多泵并联恒压供水水泵的合理配置

多泵并联恒压供水水泵的合理配置
多泵并联恒压供水水泵的合理配置

多泵并联恒压供水水泵的合理配置

由多泵并联恒压供水原理,一台变频泵与多台工频泵并联恒压供水,其最大供水流量等于各并联泵在恒压工频转速下流量之和。在恒压供水过程中,工频泵的流量是恒定的(恒压工频转速下的流量),变频泵的流量随用水流量而变化。为保证能在零到最大流量范围内均能获得恒压供水,在配泵时要求变频泵是所有泵中的最大者。考虑到变频器的价格与其功率成正比,最经济的配泵方案是所有泵的大小、型号相同。

6 多泵并联恒压供水时各泵的自动投入和退出方式

由多泵并联恒压供水原理可知,多泵并联恒压供水,只要变频泵在所有泵中是最大的,即可实现恒压供水。随用水流量变化,各并联泵可自动投入或退出。其自动投入或退出的方式有二种:

(1) 以工频状态自动投入或退出

第一种方式是基本方式,各台工频泵以工频状态自动投入或退出。具体方式如下,当用水流量增加,变频泵的转速上升,当上升到工频转速,如用水流量继续增加,下一台工频泵以工频状态自动投入,反之,在多泵并联恒压供水过程中,当用水流量减少,变频泵转速下降,当其转速下降到零流量的阈值,最后投入的一台工频自动停泵退出,采用这种控制方式的电控系统比较简单、可靠,是一种工程实用的控制

方式。设有变频恒压供水控制硬件、软件的abb变频器采用的是这

种控制方式。如果要实现变频泵与工频泵定时轮换,可以利用abb

变频器的pfc应用宏控制软件以达到所要求的定时轮换控制。在这种情况下,每台泵可由变频驱动也可由工频驱动,由变频控制以实现定时轮换。

(2) 循环软起动并按先开先停的原则进行控制

第二种方式称之为循环软起动并按先开先停的原则进行控制。具体控制过程如下:当用水流量增加,变频泵转速上升,当转速上升到工频

转速,由变频控制器控制使该变频泵切换到工频运行,然后由控制器控制变频软起动一台新泵,新起动的泵是变频泵,它与工频泵并联运行以实现恒压供水。当用水流量减少,变频泵的转速下降,当转速下降到零流量的阈值,由变频控制器控制使最先开启的一台泵停泵,以实现先开先停的控制原则,要实现先开后停的原则,变频控制器中要应用单片机,由以上可见,采用这种控制方式,其控制系统要复杂得多,其性价比如何尚有待使用实践的检验。

7 多泵并联恒压供水,各泵自动投入或退出过程防止水力冲击的措

如上所述,当采用第一种控制方式,在工频泵投入时为减少水力冲击,在此过程中可使变频泵的转速先下降,然后慢慢上升以达到恒压供水。反之,当用水流量减少,各并联的工频泵应依次退出。在工频泵停泵

退出时为减少水力冲击,变频泵的转速应自动上升,然后慢慢下降。试验研究表明,采取这种控制措施可以有效地缓解在工频泵投入或退出过程中的水力冲击。

恒压供水技术方案

恒压供水技术方案文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

恒压供水技术方案 一、综述 1、概述:以变频器为核心的自动给水设备已经成为当下现代高楼自动供水设备的核心 设备。可以取代传统的高位水箱、气压罐供水,避免水质的二次污染,具有节能、操作方便、自动化程度高的特点。变频调速恒压供水设备可在生产生活用水、锅炉恒压补水、供暖系统、空调系统、定压差循环水、消防用水等方面直接应用。 2、特点: (1)高效节能; (2)可取代高位水箱或者水池,减少土建投资,避免水质二次污染; (3)采用恒压供水,大大提高供水品质; (4)延迟设备使用寿命,采用变频恒压供水,启动方式是软启动,对机械、电气设备冲击小,可大大延迟设备使用寿命,特别是机械设备。 (5)控制系统可根据客户需求配置人机管理系统、中文提示、中文监控操作,极大方便了客户的操作使用和设备维修; (6)全自动控制,无需人工干预; (7)具有完善的保护功能,变频器保护、欠电压保护、过电压保护、短路保护、过载保护、过热保护、缺相保护。 3、适用范围 (1)适用于自来水厂及加压泵站; (2)适用于住宅小区、宾馆、饭店及其它大型公共建筑的生活供水; (3)适用于大中型工矿企业的生产生活用水; (4)适用于居民住宅小区、宾馆、饭店、大型公共建筑和各种工矿企业的消防供水、生产供水; (5)适用于工矿企业恒压、冷却水工会和循环供水系统; (6)适用于热水供水、采暖、空调、通风系统的供水; (7)适用于污水泵站、污水处理中的污水提升系统; (8)适用于农田排灌、园林喷洒、水景和音乐喷泉系统; 二、工作原理

(完整版)旭日小区恒压供水系统设计毕业设计

毕业设计 旭日小区恒压供水系统

毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。

作者签名:指导教师签名:日期:日期:

