谐波分量

谐波分量
谐波分量

电网谐波来自于3个方面:

一是发电源质量不高产生谐波:

发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波:

输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。

三是用电设备产生的谐波:

晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。

电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。

气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。

家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。

谐波含量等计算公式

谐拨含量: 借助傅立叶级数分解法求出每周波内各次谐拨含量。 ........ 按公式( 2),计算每周波电压有效值u j。 u j 1 n u i2 n i1 a) 总谐波含量: (u j )2(u j (1) )2 总谐波含量的百分数 =100% ,u j (1)——波形 u j (1) 中的基波含量。 u b)单次谐波含量 = u j ( k)100%,(k 2 ~ 50) j (1) 偏离系数: 求出每周波的基波电压u j (1),并在其周波各采样点上将采样点上,将采样点上采样电压与 其对应点的基波电压进行比较,取其最大偏差值,则偏差系数=u j 100% 。 u j (1) uj ——每周波各采样点上采样电压与其对应点的基波电压之间的最大偏差值 u jp (1)——每周波基波电压的峰值 对数个周波的偏离系数进行比较,取其最大值。 电压调制: 测取稳态时各周波的正负半波连续最大的三点电压采样值,按抛物线插值法求出其峰值,至少采集一秒钟,共采集N 个周波。 按下述规定求取调制参数值: 电压调制参数的测试,应在电压波形的正负半波中进行,取其最大值。 电压调制量为至少一秒钟(N 个周波)同向峰值的最大与最小之差。 电压调制量 = [u jp]max[u jp ] min [ u jp ]max——N周波中同向峰值电压最大值 [ u jp ]min——N周波中同向峰值电压最小值

波峰系数: 每波电压有效值 u ,以同一周波内连续最大的三个电压采样值,按抛物线插值法求出其 ...... 峰值电压 u jp,按公式(6)计算其波峰系数: F u jp , u jp——每周波的峰值电压。u j u 1 m u j2 m j 1 u j 1n u2 n i1i u——平均电压有效值 j ——采样周波数(j 1 ~ m, m100 )u j——每周波电压有效值 i ——每周波采样点数(i 1 ~ n,n50 )u i——每点电压瞬时值

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

谐波含量等计算公式

谐拨含量: 借助傅立叶级数分解法........ 求出每周波内各次谐拨含量。 按公式(2),计算每周波电压有效值j u 。 ∑== n i i j u n u 121 a) 总谐波含量: 总谐波含量的百分数= %100)()()1(2)1(2?-j j j u u u ,)1(j u ——波形中的基波含量。 b) 单次谐波含量=)50~2(%,100)1() (=?k u u j k j 偏离系数: 求出每周波的基波电压)1(j u ,并在其周波各采样点上将采样点上,将采样点上采样电压与其对应点的基波电压进行比较,取其最大偏差值,则偏差系数=%100)1(??j j u u 。 uj ?——每周波各采样点上采样电压与其对应点的基波电压之间的最大偏差值 )1(jp u ——每周波基波电压的峰值 对数个周波的偏离系数进行比较,取其最大值。 电压调制: 测取稳态时各周波的正负半波连续最大的三点电压采样值,按抛物线 插值法求出其峰值,至少采集一秒钟,共采集N 个周波。 按下述规定求取调制参数值: 电压调制参数的测试,应在电压波形的正负半波中进行,取其最大值。 电压调制量为至少一秒钟(N 个周波)同向峰值的最大与最小之差。 电压调制量=min max ][][jp jp u u - max ][jp u ——N 周波中同向峰值电压最大值 min ][jp u ——N 周波中同向峰值电压最小值

波峰系数: 每波电压有效值u ,以同一周波内连续最大的三个电压采样值,按抛物线插值法......求出其峰值电压jp u ,按公式(6)计算其波峰系数:j jp u u F = ,jp u ——每周波的峰值电压。 ∑==m j j u m u 1 21 ∑==n i i j u n u 1 21 u ——平均电压有效值 j ——采样周波数(100,~1≥=m m j ) j u ——每周波电压有效值 i ——每周波采样点数(50,~1≥=n n i ) i u ——每点电压瞬时值

