有无闪烁调光和单向快速启动(<200 ms)的特性。 4.针对T10灯管的最新24 W LED驱动器设计 PI的一款效率达92%的24 W T10灯LED驱动器设计(DER-356)。该设计可极大简化离线式、带功率因数校正的LED电源的生产。 5.适用于可控硅调光A19灯的全新10 W PFC LED驱动器设计 PI发布的关于针对可调光A19灯的全新10 W驱动器设计(DER-328) 6.元件数最少的T8灯管LED驱动器设计–高效率、低THD PI现已推出DER-345–一款针对T8 LED灯的低输入电压、非隔离、高效率、高功率因数LED驱动器设计。 7.适用于A19替换灯的14.5 W可控硅调光的非隔离LED驱动器 Power Integrations的LED设计(DER-341) –适用于A19 LED灯的非隔离式、高效率、高功率因数(PF) LED驱动器。这款新的LED驱动器采用LinkSwitch-PH系列IC中的LNK407EG器件设计而成。

开关电源实验报告

开关电源实验报告 一、开关电源电路图及清单 1.1 60W-12V开关电源电路图 图1-1 开关电源电路原理1.2.60W-12V开关电源电清单

二、开关电源介绍 开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED 灯袋,电脑机箱,数码产品和仪器类等领域。它是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。 模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国

详解自激开关电源电路图

详解自激开关电源电路图 该文章讲述了详解自激开关电源电路图. 自激开关电源电路 图,STR41090电源属于自激式并联型开关电源,适应电网电压能力为150-280V。 振荡过程 C808上约300V直流电压经R811加到N801的(2)脚内部开关管的B极,同时经T802的(1)、(3)绕组加到N801的(3)脚内部开关管的C极,开关管开始导通,电流流过T802的(1)、(3)绕组,在(1)、(3)绕组产生感应电压,极性为(3)正(1)负,经耦合,在(6)、(7)绕组也产生感应电压,极性为(7)正(6)负,此正反馈电压经C819、R817、R816送回到N801的(2)脚,使开关管电流进一步增大,雪崩的过程使开关管迅速饱和。开关管饱和期间,T802(1)、(3)绕组的电流线性增大,VD821、VD822截止,T802储存磁场能量。由于C819不断被充电,使N801的(2)脚电压不断下降,到某一时刻,N802(2)脚上的电压不能维持内部开关管的饱和,开关管退出饱和状态,C极电流减小,T802各绕组的感应电压极性全部翻转,反馈绕组(6)、(7)脚的电压极性为(6)正(7)负,经C819、R817、R816送到N801的(2)脚,使N801(2)脚电压进一步减小,又一雪崩过程使开关管迅速截止。开关管截止期间,VD821导通,在C822电容上形成112V电压;VD822也导通,在C824电容上形成18V电压,T802储存的磁场能量被释放。另一方面,C819上的电压经R817、R816、VD812、VD813放电,同时300V电压经R811给C819反向充电,这两个因素使C819左端的电压回升,即N801(2)脚的电压回升,当(2)脚电压上升0.6V以上

开关电源设计:高压电容器充电变简单了

开关电源设计:高压电容器充电变简单了 设计一个高达kV的高压电容器充电器或电源不是一件小事。采用通用 反激式PWM 控制器的分立式解决方案需要光耦合器,还要具备监视、状态指示和保护功能,这就要很多电路,增加了设计复杂性。尤为重要的是要避免输入过流,这种情况在发生在接通时会被误认为是短路的容性负载所引发。还必需确保该类型的转换器只有输入电压在安全工作范围之内时才接通,从而保持长期可靠性。 ?专业高压闪光灯系统、安全控制系统、脉冲雷达、汽车安全气囊发射、应急频闪灯、安全/存货控制系统和雷管等都需要在一个电容器的两端产生一个高电压。怎样设计一个可靠性、成本、安全性、尺寸和性能都优秀的高压电源就是设计师必需应对的主要障碍。不过,凌力尔特公司最近推出的 LT3751 极大地简化了这一问题。 ?LT3751是全功能反激式控制器,用来对大型电容器迅速充电到1000V,是之前推出的LT3750的第二代版本。其增加的功能包括从变压器的主或副端 检测输出电压,接受更高的输入电压,同时具有更高的可编程性和更多保护功能。LT3751驱动一个外部N沟道MOSFET,可以在不到1s的时间内将一个1000μF的电容充到500V。此外,它还可以为主端输出电压检测而配置,无须光耦合器。对于更低噪声和更严格的输出调节应用而言,一个为输出电压分压的电阻分压器网络可以用来调节输出,从而使该器件非常适合满足高压电源的要求。同时,可调变压器匝数比和两个外部电阻使输出电压调整大为简化。此外,LT3751还有一个通过串联电阻供电的内部60V并联稳压器,可以在 4.75~400V的输入电压范围内工作。这允许最终用户接受一个极宽的输入电源范围,其VCC输入接受范围为5~24V。