注意事项 1.设计(论文)的内容包括: 1)封面(按教务处制定的标准封面格式制作) 2)原创性声明 3)中文摘要(300字左右)、关键词 4)外文摘要、关键词 5)目次页(附件不统一编入) 6)论文主体部分:引言(或绪论)、正文、结论 7)参考文献 8)致谢 9)附录(对论文支持必要时) 2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。 3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。 4.文字、图表要求: 1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写 2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画 3)毕业论文须用A4单面打印,论文50页以上的双面打印 4)图表应绘制于无格子的页面上 5)软件工程类课题应有程序清单,并提供电子文档 5.装订顺序 1)设计(论文)

恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1 变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2 恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (4) 2.1 设计任务及要求 (5) 2.2 恒压供水系统主电路设计 (6) 2.3 系统工作过程 (7) 3 器件的选型及介绍 (9) 3.1 变频器简介 (9) 3.1.1 变频器的基本结构与分类 (9) 3.1.2 变频器的控制方式 (9) 3.2 变频器选型 (10) 3.2.1 变频器的控制方式 (10) 3.2.2 变频器容量的选择 (11) 3.2.3 变频器主电路外围设备选择 (13) 3.3 可编程控制器(PLC) (15) 3.3.1 PLC的定义及特点 (15) 3.3.2 PLC的工作原理 (16) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (18) 4.1 PLC的I/O接线图 (18) 4.2 PLC程序 (18) 4.3 变频器参数的设置 (22) 4.3.1 参数复位 (22) 4.3.2 电机参数设置 (22) 总结 (23) 参考文献 (24)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1为供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

深井泵控制方案

22KW深井泵恒压变频控制方案 变频调速恒压供水具有节能、安全、高品质的供水质量等优点,恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。 一、恒压供水原理 通过管网中的远传压力表或者压力传感器将信号送入变频器,使用英威腾变频器自带的PID运算调节功能,自动调整电机转速,当管网中压力增大时,远传压力表或压力变送器的反馈信号增大,变频器输出频率、电压下降,电机速度下降,水泵轴功率减小,水泵的流量减少,当到达所需恒定压力值时,此时系统处于动态平衡。当管网中压力减小时,远传压力表或压力变送器的反馈值减小,变频器经过PID运算,调节输出频率上升,从而使得电机转速上升,直到达到设定压力,动态平衡。当不用水时,由于管网压力已达恒定,变频器进入休眠待机状态,此时电机不转,水泵停止工作。当管网压力发生改变时,变频器再次自动唤醒,从而达到恒压动态调节水的流量,达到恒压节能的目的。 本控制回路,设有工频备用回路。当变频器回路出现故障时,将选择开关打到“工频模式”,手动启动工频回路,以保证生产生活用水需求。在工频回路设有电动机保护器,电动机保护器具有电动机过载、缺相、短路保护功能,时刻保证水泵机组安全。 二、恒压供水节能方案 如上所述,流量是供水系统的基本控制对象,供水流量需要随时满足用水流量。在供水系统中,管道中的水压能够充分反映供水能力与用水需求之间的关系: 若供水流量 > 用水流量→管道水压上升↑ 若供水流量 < 用水流量→管道水压下降↓ 若供水流量 = 用水流量→管道水压不变 所以,保持管道中的水压恒定,就可保证该处供水能力恰好满足用水需求,这就是恒压供水系统所要达到的目的。 整个控制过程如下: 用水需求↑——管路水压↓——压力设定值与返馈值的差值↑——PID输出↑——变频器输出频率↑——水泵电机转速↑——供水流量↑——管路水压趋于稳定 控制原理框图如下:

泵与泵站试题(答案)

泵与泵站试题(答案) 水泵与水泵站试题A 题号一二三四五六总计得分 名词解释(4小题,每小题2.5分,共计10分): 1.水泵 它是一种水力机械。它把动力机的机械能传递给所输送的水流,使水流的能量增加,从而把水流从低处抽提到高处,或从一处输送到另一处。 2.流量 单位时间内水泵所抽提的水体体积。 3.有效功率 水流流经水泵时,实际得到的功率。 4.汽蚀 由于某种原因,使水力机械低压侧的局部压力降低到该温度下的汽化压力以下,引起气泡的发生、发生和溃灭,从而造成过流部件损坏的全过程。 二、填空题本题共 20个空,每空0.5分,共 10分: 1.常见叶片泵的叶轮形式有封闭式、半开式、敞开式。 2.离心泵的工作原理是利用装有叶片的叶轮的高速旋转所产生的离心力来工作的。 3.轴流泵主要与离心泵不同的构件有进水喇叭管、导叶体、出水弯管。 4.叶片泵的性能曲线主要有基本性能曲线、相对性能曲

线、 通用性能曲线、全面性能曲线、综合(或系列)型谱。 5.离心泵工况点的调节方法有变径、变速、变角、变阀等。 6.叶片泵按其叶片的弯曲形状可分为后弯式、前弯式和径向式三种。而离心泵大都采用后弯式叶片。 三、单项选择题(四选一,每小题1分,共10分) 1.下列泵中,不是叶片式泵【 B 】A混流泵B活塞泵C泵D泵。 ,高比转数的水泵具有【】 流量小、扬程高B流量小、扬程低流量大、扬程低D流量大、扬程高 【】 敞开式B半开式C半闭封式D闭封式 ,所抽升流体的容重越大流体的其物理性质相同,其理论扬程【】 越大B越小 C 不变一定时的参数【】最高扬程B最大效率C最大功率D最高流量 6. 当水泵站其它吸水条件不变时,随当地海拔的增高水泵的允许安装高度【】 将B将C保持不变D ,当水位不变而高水池水位逐渐升高时,水泵的流量【】