谐波的基础知识,谐波、谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 (1)什么是基波? 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz,所以 2 基波是50 Hz。 (2)什么是谐波? 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为谐波。 电网或电路中,电压产生的谐波为电压谐波; 电流产生的谐波为电流谐波。 (3)谐波有几种? 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波。 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 高频谐波:指频率为圆耀怨kHz的谐波。 (4)谐波频率如何计算? 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊50 Hz越猿 3 缘园Hz等。 (5)哪些设备或电路容易产生谐波? 1)非线性负载,例二极管整流电路(AC/DC)。 2)三相电压或电流不对称性负载。 3)逆变电路(DC/AC)。 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。 5)晶闸管调压装置或调速电路。 6)电镀设备。 7)电弧炉、矿热炉、锰矿炉、磷矿炉、电石炉、硅铁炉。 8)电解槽。 9)电焊机(弧焊、缝焊、点焊、碰焊、对焊)。 10)电池充电机。 11)变频器(低压或高压变频器)。 12)脉幅调制(PAM)调压电路或者是脉宽调制(PWM)调频电路。 13)谐波的次数与整流电路的相数有关,例三相、六相、十二相、十八相、二十四相,当相数越多并通过移相方式就可

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

谐波分析方法对比

谐波分析方法对比 随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

电能质量及谐波标准

电能质量及谐波标准 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

电能质量及谐波标准 内容提纲 1.电能质量基本概念 2.电能质量的影响 3.电能质量国家标准综述 4.电能质量国家标准摘要 5.电能质量国外标准简介 6.谐波国家标准基本内容 7.国外谐波标准介绍 1 电能质量的基本概念 (1)电力系统概况:结构、有功和无功平衡,各种干扰 (2)电能质量——关系到电气设备工作(运行)的供电电压指标。 (3)电能质量指标:电压偏差、频率偏差、谐波、电压波动和闪变、三相电压不平衡度、暂时过电压和瞬态过电压、电压暂降、波形缺口、…… (4)电能质量指标特点: a. 空间上、时间上不断变化 b. 需要供、用电双方共同合作维护 (5)电能质量问题的由来 随电力工业诞生而存在的一个传统问题; 现代用电负荷结构发生了质的变化。电力电子技术广泛应用,家用电器普及,炼钢电弧炉和轧机的发展等,由于其非线性、冲击性以及不平衡的用电特性引起电能质量的恶化。 计算机的普及、IT产业的发展、微电子控制技术应用导致对电能质量要求越来越高。 例如:一个计算中心失电2s就可能破坏几十个小时数据处理结果,导致几十万美元产值损失; 1~2周波供电电压暂降,就可能破坏半导体生产线,导致上百万美元损失。 据统计美国因电能质量问题造成的损失每年高达260亿美元。 2005年由国际铜业协会(中国)的一次“中国电能质量行业现状与用户行为调研报告”中,调查了32个行业,共92个企业中有49个企业,因电能质量问题,在经济上损失~亿元(人民币),每个企业年经济损失约10万~100万(人民币)(其中有四家年损失1000万元以上)。 (6)关于电能质量的定义 Power Quality——电能质量(电源质量、电力质量、电力品质) 导致用户设备故障或不能正常工作的电压、电流或频率偏差。 合格电能质量的概念是指给敏感设备提供的电力和设置的接地系统是都适合于该设备正常工作的。 在电力系统中某一指定点上电的特性,这些特性可根据预定的基准技术参数来评价。 电压质量、电流质量、供电质量、用电质量。 实际上电能质量就是供电电压特性,即关系到用电设备工作(或运行)的供电电压各种指标偏离理想值(额定值或标称值)的程度。 2 电能质量的影响 各种指标的影响: (1)供电电压偏差 照明设备的发光和寿命;电动机的力矩、转速、发热、工效以及产品质量;变压器的发热、温升、损耗;并联

谐波的定义及测试方法

供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics )或分数谐波。谐波实际上是一种 干扰量,使电网受到“污染”。 目前公司常用测试输入电流谐波的仪器有TEK 系列示波器(可采用WAVESTAR 软件进行谐波分析),测试输出电压谐波的仪器有GW GAD-201G (失真仪)和TEK 系列示波器(可采用WAVESTAR 软件进行谐波分析)。 使用下面的方法计算信号的THD : () ++++++=272625242322211A A A A A A A THD 其中A 1是幅频特性中基波的幅值,而A 2 、A 3、A 4、A 5、……分别是2、3、4、5、……次谐波的幅值。选取不同数量的谐波分量,可以计算出对应的THD 值。 采用WAVESTAR 软件进行分析可以得到完整谐波分析数据,下图为分析得出的柱型图,从图中可以针对各次谐波异常的状况采取相应的对策进行改善: Harmonic magnitude as a % of the fundamental amplitude 0.0%0.7% 1.5% 2.2% 3.0% 3.7% 4.4% 5.2% 5.9% 6.6% 7.4% 8.1% Voltage: Current: Ch 1 # Harmonics: 20 Type: Current Magnitude