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

开关电源课程设计

目录 前言 (1) 第一章开关电源技术课程设计任务书 (2) 第二章主电路原理设计 (7) 第三章开关变压器设计 (9) 第四章主要元器件的选型 (16) 第五章电路仿真及结果 (23) 总结 参考文献 附表一 附表二

前言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。

第一章开关电源技术课程设计任务书 一、课程设计的目的 通过开关电源技术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文 献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 一、题目 题目:反激型开关电源电路设计 注意事项: ①学生也可以选择规定题目方向外的其它开关电源电路设计。 ②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。 设计装置(或电路)的主要技术数据

开关电源学习 书籍推荐

《开关电源入门》,图灵出版的和美国半导体总工写的.《开关电源设计与优化》写的不适合初学者 1、《开关电源指南》第2版,浙江大学徐德鸿翻译的,也有可能是他的学生翻译,他署名出版而已.说实话,翻译水平很烂,错误相当多,但里面很多内容,相当不错,很适合入门.英文水平高的,可以看英文原版. 2、《开关电源设计》第2版,华南理工大学王志强翻译的,挺厚的,黑白相间的书皮,也不错. 3、《电力电子系统建模》浙大徐德鸿翻译,《开关变换器的建模与控制》, 张卫平著. 这两本书,详细讲解了开关电源的建模方式和环路补偿,怎么调整电源环路的稳态性能和暂态性能.这两本书看懂了,做电源,我个人觉得,理论水平已经达到一定高度了. 4、《直流开关电源的软开关技术》和《全桥移相软开关技术》,南航阮新波的博士论文,整理后出版的两本书,国内凡是写软开关的书,大部分都是照抄它们或者无一不参考它们.其中后一本书已经绝版了,市场上已经买不到,淘宝网上有复印版本卖,大概45元,质量很不错的. 5、《开关电源磁性元器件》,赵修科著.磁性器件,可以说是开关电源的心脏,不懂磁,想做好电源,那是不可能的.这本书对磁的理解深刻而全面. 6、control loop cookbook 德州仪器的技术资料,作者就是提出著名右半平面零点概念的那个人,相当的好. 其他的书嘛,就是大学教材,模拟电路和经典控制理论,一定是要读通掌握才行.总的来说,软开关,就看阮新波足够;环路方面,主要还是看外国人写的;磁和变压器方面,主要看赵修科和台湾人写的. 仿真软件还是要掌握一些的. 1、orcadpspice适合做电路元件级级仿真,仿模拟电路和开关电源小信号模型,效果相当好. 2、saber适合做系统级仿真,特别适合开关电源这种含有脉冲式信号的电路,模型库参数全,仿真精度高,尤其是强大的仿真结果后续处理能力,是我用过的仿真软件中,功能最强大的一款.不过,在国内普及程度,没有pspice高,一套正版8万

单端正激开关电源设计

单端正激开关电源设计 Prepared on 22 November 2020

《开关电源》作品设计论文 设计题目:单端正激开关电源设计 学院名称:电子与信息工程学院 专业:电气工程及其自动化 班级:电气091班 姓名:陈永杰学号: 指导教师:孔中华 2012 年 5 月 25 日