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

浅谈变频恒压供水系统中水泵选择

浅谈变频恒压供水系统中水泵选择 目前,供水行业中经常用到无负压给水设备和变频恒压给水设备,以上两种设备的基本原理都是根据供水系统的压力变化(对应流量变化)。利用变频器调节执行单元(水泵、电机)的转速,达到恒压供水目的(f1:f2=n1: n2= Q1: Q2=H12: H22。该系统中,执行单元是系统中主要工作消耗能源的设备及主要影响系统综合性能的设备之一。泵的选择合理与否则直接影响到系统的两个重要指标: 一、运行费用——耗电量及出水量。 二、使用维护成本——设备使用寿命,日常维护费用。 所以,在变频恒压供水系统中,水泵的选择至关重要。 变频恒压供水系统中水泵的选择必须考虑以下几方面: 1.流量、扬程,满足系统设计的供水要求,泵的基本参数合理与否是系统供水功能的基本保障。 2.水泵配电机的供电要求必须满足使用地供电情况。 3.尽量选择高效率水泵,由于变频恒压供水为不间断供水,运转时间长,水泵在该系统中又是主要耗能单元,高效率的水泵选择是系统节能理念的根本保证。 4.性能曲线(Q-H线)选择较陡峭的水泵。 变频恒压供水主要是通过水泵转速的变化来调节因用水量变化带来的压力变化,使压力恒定、平稳,性能曲线陡峭的泵相对于性能曲线平稳的泵在转速、流量发生变化压力恒定时频率的调节幅度大,选择性能曲线陡峭的水泵在变频恒压给水系统中满足不同用水量的变化更加节能。 5.选择使用寿命相对长的水泵。水泵作为能量转换工作单元,本身就是易损坏,高维修保养的部份。高品质的水泵关系到整个系统的使用寿命,直接影响使用成本。 6.选择维修维护简单的水泵 一般设备将交到物业公司管理,物业公司的维修技术力量不强,不方便维修或维修技术要求高的水泵会增加使用成本,特别是零部份互换性差的水泵更会增加日常的维护成本。 其它如:使用环境对防护等级及噪音要求等根据实际情况加以考虑。 以下为典型不能用于变频恒压供水系统中的水泵实例: 一、填料密封水泵 该类水泵启动转矩大,变频启动的启动转矩小,使用中经常会使变频器报故障,并且使用中密封耗能量大,也不节能。 二、屏蔽泵 1.该泵效率相对于单端面机械密封离心泵低,一般不会高于60%。 2.变频恒压供水系统流量是变化的,经常会出现长时间小流量供水,如夜间及其他供水各区,屏蔽泵在长时间小流量情况下运转,由于其效率低,会导致发热,使液体蒸发,而导致干转,从而损坏滑动轴承或过热后烧毁电机。 3.屏蔽泵为单级泵,性能曲线较为平坦,压力恒定,流量发生变化要求的转速变化不大,

变频恒压供水的应用方案

变频恒压供水的应用方案 一、前言 随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频供水设备已广泛应用于多层住宅小区生活及高层建筑生活消防供水系统。变频调速供水设备一般具有设备投资少,系统运行稳定可靠,占地面积小,节电节水,自动化程度高,操作控制方便等特点。但在实际应用中若选型及控制不当,不但达不到节能目的,反而“费电”。以下结合我们多年来的实践经验,对几种变频供水系统的应用及其控制方法进行介绍,供同行及用户在设计、改造、选型时参考。 二、一拖二变频供水方式(见图1) 适用一般小区恒压供水,特点:是无需附加供水控制盒,成本低。利用变频器本身内置的恒压PID 控制功能。就能达到2 台水泵循环启停功能。 三、带小流量循环软启动变频供水设备(如3+1 供水模式,见图2) 该类型设备在实际应用中较多,系统由水泵机组、循环软启动变频柜、压力仪表、管路系统等构成。变频柜由变频调速器,供水盒(PLC+AD 模块+DA 模块),低压电器等构成。系统一般选择同型号水泵2~3 台,以3 台泵为例,系统的工作情况如下: 平时1 台泵变频供水,当1 台泵供水不足时,先开的泵切换为工频运行,变频柜再软启动第2 台泵,若流量还不够,第2 台泵切换为工频运行,变频柜再软启动第3 台泵。若用水量减少,按启泵顺序依次停止工频泵,直到最后1 台泵变频恒压供水。 另外系统具有定时换泵功能,若某台泵连续运行超过24h 变频柜可自动停止该泵切换到下一台泵继续变频运行。换泵时间由程序设

定,可按要求随时调整。这样可均衡各泵的运行时间,延长整体泵组的寿命,防止个别水泵因长时间不工作而锈死。 当变频供水系统在小流量或零流量的情况下,比如在夜间用水低谷时,系统内的用水量很小,此时水泵在低流量下运行,会造成水泵效率大大降低,不能达到节能的目的,水泵功率越大用电越多。例如对300~1000 户的多层住宅小区或600 户左右的小高层住宅楼群(12 层以内)的生活用水系统,生活主泵功率一般在15kW 左右,系统的零流量频率fo 一般为25~35Hz 故在夜间小流量时,采用主泵变频供水效率较低。 这就涉用供水系统在小流量或零流量时的节电问题,一般可以采取4 种方案:a 变频主泵+工频辅泵;b 变频主泵+工频辅泵+气压罐; c 变频主泵+气压罐; d 变频主泵+变频辅泵。从节能、投资角度看第4 种方案更为适宜,该方案即在原变频主泵基础上,再配备1~2 台小泵专用在夜间或平时小流量时变频供水,一般选择小泵流量为3~6m3/h,居民区户数越多,流量可适当选择大些。小泵功率一般为1.5~3kW,小泵的扬程按主泵的扬程或略低扬程即可。 四、深水井变频供水设备