波峰因数定义为交流信号峰值与有效值之比(峰均比),典型的波峰因数是: 正弦波: 1.414;方波: 1;25%的占空比的脉冲:2 。 波峰因数(CREST FACTOR )的概念在UPS 行业是用来衡量UPS 带非线性负载的能力,对线性负载(R LOAD )而言,正弦波电流峰值Ipeak 与均方根值Irms 之比为1.414:1;在非线性负载(RCD LOAD )时,波峰因数则被认定为:在相同的有功功率条件下,非线性负载的电流峰值与非线性负载电流均方根值之比。 实际测试波形参考如下: 计算公式参考如下: rms peak factor Crest I I = Γ-

三相桥式整流电路中谐波电流的计算新方法

三相桥式整流电路中谐波电流的计算新方法 李槐树李朗如 摘要提出了一种实用的新方法来计算三相桥式整流器所产生的谐波电流。本方法考虑了交流侧电抗及电网中存在的谐波电压,导出了交直流两侧谐波电流的计算公式。计算与实测结果表明,本方法准确实用。 关键词:三相桥式整流器波形畸变谐波电流谐波电压计算 A New Method to Calculate Harmonic Currents in A Three-Phase Bridge Rectifier Li Huaishu Li Langru (Huazhong University of Science and Technology 430074 China) Abstract This paper presents a new method to calculate the harmonic currents on both DC and AC sides in a three-phase bridge rectifier operating under pre-existing voltage distortion.The proposed method,which takes into account the AC side reactances and harmonic voltages already existing in AC network,gives out the calculating equations of DC and AC sides harmonic currents.Some practical rectifier circuits are calculated and carefully tested.The calculated results show that the proposed method is more accurate and more practical. Keywords:Three-phase bridge rectifier Voltage distortion Harmonic current Harmonic voltage Calculation 1 引言 电力系统中三相桥式整流器的使用极为广泛,由此引起的谐波电流也成了人们日益关注的问题。安置滤波器是减小谐波电流的有效措施,然而多数滤波器的设计要求对整流器所产生的谐波电流进行计算。计算结果愈准确,所设计的滤波器的效果也就愈佳。 通过对整流电路的分析而精确地计算谐波电流往往比较困难,时间仿真有时可以获得较为准确的结果,但需要复杂的仿真程序。所以在一定的假设条件下,近似地估算谐波电流成了工程技术人员普遍采用的方法。文献[3]对几种近似方法所产生的误差作了比较性研究,文献[4,5]中所提出的近似方法,提高了计算的准确性,但仅与仿真结果作了比较。而且各种近似方法均假设交流电网中的电压波形为标准正弦的。然而实际电网中,由于非线性负载的大量使用,会含有不可忽视的高次谐波电压。 本文对接入电压波形畸变的电网中的三相桥式整流电路进行了分析,提出了一近似方法来计算其交直流两侧的谐波电流。对实际整流电路在接入电压波形畸变率不同的电网时所产生的谐波电流进行了计算,