摘要 开关电源非常广泛地应用在通讯、计算机、汽车和消费电子产品等领域。电源设备用以实现电能变换和功率传递,是各种电子设备正常工作的基础,而高频高效小型开关电源又是开关电源发展的必然趋势,在通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等领域得到了越来越多的广泛应用。 在深入研究分析各种开关电源原理和特点的基础上,根据导师根据项目布置的指标要求,论文设计了一种单端正激式高频单路输出开关电源。该开关电源的特点是以单端正激式为主拓扑,以电流型控制芯片UC3842和高频变压器为核心,采用EMI滤波器、MOSFET、输出滤波电路、采样反馈通道等主要元器件和电路模块,实现了单路稳定输出。 论文所设计的开关电源输入为市电220V交流,输出电压为10V直流电压,输出最大电流为40A,开关频率为200KHZ。论文采用面积乘积法(AP),确定了高频变压器的原副边形式以及铁芯材料的选择,设计了输出电路、系统补偿器以及启动电路和EMI滤波电路。 论文设计好后,对所设计的单端正激式高频开关电源电路系统进行全面仿真,仿真结果表明,各项指标符合要求。 而后,做出实物,调试显示:该开关电源的输出电压调整特性、负载调整率、输出纹波、动态响应、温度变化等均满足了项目的指标要求,并且具有良好的过载、短路保护特性和波形特性,各项技术指标能够达到信息平台的供电要求。 关键词:高频开关电源;单端正激式;AP法变压器

开关电源实习报告

第十届TI杯电子设计竞赛培训实 习报告 日8月7年2012 1.开关稳压电源 1.1工频变压器 工频变压器作为本电源降低电压的核心。它把有效值为220V的交流市电降低为20V的交流电压。为后级稳压环节输入一个低的直流电压做了准备。 1.2整流滤波 本电源整流采用4安的集成整流桥堆。前级滤波采用三个电容进行。如图1示,分别为C12,C14,C15。C14是一个1000uF的铝电解电容,它可以很好地滤除低频脉动成分,使整流输出波形变得很平滑。电容的高频小信号模型为电感、电容、电阻的串联。铝电解电容,由于其内部结构决定了它的高频等效电感比较大。再加之铝电解电容的容值比较大,这就导致它的自身谐振频率比较低。这样它可以很好地滤除低频杂波成分,但是对于高频杂波成分,它的滤除效果不是很好。这就需要给他并联一个0.1uF的瓷片电容C15,这样滤波器的带宽就会大大提高,可以滤除掉更多的杂波成分。C12是作为LM2576的输入滤波的,以保证输入LM2576的交流杂波成分更小。 1.3稳压 本电源稳压环节采用LM2576开关降压(Buck)型集成稳压芯片。其内部集成了52KHz的振荡器,功率管,PWM调制器和反馈环路。LM2576输出最大电流可以保证3A,输入最大电压40V。D4是一个肖特基二极管,型号为MBR20200。它是作为Buck电路的续流二极管使用的。电感L2是一个用铁粉磁环绕制的100uH 的大功率电感,它是Buck电路的储能电感。L2和C13共同组成了一个LC滤波器。R12,R10是一个电阻串联分压网络。LM2576的4脚在分压网络分压点采集电压反馈给其内部误差放大器,控制PWM调制器改变PWM波的脉宽,从而控制功

开关电源设计及调试总结

线性稳压电路具有结构简单,调整方便,输出电压脉动小的优点,但缺点是效率低,一般只有20%~40%,并且比较笨重。开关型稳压电路能克服线性稳 压电源的缺点,具有效率高,一般能达到65%~90%,并且体积小,重量轻,对电网电压要求不高,因而在实际生活中得到广泛应用。也正因为其应用的广泛性,相应专业的学生就更应该深刻和熟练地掌握它,在此以设计脉冲宽度调制型开关电路(PWM)为基础,详细解说该系统的调试过程。 1 系统设计原理 PWM 型的开关电源整体框图如图1所示。变压、整流、滤波模块处理起来比较简单,只要采用相应的变压器、单相全波整流、电容式滤波即可实现,这里不用更多的篇幅介绍。此系统的核心模块是方框图中的闭合(负反馈)模块。如果直接采用Boost型DC-DC升压器,实现起来简单,但输出/输入电压比太大,占空比也大,而将使输出电压范围变小,难以达到较高的指标,且为开环控制。对此采用专用开关芯片TL494芯片,它采用开关脉宽调制(PWM),效率高,外围电路也较简单,可以方便实现闭环控制。 1.1 TL494工作原理 TL494 内部结构如图2所示,它是一种固定频率可自行设置,并应用脉空调制的控制电路,其中,振荡频率fosc=1.1/(RTCT)。具体来讲,由于误差放大器输入口1,2(或3,4)的值不等,产生偏差,偏差送入PWM比较器与锯齿波(锯齿波的频率由振荡频率确定,幅值是定值)比较,在偏差大于锯齿波范围内时,9口(或10口)输出低电平,在偏差小于锯齿波范围内时,9口(或10口)输出高电平。若偏差值越大,TL494输出高电平的区间越小。由此可见,通过调整误差放大器输入口的偏差可改变占空比。