(完整版)泵与泵站-配套习题答案.doc

《水泵及水泵站》配套习题答案 一、填空题 1.离心泵、混流泵、轴流泵 2.效率 3.流量 4.有效、轴 5.真空表、压力表 6.几何、运动 7.效率 8.叶轮、特性曲线 9.流量、扬程、变化规律 10.不漏气、不积气、不吸气 11.叶轮、泵轴;泵壳、泵座;轴封装置、减漏环、轴承座 12.外径、转速 13.几何、运动 14.取水、送水、加压、循环 15.吸音、消音、隔音、隔振 16.叶轮、旋转 17.高、低 18.单吸、对称 19.最大吸上

20.闭、开 21.开、有 22.可靠性、三 23.变极调速、变频调速; 24.kgf ·m/s、 kw、 HP 25.真空泵、水射器; 26.合建、分建; 27.n s、共性 28.正比、半径、转速 29.径向、轴流泵、轴向与径向合成 30.离心泵、轴流泵、混流泵 31.单级双吸卧式离心泵、水泵吸水口直径( in)、比转速为 280 32.改变电动机的转速;电机转速不变,通过中间偶合器变速 33.运动部分、固定部分、交接部分; 34.调速、削切叶轮、串并联水泵; 35. 3.65nQ1/2/H 3/4 36.Q1/Q2=n1/n2; H1/H2=(n1/n2)2;N1 /N2=(n1/n2)3; Q1/Q2=D1/D2;H1/H2=(D1/D2)2;N1/N2=(D1/D2)3; 37.叶片式、容积式、其他; 38.扬程、流量、轴功率、效率、转速、允许吸上真空高度或气蚀余量; 39.过流、一定比例 40.局部泵站、中途泵站、终点泵站;

41.轴承座、减漏环、轴封装置; 42.叶片形状、质量力、方向; 43.减漏、承磨; 44.泵壳、泵轴、泵座、叶轮、填料盒、减漏环、联轴器、轴承座、轴向力平衡措施 45.H T=(u2c2cos α2-u1c1cos α1)/g,牵连速度 u2与绝对速度 c2的 46.hη(水力效率)、ηv(容积效率)、ηm(机械效率) 47.参与并联工作的各台水泵总出水量等于在相同扬程下,各台水泵出水量之和。 48.IS 系列单级单吸式离心泵、 SH(SA)系列单级双吸式离心泵、 D( DA )系列 分段多级式离心泵、 JD(J)系列深井泵、轴流泵、混流泵等 49.流量;管路系统的压力、电动机的功率和泵缸本身的机械强度 50.独立、附设、室内 51.吸水管路、压水管路 52.真空泵引水、水射器引水、水泵压水管引水、人工引水 53.轴流泵、流量大扬程小 54.自来水制水成本、合理降低泵站电耗 55.容积、往复、旋转 56.水头损失、流量 57.转速、特性曲线 58.径向、能量 59.20、一个标准、吸上真空度 60.电动机、管路及附件 61.静扬程、水头损失

基于PLC控制的城市恒压供水毕业设计任务书

毕业设计(论文)任务书 院(系)电子信息工程学院 专业电气工程及其自动化 1.毕业设计(论文)题目: 基于PLC 控制的城市恒压供水系统设计 2.题目背景和意义: 随着改革开放的不断深入,我国中小城市的城市建设及其经济迅猛发展,人民的生活水平不断提高;同时,城市需水量日益加大,对城市供水系统提出了更高的要求。供水的可靠性、稳定性、经济节能性直接影响到城区的建设和经济的发展,也影响到城区居民的正常工作和生活。但由于近些年来,人们生活水平的提高,楼房的层数也在不断的剧增。再加上受到输送管道和供水设施的影响,使居民的生活用水存在着自来水管网压力不足的现象,尤其是供水高峰期的高层供水尤为突出,给人们的生活带来了许多困扰。本课题的研究意义就是进一步改善以及解决以上有关自来水管压力不均衡和不足的现象,设计出变频恒压供水系统,使其能在生活、生产实践中发挥功用。 3.设计(论文)的主要内容(理工科含技术指标):基于PLC 控制的城市恒压供水系统设计技术指标如下:根据用户用水量的大小,通过恒压供水控制器对水泵的数量和转速的控制,从而使用户无论用水量的多少,管网中的水压始终能保持在设定范围内。该课题的具研究内容如下:1、了解城市恒压供水系统设计的原理及相关知识;2、对系统各部分进行原理图设计,理解分析; 3、根据原理图进行实物设计,控制部分进行软件设计;4、对恒压供水系统软件的调试和硬件的完善。 4.设计的基本要求及进度安排(含起始时间、设计地点):本次设计要求根据技术指标完成 本次的具体设计内容,功能能够进行演示,设计地点在西安工业大学,进度安排为: 第1-3周:基本资料的查找,了解城市恒压供水系统设计的原理及相关知识,初步确定方案。 第4-6周:完善整体方案。研究原理设计及分析,对系统各部分进行原理图设计,理解分析。 第7-10周:完成系统硬件部分的选型。根据原理图进行实物设计,控制部分进行软件设计。 第11-14周:完成控制部分的软件设计。对整体方案调试,调试以求达到指定目标。对系统的不足进一步改进,调整措施。 15~16周,进行对恒压供水系统的完善。 17~18周,撰写论文,完成毕业设计答辩。 5.毕业设计(论文)的工作量要求 ① 实验(时数)*或实习(天数): 上机不少于200学时 ② 图纸(幅面和张数)*: A4,1~2张 ③ 其他要求: 5000字左右的外文翻译