一文教你读懂谐波测量方法

一文教你读懂谐波测量方法 来源:仪商网 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调

整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法需要用足够高采样率来保证各频率成分的频谱互相影响足够小;而且截断造成的泄漏也不能太大,否则产生的假频率叠加到真实频谱里,导致结果误差更大。 简单对比 基于以上实现原理可知,同步采样法精度取决于PLL的准确度,而后期计算简单。PLL 中用到的滤波器限制了支持的基波频率上限,因此在基波频率较高时,同步采样法一般无法支持;同样是滤波器原因,无法很好滤除低偶次谐波,所以低偶次谐波幅值较大时,PLL 就无法同步基波采样,谐波分析结果也就完全错误。 频率重心法不需要额外滤波器,采样器件可工作在支持的最高采样频率,使有效谱线拉开的同时提高了支持的谐波频率范围,而为了消除泄漏的影响,需要使用更多的数据进行傅里叶变换。所以频率重心法引入了数倍于同步采样法的计算量。另外,重心法需要使用至少两根谱线,而且受窗函数主瓣宽度限制,频率重心法所能支持的频率下限只能达到频率分辨率的三倍以上。由于频率重心法没有反馈过程,不依赖于信号,模拟电路实现简单,理论上只要采样率和使用的数据点足够,就能得到正确的结果。 特别地,因为同步采样需要硬件电路,受限与成本与体积,大部分测量仪器只支持一到两个PLL源,而频率重心法无此限制,甚至可任意定义基波源(对应于PLL源,用于确定基波)。 应用实例

谐波治理的基本方法

目前谐波治理的基本方法有以下三种,在治理过程中又可以采用变电所集中治理和非线性用电设备处分散治理两种方法。按谁污染谁治理的原则,应该在非线性用电设备处分散治理。但对于电脑,彩电,节能灯等民用设备,则只能进行集中治理。 1、减少非线性用电设备与电源间的电气距离。也就是减少系统阻抗,换句话说就是提高供电电压等级。例如,在丽水电业局的遂昌钢厂就取得了不错效果,该钢厂原是用35kV供电,由两个110kV变电所各架设一回35kV专线供电,而它的主要用电设备是电弧炉,虽然进行了五次、七次谐波治理,但在110kV的35kV母线上测得谐波分量仍接近或稍超国家标准。但在丽水局在遂昌新建了一个220kV变电所而且离该钢厂仅 4km左右,用5回35kV专线供电,使35kV母线的谐波分量控制在国家标准以内,此外该厂还使用了较大容量的同步发电机,使这些非线性负荷的电气距离大大下降,使该厂生产的谐波对电网的危害性下降,这种方法投资是最大的,往往需要和电网发展规划相协调。 2、谐波的隔离。非线性用电设备产生的谐波,它不仅直接影响到本级电网,而且经过变压器后,还会影响到上几级电网。如何把这些非线性用电设备产生的谐波不影响或少影响其他几级电网,这也是谐波治理的一个基本方法。这一方法在电网中广泛采用,发电机发出的电能经过Y/△、Y0/△、Y0/Y等接线组别的变压器,把发电机产生的三次、九次等零序分量的谐波与上级电网隔离开来,因此在110kV以上高压电网上,三、九次谐波分量很小,几乎是零。而10kV由于大多数配变为 Y/Y0接线,35kV也有少量Y/Y0接线的直配变,因此在10kV和35kV系统中三、九次谐波分量会比高压电网大。为了减少低压对10kV电网的影响,我局现在10kV配电系统中推广使用了D,yn11接线组别的配电变压器,有效的减少了三、九次谐波的影响。 3、安装滤波器。目前对变电所侧和用户侧谐波治理的方法,多采用安装滤波器来减少谐波分量。滤波器分为有源滤波器和无源滤波器两大类。 有源滤波器的基本工作原理是把电源侧的电流波型与正弦波相比较,差额部分由有源滤波器进行补偿,这是谐波治理的发展方向。目前由于功率电子元件容量做不大、电压做不高,而且成本很高,因此在现阶段不可能大量推广应用。随着科学技术的发展,功率电子元件的成本下降,这一技术一定会在谐波治理上占主导地位的。 无源滤波器是通过L、C串联或并联,使其在某次谐波产生谐振,当发生串联谐振时,使滤波器两端该次谐波的电压很小,几乎接近零,这类滤波器往往接在变压器的二次侧出口处,从而使变压器的一次侧该次谐波的分量也很小,达到对该次谐波治理的目的。串联无源滤波器多用