(完整版)开关电源毕业设计论文

优秀论文审核通过 未经允许切勿外传 设计题目:12V5A直流开关电源姓名: 专业: 班级: 学号:

系部: 同组人: 指导教师: 年月日 摘要 本文介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于该电流型PWM控制芯片、实现输出电压可调的开关稳压电源电路。开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 关键词:UC3842、开关电源、PWM 引言 开关电源是运用现代电力电子技术,控制开关开启和关闭的时候,这个比率的输出电压稳定的电源,电源一般由脉宽调制控制集成电路和场效应晶体管。开关电源、线性电源,并与成本的功率输出的增加,但这两种不同的

发展速度。在某一线性功率成本的输出功率的观点,但高于开关电源,它被称为成本反转点。随着电力电子技术的发展和创新、开关电源技术在不断的创新,这一成本更低的输出功率对于移动、开关电源提供了广阔的发展空间 第一章开关电源概述 1.1 开关电源发展历史与应用力 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和功率开关器件(如MOS-FET)等构成。简单的说:就是开关型直流稳压电源。开关电源把直流电源或交流电源通过它可以获得一个稳定的直流电压源。它具有效率高,输出电压稳定,交流纹波小,体积小和重量轻的许多优点。获得广泛使用。 高频开关电源的发展方向是高频开关电源、小型化、使开关电源到更广阔的应用领域,尤其是在高技术领域的应用,促进高新技术产品的小型化、光。另一个开关电源的发展与应用在节约能源、节约资源和保护环境,具有重要的意义。 噪音和纹波:附加在直流输出信号上的交流电压和高频尖峰信号的峰值。用示波器测量其纹波幅值,通常是以mv度量。 第二章输入电路 适,在负载电流达到稳定状态时,其阻值应该是最小。这样,就不会影响整个开关电源的效率。 2.2 输入阳间电压保护 在一般情况下,交流电网上的电压为115v或230v左右,但有时也会

AC-DC反激开关电源实验报告

反激开关电源的设计与调试 1.实验目的: 掌握反激电路、TOP255YN芯片的使用方法与各元器件的参数计算;掌握各种测试仪器的使用;输入220交流电压,得到12V电压,1.5A电流稳定主输出;副输出5V,1A。频率f=66KHZ,输出功率23W,输出纹波100mV。 2.实验器材: 示波器、负载、输入电源、测温器、万用表。 3.实验内容: (1)反激电路工作原理

连续模式初级电流有前沿阶梯且从前沿开始斜坡上升。在开关管关断期间,次级电流为阶梯上叠加衰减的三角波。当开关管在下个周期开始导通瞬间,次级仍然维持有电流。在下一个周期开关管开通时刻,变压器储存能量未完全释放,仍有能量剩余。

三、实验数据分析 输入电压为220V 交流,整流后得到Vdc=311V 直流。MOS 管上电压为Vdc+(Np/Ns )*(Vo+1)=400V 。 (1)变压器设计 占空比:) /)(1()1(8.0)/)(1(on Ns Np Vo Vdc T Ns Np Vo T ++-?+==0.4695 初级匝数:f Ae Bpk T V N **?*?=2on o 2p =71匝取72匝 f=66khz 次级匝数:dc on of f 1o p s V T T V N N **+* =)(=8.2匝取9匝 次级峰值电流:=-=) 1(o crs Ton Vo P I 2.83A 次级平均电流:csr of f ar I T I *==1.5A Vo Ton Po Icpr *=25.1=0.337A Top255芯片峰值电流:Ton I I /cpr p ==0.802A 过载保护: 典型值Ilimit=1.7A

相关文档
最新文档