多台并联水泵运行台数切换方式与效率的关系

多台并联水泵运行台数切换方式与效率的关系多台并联水泵运行台数切换方式与效率的关系 目录 一、研究背景 (2) 1.1水泵变频控制方式及存在的问题 (2) 二、传统台数切换方式下水泵并联同步调速特性分析 (3) 2.1四台水泵并联同步变速运行特性分析 (3) 2.2五台水泵并联同步变速运行特性分析 (6) 三、基于水泵效率的台数切换方式的提出与分析 (9) 3.1传统水泵台数切换方式的不合理性分析 (9) 3.2 基于水泵效率的水泵台数切换方式的提出 (11) 3.3 两种台数切换方式下水泵性能的比较 (12) 四、总结 (13)

一、研究背景 作为我国工农业领域主要的耗电设备之一,水泵被广泛应用于建筑、城市给排水、石油化工、动力工业、火力发电、船舶工业以及冶金采矿等领域,其耗电量占全国总发电量的20%左右。目前,在建筑系统中,水泵与风机等输送设备的电力消耗约占我国城镇建筑运行电耗的10%以上。江亿指出:在大型公共建筑供热空调电力消耗的实测中,水泵与风机的电力消耗约占60%~70%左右。目前水泵的最高效率一般能达到75%~85%,但是在运行过程中,大多数水泵的效率在30%~50%之间,比发达国家水泵运行效率要低很多,能耗浪费比较严重,运行效率有较大的提升空间。综上可见,水泵等设备的输送能耗占各供热空调系统总能耗比例较大,而且节能潜力巨大。 1.1水泵变频控制方式及存在的问题 在较大的供热空调系统中,往往单台泵不能满足系统要求,需要多台水泵并联或串联运行,以达到流量要求。由于多级泵的发展,水泵串联在工程实际中很少应用,多台水泵并联运行应用的则较多。 在很多系统中,水泵往往和冷热源主机进行串联连锁控制。冷热源根据一定的方式进行启停控制,当冷热源停止运行,则相应管路上串联的水泵也会停止运行。 当水泵不与冷热源进行连锁控制时,多台水泵并联运行,大部分的台数切换控制方式是这样的,以两台水泵并联运行为例:当负荷降低时,系统所需流量减少,则逐渐降低两台水泵的转速,调节系统流量,当流量减少到正好为单台水泵在额定工况下的流量时,在此转速下运行一段时间,然后关闭其中一台水泵,另一台水泵重新回到额定转速下运行。此切换方式没有考虑水泵变频在切换前后各性能参数的变化,也没考虑到切换之后水泵运行是否会更节能。

水泵恒压供水方案

水泵恒压供水方案 一.泵房供水电机一般以恒定速度运行,用大小泵切换或调节 进出水阀的方法调节水压及流量,以满足各种不同的需求.这种低效率控制流量的方法,不能满足实际工作要求,由于工作中水量变化,可能使平均水压升高,一方面造成不必要的能量消耗还会使管网因较大的压力冲击,使管网破裂;另一方面使水压不稳,影响供水品质. 二.采用变频恒压供水自动化控制的特点: 1.节省电能,降低能源消耗,能24小时维持恒定压力,并根据 压力信号自动启动备用泵,无级调整压力,供水质量好,与 传统供水相比,不会造成管网破裂及水龙头共振现象. 2.启动平滑,减少电机水泵的冲激,延长了电机及水泵的使 用寿命,降低了维修成本,避免了传统供水中的水锤现象. 3.变频恒压供水保护功能齐全,运行可靠,具有欠压,过压, 过流,过热等保护功能.可根据用户需要,选择各种附加功 能. 三.供水工况 目前通过二台45KW,二台15KW的水泵(一用一备),工艺要求水压为5Mpa。主要考虑节能及自动化的要求,内置自动节能,PID,简易PLC及通讯接口等功能,可以

方便与PLC,现场总线进行通讯,方便操作及监控,同时可以方便地与压力传感器连用。 四、恒压供水原理 当供水系统阻力一定时,水泵转速的变化,将会改变供水系统的压力和流量。如图1所示,当水泵转速由N1提升到N2时,由于阻力曲线R不变,水泵工况由A点移到B点。则流量由Q1提升到Q2,同时扬程也由H1提升到H2。系统阻力不变时,只需调节电动机的转速,即可改变流量与扬程。 H R H2 N2 P=QⅹHⅹr/102ⅹn (1) H1N1 B P:水泵工况点的轴动功率(KW) H0 A Q:水泵工况点的水压或流量(m3/s ) Q1 Q2 Q H:水泵工况点的扬程(m) r:输出介质单位体积重量(Kg/m H0 ( 图1 ) n:水泵工况点的泵效率(%) 根据离心泵的公式 (1)和水阻力特性曲线,我们可以知道,在水阻特性一定时,调速N与流量Q、 扬程H、轴功率P之间的关系式为: Q2/Q1=N2/N1 (2) H2/H1=(N2/N1)2 P2/P1=(N2/N1)3