高频开关电源谐波测试数据及计算方法--浙江大学报告

浙江大学电气工程学院 谐波测试报告浙江华友电子有限公司 2010-08-30

1监测背景 浙江华友电子有限公司地处浙、皖、赣三省七县交界处的开化县,成立于2004年11月,主要生产Ф63.5—200mmCZ单晶硅和Ф63.5—200mm单晶硅片等;公司原有的单晶炉电源由苏州盈科公司生产,安装有滤波设备。近期又新引进北京动力源科技有限公司制造的新型单晶炉电源。华友公司的测量数据初步结果显示,动力源生产的单晶炉电源和传统的单晶炉电源相比更加节能,但存在谐波不符合国家标准的可能性。 图 1.1华友电子有限公司测量时用电简图 测量时的用电简图如图 1.1所示。测量点所在的华友专变由两台1250KV A的变压器并联,共有24台单晶炉。其中22台单晶炉的电源由盈科公司制造,无源滤波器自动运行。两 台单晶炉电源由动力源生产,无滤波装置。 为了考查动力源公司生产的单晶炉电源工作时产生的谐波对电网的影响,故监测点选择在其中一台正在工作中的单晶炉电源计量柜,单晶炉采用三相四线制供电,监测A、B、C 三相的相电压和相电流。监测过程中,单晶炉经过了引晶、放肩、等径、高温回炉、收尾等工作状态。

2 监测仪器及监测设置 2.1 监测仪器 监测仪器采用日本富士电机公司开发的新型电能计测终端PowerSATELITE Ⅱ进行测量记录采样数据,可以对三相电压/电流进行监测,利用相关对监测数据进行综合分析。该设备带有LAN ,所以可以和各种带有网络的设备相连,实现远距离操作、监视和数据采集。 图 2.1 PSⅡ的外观 功能介绍: 采用32位浮点处理器和16A/D 转换器,可以进行交流电量的测量,按最大采样频率4860Hz 进行交流数据的采样,能够计算、记录有效值等各种信息。可以同时测量能量和记录波形。 具有GPS 电波的时间同步功能,在不同地点安装的终端也能记录同一时刻的信息,避免故障信号在网络传播中的时延。 除了传统的RS-485接口和RS-232接口,该装置提供了10BASE-T 接口,可以利用以太网组成测量网络。通过终端间的网络连接,可实现测量状态监视、各种设定值变更、波形记录的触发同步等功能。 提供CF 卡插槽,使得数据存储量大大增加(可达2GByte )。 提供工作站的数据收集管理软件,及数据分析软件。 典型接线如图 2.2所示。 侧面 正面

电能质量及谐波标准

电能质量及谐波标准 内容提纲 1.电能质量基本概念 2.电能质量的影响 3.电能质量国家标准综述 4.电能质量国家标准摘要 5.电能质量国外标准简介 6.谐波国家标准基本内容 7.国外谐波标准介绍 1 电能质量的基本概念 (1)电力系统概况:结构、有功和无功平衡,各种干扰 (2)电能质量——关系到电气设备工作(运行)的供电电压指标。 (3)电能质量指标:电压偏差、频率偏差、谐波、电压波动和闪变、三相电压不平衡度、暂时过电压和瞬态过电压、电压暂降、波形缺口、…… (4)电能质量指标特点: a. 空间上、时间上不断变化 b. 需要供、用电双方共同合作维护 (5)电能质量问题的由来 ? 随电力工业诞生而存在的一个传统问题; ? 现代用电负荷结构发生了质的变化。电力电子技术广泛应用,家用电器普及,炼钢电弧炉和轧机的发展等,由于其非线性、冲击性以及不平衡的用电特性引起电能质量的恶化。 ? 计算机的普及、IT产业的发展、微电子控制技术应用导致对电能质量要求越来越高。 例如:一个计算中心失电2s就可能破坏几十个小时数据处理结果,导致几十万美元产值损失; 1~2周波供电电压暂降,就可能破坏半导体生产线,导致上百万美元损失。 据统计美国因电能质量问题造成的损失每年高达260亿美元。 2005年由国际铜业协会(中国)的一次“中国电能质量行业现状与用户行为调研报告”中,调查了32个行业,共92个企业中有49个企业,因电能质量问题,在经济上损失2.5~3.5亿元(人民币),每个企业年经济损失约10万~100万(人民币)(其中有四家年损失1000万元以上)。 (6)关于电能质量的定义 Power Quality——电能质量(电源质量、电力质量、电力品质) ? 导致用户设备故障或不能正常工作的电压、电流或频率偏差。 ? 合格电能质量的概念是指给敏感设备提供的电力和设置的接地系统是都适合于该设备正常工作的。? 在电力系统中某一指定点上电的特性,这些特性可根据预定的基准技术参数来评价。 ? 电压质量、电流质量、供电质量、用电质量。