泵与泵站第二章课后习题答案

《泵与泵站》第二章 课后习题答案 【1】.(1) 已知,出水水箱内绝对压强P 1=,进水水箱绝对压强P 2= 以泵轴为0-0线,大气压P a =1atm 出水水箱测压管水头:()()m P P H a 2010131011=?-=?-= 进水水箱测压管水头:()()m P P H a 21018.01022-=?-=?-=(“-”表示在泵轴以下) m H H H ST 22)2(2021=--=-= (2)泵的吸水地形高度:m H H ss 22-== (3)泵的压水地形高度:m H H sd 201== 【2】.解答:如图(a ),m H a ss 3)(= 据题意:m H H H a ss C ss b ss 3)()()(=== 以泵轴为基准面 (1)b 水泵位置水头:A b H Z = b 水泵吸水池测压管水柱高度:()m h 51015.0-=?-= b 水泵吸水池测压管水头:()m H h Z H A b 5-+=+=测 b 水泵()m H H H H A A b ss 35500)(=-=--=-=测 解得:m H A 2= (2)c 水泵位置水头:m Z c 5-=(在泵轴以下) c 水泵吸水池测压管水柱高度:()1010101-=?-=c c P P h c 水泵吸水池测压管水头:)(151010105m P P h Z H c c c -=-+-=+=测 c 水泵()m P P H H c c c ss 31015151000)(=-=--=-=测H 解得:atm P c 2.1= 【3】.解答:(1)根据给定的流量和管径,查《给水排水设计手册》第一册,得: 吸水管沿程水头损失系数7.51=i ‰ 压水管沿程水头损失系数6.111=i ‰ 真空表读数:2 z 221?-+∑+=g v h H H s sd v (见P24,公式2-30) 真空表安装在泵轴处, 02 z =? 则:g v h H H s ss v 22 1+∑+=

水泵并联

2.1 水泵并联运行的一般情况 水泵并联运行的主要目的是增大所输送的流量。但流量增加的幅度大小与管路性能曲线的特性及并联台数有关。图2-4所示为两台及三台性能相同的20sh-13型离心泵并联时,在不同陡度管路性能曲线下流量增加幅度的情况,从图5可见,当管路性能曲线方程为hc=20+10q2时(q的单位为m3/s),从图中查得: 一台泵单独运行时:q1=730l/s (100%) 两台泵关联运行时:q2=1160l/s (159%) 三台泵并联运行时:q3=1360l/s (186%) 但当管路性能曲线方程为hc=20+100q2时(q的单位为m3/s),从图2-4可查出: 一台泵单独运行时:q1=450l/s (100%) 二台泵并联运行时:q2=520l/s (116%) 三台泵并联运行时:q3=540l/s (120%) 图2-4 不同陡度管路性能曲线对泵并联效果的影响 比较两组数据可以看出:管路性能曲线越陡,并联的台数越多,流量增加的幅度就越小。因此,并联运行方式适用于管路性能曲线不十分陡的场合,且并联的台数不宜过多。若实际并联管路性能曲线很陡时,则应采取措施,如增大管

径、减少局部阻力等,使管路性能曲线变得平坦些,以获得好的并联效果。 一般的供水系统都采用多台泵并联运行的方式,并且采用大小泵搭配使用,目的是为了灵活的根据流量决定开泵的台数,降低供水的能耗。供水高峰时,几台大泵同时运行,以保证供水流量;当供水负荷减小时,采用大小泵搭配使用,合理控制流量,晚上或用水低谷时,开一台小泵维持供水压力。 多台并联运行的水泵,一般采用关死点扬程(或最大扬程)相同,而流量不同的水泵。这些泵并联运行时,每台泵的出口压力即为母管压力,且一定大于每一台泵单泵运时的出口压力(或扬程):(管道系统不变) hn=ha2=hb2=hc2……>ha1、hb1、hc1…… 并联运行泵的总出口流量为每台泵出口流量之和,且每台泵的流量一定小于该泵单泵运行时的流量:(管道系统不变) qn=qa2+qb2+qc2……<qa1+qb1+qc1+…… 若并联运行的泵的扬程不同,而且流量也不同时,则在并联运行时扬程低的泵的供水流量会比单泵运行时减小很多。当管网阻力曲线变化时,容易发生不出水和汽蚀现象。母管制运行的水泵群的母管压力可由下式求出: 图2-5 两泵并联及并联性能曲线(h-qv)并 2.2如何作出并联运行水泵的性能曲线(h-qv)或(p-qv) 两台或两台以上风机(水泵)向同一压出管路压送流体的运行方式称为并联运行,如图2-5(a)所示。 水泵并联运行的基本规律是:并联后的总流量应等于并联各泵流量之和;并联后产生的扬程与各泵产生的扬程都相等(母管压力)。因此,水泵并联合成后的性能曲线(h-qv)并或(p-qv)并的作法是:把并联各泵(或风机)的(h-qv)或(p-qv)曲线上同一扬程(或全压)点上流量值相加,以图2-5(a)两台泵并联为例,先把这两台泵的性能曲线(h-qv)i和(h-qv)a以相同的比例尺绘在同一坐标图上,然后把各个同一扬程值的流量分别相加,如图2-5(b)所示,取扬程值为h、h'、h〃、……,对应于(h-qv)i和(h-qv)a,上分别为1、1'、1〃……和2、2′、2″……取qv1+ qv2、qv'1+ qv'2、qv〃1+ qv〃2……得3、3′、3″……连接3、3′、3″……各点即得合成后泵并联性能曲线(h-q)并,同法可得风机并联性能曲线。 2.3当并联水泵中的一台进行变速调节时,如何确定并联运行工况点 如图2-6 所示,i、ii两台性能相同的泵并联运行。但泵i与泵ii有一台为变速泵,另一台为定速泵。当变速泵与定速泵