谐波电能计算技术

一、谐波对电能计量的影响 近年来, 随着工业的发展和科技的进步, 电力系统中接入了越来越多的大容量电力设备、整流换流设备及其它非线性负荷, 这使得电力系统电压电流波形发生严重畸变。其原理是当正弦基波电压(假设电源阻抗为零) 施加于非线性负荷时, 负荷吸收的电流与施加的电压波形不同, 于是发生了畸变。畸变的电流影响电流回路中的其它电力设备和负荷, 这些设备或负荷从电力系统中吸收的畸变电流可以分解成基波和一系列的谐波电流分量。系统中的高次谐波对仪用电压互感器和电流互感器准确进行一二次侧变换造成一定影响, 即二次侧输出的波形不能严格地和一次侧输入的波形符合从而造成误差。另外, 由于目前系统中的电能计量装置大多数还是利用电磁感应式原理的电能表, 在这种原理下设计的电能表是按基波情况考虑的, 通过电磁感应元件来驱动机械计数装置, 把电量值记录下来。电网中谐波的存在,使得电压电流波形发生畸变, 但感应式电能表的铁磁元件是非线性的, 磁通并不能相应地线性变化, 即感应式电能表只有同频率的, 电压和电流产生的磁通之间相互作用才能产生转矩,畸变的波形通过电磁元件之后, 磁通不能随波形对应变化, 导致转矩不能与平均功率成正比而产生误差, 从而影响电能表的测量精度。 (1)谐波对仪用互感器准确度的影响 谐波对电能计量的影响首先体现在仪用互感器上, 这是因为电能计量是针对经过电压互感器和电流互感器转换的弱信号进行的, 如果在转换过程中, 被计量的电信号波形发生了变化, 那么下一步的计量再准确也失去意义。系统中高次谐波的存在, 要求仪用互感器具有理想的频率特性, 即变比恒定, 不随频率的改变而改变。目前系统中应用的电磁式电流或电压互感器原来只用于对基波电压和基波电流的测量, 这些互感器对于工频下的工作特性和测量误差已被确定, 其变比误差和角误差能满足工程的要求, 但如果用测量基波的互感器测量谐波, 随着谐波频率的升高, 互感器受漏阻抗和涡流的影响也越来越大, 这时, 互感器对谐波信号的变换过程中误差也要增大, 从而降低了互感器的测量精度。 (2)谐波对感应式电能表计量的影响 感应式电能表是靠电磁感应来产生转动力矩的,电能表工作时,电压线圈的电流所产生的磁通分为两部分,一部分是穿过铝盘并由回磁板构成回路的工作磁通, 另一部分是不穿过铝盘而由左右铁轭构成回路的非工作磁通。而电流线圈所产生的磁通,两次穿过铝盘,并通过电流组件铁芯构成回路。由于电压线圈和电流线圈产生的交变磁通,在不同位置穿过铝盘,并在铝盘的不同位置感应出电流(涡流) ,此涡流与磁场相互作用便产生推动铝盘转动的力矩,铝盘转动与负载有功功率成正比。电磁感应式电能表的设计只按基波考虑,由谐波和基波叠加而成的电压、电流波形发生畸变。从而导致感应式电能表的误差频率特性曲线呈迅速下降趋势, 因此在电能计量中, 不管是以全能量为计量标准还是以基波能量为计量标准, 当谐波含量较大时对感应式电能表的电能计量将会产生较大的影响。 (3)对电子式电能表的计量影响 和感应式电能表相比, 电子式电能表的计量误差受频率变化影响相对较小, 而以基波能量为计量标准时, 电子式电能表的计量误差比感应式电能表的计量误差还要大, 这是由于它的制造原理决定的,关键在于它的采样方式: A/ D 采样→乘法器→中央处理器→显示与输出, 它是以正弦50 Hz 在不超过国标的情况实施采样和计算的。依据JJG 596—1999《电子式电能表检定规程》,电子式电能表电流、电压正弦波形失真度要求,当有多次谐波超过表1 限度介入时, 将导致波形

消除谐波降损节能计算方法

消除谐波降损节能计算方法 一、谐波损耗推导 1、前言 随着电力电子技术的发展,非线性负载得到广泛的应用,因此非线性负载带来的谐波问题逐步得到人们的重视,人们对谐波的研究逐步深入,研究重点侧重于谐波对电网及电网中设备造成的危害,对谐波产生的各种能源损耗研究不多,该文针对谐波附加损耗的计算是在奥地利George J,Wakileh 博士的计算基础上由解放军理工大学汪彦良等四位导师补充完成。该文主要针对集肤效应增大导体的阻抗进行研究,根据日本电力公司提供的资料,5次谐波含量为10%时,就能使变压器损耗比不存在谐波时增大10%。 2、集肤效应时谐波附加损耗分析 各设备的损耗分类较复杂。以变压器为例分析:变压器损耗分为:铜耗、铁耗、介质损耗、杂散损耗等。其铁耗又分为磁滞损耗和涡流损耗。不管分类如何复杂,按性质分只有两类:基本损耗和谐波损耗。 谐波环境下,考虑集肤效应时,导体的各次谐波阻抗为 1 nr r n = (1) 式中,r n 为导体中n 次谐波电流所对应的电阻,Ω;n 为谐波次数。 (1) 变压器的铜耗 考虑集肤效应时,根据(1)可得变压器铜耗为 ?? ? ??+=+==∑∑∑∞ =∞ =∞=21 21221 2112 1 2121n r I r I n n n n n n n n r I r I r I r I p ??? ??+=??? ??+=∑∑∞=∞=2212121 2 11112112n n n r I n r I nHRI r I r I n (2) 式中,P 为变压器铜耗,W ;n I 各次谐波电流,A ;n=1时,1I 表示基波电流;1r 为变压器绕组基波电阻;n HRI 为各次谐波含量,是指各次谐波电流与基波电流的比值,即表示为 n n HRI I I =1 后面公式采用都才n HRI 是为了表达方便。n I 表示谐波电流,1I 表示基 波电流。 由式(2)可知,变压器的铜损耗由两部分构成。第一部分为基本的铜损耗,是由基波电流产生的;第二部分为谐波损耗,它是基波损耗的K 倍

谐波治理措施及谐波电流计算的经验公式

谐波治理措施及谐波电流计算的经验公式 摘要:文章通过分析谐波产生的原因,引出了适用于火电发电厂消除谐波危害的有效措施,即有源电力滤波器(apf),并且提出了计算谐波电流的经验公式,使得apf的选择更加合理,从而更有效地减小谐波的危害。 abstract: this article leads to effective measure for eliminating harm of harmonics from thermal power plant which is active power filter (apf) by analyzing how harmonics are produced. and, this article provides emprical formula which makes choice for apf more reasonable, accordingly reduces harm of harmonics. 关键词:谐波;有源电力滤波器(apf);谐波电流 key words: harmonics;active power filter (apf);harmonic current 中图分类号:th132.43 文献标识码:a 文章编号:1006-4311(2013)11-0026-02 0 引言 谐波是现代电子的副产品,当大量个人计算机(单相负荷)、ups、变频设备或能够将交流转换成直流的电子设备使用时,就产生了大量谐波。随着现代科学技术的不断发展,和国家节能减排工作的深入推进,火力发电厂的厂用电设备越来越多的用到变频装置,且单机容量较大,这类非线性负载会产生大量谐波电流,并进入厂用电