恒压供水系统方案

恒 压 供 水 案2013年5月

目录 一、企业供水系统问题分析 (1) 1.1、原有供水系统配置 (1) 1.2、原系统存在的问题分析 (3) 二、解决方案 (5) 2.1、方案要点 (5) 2.2、控制原理 (5) 三、设备和工程量清单 (8) 四、施工计划 (9) 五、售后服务 (9)

一、企业供水系统问题分析 1.1、原有供水系统配置 贵司原有供水系统,拥有****给水泵(图1-1),实际应用过程中,基本上****即可满足需求。每台水泵吸水管终端未安装底阀,改用储水槽利用虹吸原理来达到吸水效果,虽然初期投入成本较高但运行稳定性高于底阀。每台水泵出水口均安装了管道减震器、闸阀和止回阀管径均为DN150,汇入主管道(DN300)。水泵动力控制柜3只,每只负责控制2台水泵,初期安装的变频器已经损坏现已改为工频运行。供水管道安装电磁流量计、压力表等检测仪表。具体参数如(表1-1) 表1-1 供水系统设备及参数列表 名称规格数量单位备注 供水泵电机:V 水泵: 6 只 电控箱H*l*D GGD 3 只 电磁流量计DN300 PVDF 1.6Mpa 1寸法兰接口 1 套 管道减震器橡胶法兰接口 1 套数量以现场为准闸阀铸铁法兰接口 1 套数量以现场为准管路配件铸铁 DN150 1 套数量以现场为准

图1-1 供水系统图

1.2、原系统存在的问题分析 经贵司工程师介绍和现场勘察,原有供水系统存在以下问题,经过我司工程技术人员分析,其原因如下: ?水表计量精确度 贵司采用人工抄表的方式,统计各个厂区用水量和总供水量,各个厂区用水量与总供水量误差较大; 原因在于:人工抄表本身存在时间上误差;贵司总表流量计与工况不匹配,且维护不到位; ?水表损坏率较高 各厂区水表的损坏频率较高; 原因在于:总表流量计与工况不匹配,而且维护不到位; ?流量计不匹配而且维护不到位 贵司总供水管侧安装的流量计为6MPa,而日常使用压力远远低于该参数,而且贵司水质较差,探头很长时间未维护;

论建筑给水系统中水泵并联运行时流量折减

论建筑给水系统中水泵并联运行时流量折减 卢凯 (深圳市同济人建筑设计有限公司, 广东 518057) 摘要:用图解法比较了水泵单台及并联运行时的工况点,分析了水泵并联运行时影响流量的根本因素,求解出流量折减的临界状态,列举了给水系统中常用水泵与管道组合运行时流量折减情况,得出了是否需要引入流量折减系数的一般性结论。 关键词:水泵并联;流量折减;水泵特性曲线;管道系统特性曲线中图分类号:S276 文献标识码:A 文章编号: 0前言 给排水专业设计人员在处理水泵并联运行问题时,一般会有这样的结论:两台同型号的水泵并联运行时,并联出水量不能达到一台泵单独运行时水泵出水量的两倍——这是一个长期已有的观点。但是,各水泵厂家提供的生活变频给水设备机组参数中,机组总流量均取所有主泵流量之和,并未体现出水泵并联时流量折减的因素。在以往的设计中,设计人员一般根据经验引入一流量折减系数,将厂家所提供机组流量乘以该系数同项目计算所需流量作比较,以此作为设备选型的依据。对于此做法是否必要,笔者在此做详细论证。1原有结论的由来 在给排水相关专业书刊中一般都有水泵并联运行的内容。以采用水泵向高位水池供水的情况为例,用图解法求解其工况点。1.1单台水泵运行时工况点的确定 水泵特性曲线(Q-H)可由水泵样本直接查到,形状为一条向下弯曲的抛物线。由《建筑给水排水设计规范》(GB50015-2003,2009版)3.6.10条 85 .187.485.1105Q d C i j h ??=式中:i ——管道单位长度水头损失(kPa/m);j d ——管道计算内径(m);Q ——给水设计流量(m 3/s) ;h C ——海澄—威廉系数。 可得管道系统沿程损失: f h =iL =L Q d C j h 85 .187.485.1105??式中:L ——管道AG 长度(m) 将L d C j h 87 .485.1105??记为S ,则f h =85.1SQ 局部水头损失相比沿程损失可忽略不计,管道系统特性曲线方程式记为:

恒压供水控制系统的设计

天津理工大学 自动化学院专业设计报告 题目:恒压供水控制系统的设计 -------------系统硬件设计 学生姓名周延学号 届 2011 班级电气07-2 指导教师杨顺峰专业电气工程及其自动化

说明 1. 专业设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成专业设计工作,合 作完成的专业设计,要在设计报告概述中明确说明分工。 3. 设计报告内容建议主要包括:设计概述、设计原理、设计方案分析、软硬件具体设计、调试分析、总结以及参考资料等内容,不同类型的设计可有所区别。 4. 设计报告字数应在3000-4000字,图纸设计应采用电子绘图、且 符合相应国标,文字规范借鉴参考毕业设计要求。 5.专业设计成绩由平时成绩(50%)、报告成绩(30%)和答辩成绩(20%) 组成。专业设计应给出适当的评语。 专业设计评语及成绩汇总表

目录 第一章绪论 (1) 绪论 (1) 变频恒压供水系统的研究现状 (3) 本课题的主要研究内容 (4) 第二章系统的理论分析及控制方案的确定 (5) 变频恒压供水系统的理论分析 (5) 变频恒压供水系统理论方案的确定 (5)

第三章系统的硬件设计 (7) 系统主要设备的选型 (7) 系统主电路分析及其设计 (9) PLC的I/O端口分配及外围接线图……………………10第四章 系统的软件设计 (13) 系统的软件设计分析 (13) PLC程序设计 (15)

第一章绪论 绪论 随着社会的发展和进步,城市建筑的供水问题日益突出,一方面要求提高供水质量,不要因为压力的波动造成供水障碍;另一方面要求供水的可靠性和安全性,在发生火灾时能够可靠供水。针对这两方面的要求,新的供水方式和控制系统应运而生,这就是PLC控制的恒压无塔供水系统。恒压供水包括生活用水的恒压控制和消防用水的恒压控制—即双恒压系统。恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。 传统的供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式,其优、缺点如下: (1) 恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。 (2) 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求

论建筑给水系统中水泵并联运行时流量折减

论建筑给水系统中水泵并联运行时流量折减 论建筑给水系统中水泵并联运行时流量折减 摘要:用图解法比较了水泵单台及并联运行时的工况点,分析了水泵并联运行时影响流量的根本因素,求解出流量折减的临界状态,列举了给水系统中常用水泵与管道组合运行时流量折减情况,得出了是否需要引入流量折减系数的一般性结论。 关键词:水泵并联;流量折减;水泵特性曲线;管道系统特性曲线 中图分类号:S276 文献标识码:A 文章编号: 0 前言 给排水专业设计人员在处理水泵并联运行问题时,一般会有这样的结论:两台同型号的水泵并联运行时,并联出水量不能达到一台泵单独运行时水泵出水量的两倍――这是一个长期已有的观点。但是,各水泵厂家提供的生活变频给水设备机组参数中,机组总流量均取所有主泵流量之和,并未体现出水泵并联时流量折减的因素。在以往的设计中,设计人员一般根据经验引入一流量折减系数,将厂家所提供机组流量乘以该系数同项目计算所需流量作比较,以此作为设备选型的依据。对于此做法是否必要,笔者在此做详细论证。 1 原有结论的由来 在给排水相关专业书刊中一般都有水泵并联运行的内容。以采用水泵向高位水池供水的情况为例,用图解法求解其工况点。 单台水泵运行时工况点的确定 水泵特性曲线(Q-H)可由水泵样本直接查到,形状为一条向下弯曲的抛物线。 由《建筑给水排水设计规范》(GB50015-2003,2009版)3.6.10条 式中:――管道单位长度水头损失(kPa/m);

――管道计算内径(m); ――给水设计流量(m3/s); ――海澄―威廉系数。 可得管道系统沿程损失: == 式中:――管道AG长度(m) 将记为,则= 局部水头损失相比沿程损失可忽略不计,管道系统特性曲线方程式记为: 式中:――水泵静扬程(m) 其形状为一条向上弯曲的抛物线。 对于单台水泵运行的情况,水泵特性曲线记为(Q-H)1 。管道系统特性曲线方程式记为:H=HST+ SAOGQ1.85,根据方程式可绘制出管道系统特性曲线Q-HAOG 。曲线(Q-H)1与Q-HAOG相交于S点,即为此时水泵的工况点。此时水泵流量为Q1,扬程为H1。如图1。 图1 单台水泵运行 同型号、管路布置相同的两台水泵并联运行时工况点的确定 根据水泵特性曲线(Q-H)1,采用等扬程下流量叠加的方法可绘制水泵并联性能曲线(Q-H)1+2。此 时管道系统特性曲线方程式为: 实际工程中,管道AO长度与管道OG长度相比很小,0.28SAO与SOG数值上相比可以忽略不计,此时管道系统特性曲线方程式仍可近似采用H=HST+ SAOGQ1.85,管道系统特性曲线亦采用Q-HAOG 。 曲线(Q-H)1+2与Q-HAOG相交于M点,M点记作并联工况点,其横坐标为两台水泵并联运行的总流量为Q1+2 ,纵坐标等于两台水泵的扬程为H1.2。过M点做横轴平行线与曲线(Q-H)1交于N点,N点

相关文档
最新文档