【标准】国标GBT14549-93《电能质量公用电网谐波》简介

国标GB/T14549-93《电能质量公用电网谐波》简介 谐波国家标准是电力工业部(原能源部)根据国家标准局下达的任务而负责制订的。从1985年起,起草工作组做了大量课题论证工作,同时学习国外的先进经验和联系国内实际,完成了标准的制订,并已于1994年3月起实施。基于谐波对电容器的影响,实施谐波国标对保证电容器的安全运行有重要意义,为使应用部门对标准有进一步的了解,下面对谐波国标的起草及其依据作一介绍。 1 制订谐波国标的目的 随着我国经济的发展,现代工业、交通等行业使用的各种换流设备的数量越来越多、其容量亦越来越大,加上电弧炉、家用电器等非线性用电设备接入电网,将其产生的谐波电流注入电网,使公用电网的电压波形发生畸变。电能质量下降,同时威胁电网和包括电容器在内的各种电气设备的安全经济运行。因此,把公用电网的谐波量控制在允许范围内,以保证电能质量,防止谐波对电网和用户的电气设备、各种用电器具造成危害,保持其安全经济运行,并获得良好的社会效益。乃是制订谐波国标的目的。 2 制订谐波国标的基本原则 2.1 把电网中的电压总谐波畸变率及各次谐波含有率控制在允许的范围内,保证供电质量,使接入电网中用户的各种用电器具免受谐波的危害,保持正常工作。 2.2 限制谐波注入电网的谐波电流及其在电网中产生的谐波电压,防止其对电网发供电设备的干扰,保证电网的安全经济运行。 2.3 在总结现有经验的基础上,结合我国情况,提出有科学依据和向国际先进标准靠拢的规定,有其科学性、实用性和先进性。 3 适用范围 适用于交流频率为50Hz的标称电压110kV及以下公用电网,及其供电的电力用户。对220kV电网及其供电的电力用户,可参照110kV执行。主要原因有: (1)220kV电网的谐波电压直接受330kV或500kV电网谐波电压的影响。目前国内外都还没有经验,也没有明确的规定。 (2)220kV电网的输电线路的充电功率较大(每100km约25MVA),而输电潮流是变化的,控制220kV电网的谐波还没有成熟的经验。在某些情况下,还难以避免对低次谐波(例如3、5次)的放大。 (3)直接用220kV电压供电的用户数很少。 (4)目前许多220kV电网使用的电容式电压互感器(CVT)测量谐波电压的误差很大,在没有适当的频率误差补偿时,用于谐波电压的测量,没有实际意义。 4 制订谐波国标过程中研究和论证的主要课题 制订谐波国标过程中研究和论证的主要课题有: ①研究国外有关限制电网谐波的标准;

谐波计算方法

谐波检测的应用与发展 电力是现代人类社会生产与生活不可缺少的一种主要能源形式。随着电力电子装置的应用日益广泛,电能得到了更加充分的利用。但电力电子装置带来的谐波问题对电力系统安全、稳定、经济运行构成潜在威胁,给周围电气环境带来了极大影响。谐波被认为是电网的一大公害,对电力系统谐波问题的研究已被人们逐渐重视。谐波问题涉及面很广,包括对畸变波形的分析方法、谐波源分析、电网谐波潮流计算、谐波补偿和抑制、谐波限制标准以及谐波测量及在谐波情况下对各种电气量的检测方法等。 谐波检测是谐波问题中的一个重要分支,对抑制谐波有着重要的指导作用,对谐波的分析和测量是电力系统分析和控制中的一项重要工作,是对继电保护、判断故障点和故障类型等工作的重要前提。准确、实时的检测出电网中瞬态变化的畸变电流、电压,是众多国内外学者致力研究的目标。 常规的谐波测量方法主要有:模拟带通或带阻滤波器测量谐波;基于傅里叶变换的谐波测量;基于瞬时无功功率的谐波测量。 但是,各种基本方法在实际运用中均有不同程度局限及缺点。针对这一问题,在以上各种方法基础上的拓展和改进方法应运而生,本文着重介绍近几年来的一些新兴的谐波测量方法。

改进的傅里叶变换方法 傅里叶变换是检测谐波的常用方法,用于检测基波和整数次谐波。但是傅里叶变换会产生频谱混叠、频谱泄漏和栅栏效应。怎样减小这些影响是研究的主要任务,通过加适当的窗函数,选择适当的采样频率,或进行插值,尽量将上述影响减到最小。 延长周期法[1]是在补零法的基础上,把在一个采样周期内采到的N个点扩展任何整数倍。他的表达式为: 与传统的补零法相比,既简化了步骤,又可以获得同样准确或更准确的频谱图。在达到同样的0.973 5分辨率情况下,测量起来步骤更简洁,而且频谱图更准确。 基于Hanning窗的插值FFT算法[2]基于Hanning窗的电网谐波幅值、频率和相位的显示计算公式: 仿真结果证明,应用上述分析结果,电网谐波幅度、频率和相位的估计达到了预期的分析精度。其中,频率分析精度可控制在0.0 1%以内,幅值分析精度可在0.5%以内,相位估计精度可达5%。而且随着采样长度的增加,估计精度还可进一步提高。本算法的不足之处是分析窗的宽度一般要达十几个信号周期,参数估计的实时性不够理想。另外,当信号中包含噪声时,如何提高参数估计准确度和精度还值得做进一步的研究。

相关文档
最新文档