4万吨硝基苯生产工艺设计

4万吨硝基苯生产工艺设计
4万吨硝基苯生产工艺设计

4万吨硝基苯生产工艺设计

目录

第一章概论 (1)

1.1 设计题目 (1)

1.2 设计规模及其内容 (1)

1.3 苯的酸催化硝化方法 (1)

1.3.1 固体酸催化的液相硝化 (2)

1.3.2 固体酸催化的气相硝化 (2)

1.3.3 Lewis酸催化的液相硝化 (3)

1.3.4 离子液体催化的液相硝化 (4)

第二章工艺技术方案的选择 (5)

2.1 概述 (5)

2.2 硝基苯传统硝化工艺和绝热硝化工艺的比较 (5)

2.2.1 传统硝化法 (6)

2.2.2 绝热硝化法 (7)

2.2.3 传统硝化法和绝热硝化法的比较 (7)

第三章物料衡算 (10)

3.1 准备计算 (10)

3.2 第一个釜的计算 (12)

3.3 第二个釜的计算 (13)

3.4 第三个釜的计算 (14)

3.5 第四个釜的计算 (15)

第四章工艺流程 (16)

4.1 反应过程 (16)

4.2精制工序 (17)

4.3尾气处理工序 (17)

结语 (18)

参考文献 (19)

第一章概论

1.1 设计题目

40kt/a硝基苯生产工艺设计

1.2 设计规模及其内容

年产4万吨硝基苯是以苯和硝酸为原料,硫酸为催化剂,在一定反应条件下硝化。

硝基苯的物理性质是,分子式是C6H5NO3,熔点为5.7 ,沸点为210.8℃,相对密度为1.20373

/g cm,闪点为90℃,自燃点为495℃。硝基苯微溶于水,易溶于溶于乙醇、乙醚、苯等有机溶剂。纯净的硝基苯是无色油状液体,工业品常因含杂质而显黄色,有像杏仁油的特殊气味。其水溶液有甜味,能随水蒸气蒸发。易燃易爆。硝基苯是一种重要的基本有机化工原料,主要用途是制取苯胺,由苯胺进而生产各种有机中间体,也用于生产间硝基苯磺酸钠和偶氮苯等多种医药和染料中间体。

目前工业上制取硝基苯是以苯和硝酸为原料,硫酸为催化剂,在一定反应条件下硝化。早期采用的是混酸间歇硝化法,逐渐发展了釜式串联、管式、环式或泵式循环等连续硝化工艺,而后又发展了绝热硝化法,这些工艺都是非均相混酸硝化工艺。硝基苯生产方法按硝化种类可分为硝酸硝化法、混酸硝化法、氮的氧化物硝化法及绝热硝化法;按反应物料的物理状态来分则有液相硝化、气-液相硝化和气相硝化。

由于硝基苯的非均相混酸硝化工艺中产生废酸、废水需要进行处理,生产过程中对设备的腐蚀较严重。为此,取代混酸硝化技术的研究受到广泛关注,尤其是催化剂的研究。新型催化剂及催化工艺可减少污染物的排放,提高资源利用率,降低能源消耗,对深入研究绿色硝化及推动工业化进程具有重要意义。

1.3 苯的酸催化硝化方法

目前有四类苯的酸催化硝化方法,主要有固体酸催化的液相硝化、固体酸催化的气相硝化、Lewis酸催化的液相硝化、离子液体催化的液相硝化。

1.3.1 固体酸催化的液相硝化

(1)粘土类催化剂催化硝化

这种方法是将硝酸铜负载于蒙脱土形成Claycop,它使用催化剂是乙酸酐、蒙脱土,以少量的发烟硝酸为引发剂,在室温下产率达到92%,不含氧化副产物。无论是产率还是选择性都优于常规方法,且后处理操作简便,仅过滤除去粘土催化剂即可得到产物。

但是这种方法的缺点是对设备的要求较高,生产的成本也较高。虽然操做的方法简单,但是设备的维护也是相当的不容易。

(2)分子筛催化剂催化硝化

这种方法是用沸石作催化剂,以等摩尔的硝酸、乙酸酐作为硝化剂,对苯、烷基苯及卤苯在温和条件下进行硝化,异构体的产率可以达到70%~99%。反应过程中唯一的副产物乙酸可以通过蒸馏来与硝化产物进行分离,催化剂也能够很好的回收。这种方法以改进型MFI拓扑结构的沸石分子筛、氢型p沸石等为催化剂,选择质量分数为65%的硝酸为硝化剂,进行了苯硝化反应的研究。硝酸和苯的体积比为1.5~3.5、在常压下,温度为8O~100 ℃、反应时间3h的条件下,合成硝基苯的收率大于95%。

这种方法的优点很多,但是对于催化剂的回收利用用很高的要求,而且催化剂的制取和购买成本都很高。

1.3.2 固体酸催化的气相硝化

(1)分子筛催化剂催化硝化

文献报道,用于苯气相硝化合成硝基苯的沸石分子筛有:丝光沸石、改性丝光沸石、Y沸石、改性Y沸石、13沸石、ZSM一5等。ZSM一5、丝光沸石、Y沸石和改性的Y 沸石作催化剂,可有效催化硝酸与苯气相硝化反应。用H2s0 、MCM--41为催化剂,以60%~70%的稀硝酸为硝化剂进行苯的气相硝化反应。实验发现,在苯与硝酸摩尔比为2.5,MCM-41上硫酸负载量为2O%,反应温度150~160℃,空速3279/h条件下,硝化产率大于99%。采用改性HZSM一5分子筛为催化剂,研究了反应温度、原料配比、

空速、水蒸汽含量、沸石硅铝比对苯与NO2进行气相硝化合成硝基苯的影响,硝基苯的收率大于50%。

此类方法优点多多,但是生产操作实现程度有待于考证。理论的基础有,但是实践的操作还是不够太成熟的。

(2)杂多酸催化剂催化硝化

这种方法是将H2PW12040负载在SiO2、木质活性炭及r—AI2O3,作催化剂对苯气相硝化,考察其对苯与硝酸气相硝化反应的催化活性及影响因素。通过查文献结果可知,SiO2负载杂多酸对苯气相硝化具有很好的催化活性,而对于20%H2PW12040/ SiO2催化剂,苯/硝酸量比为2,反应温度为155~160℃,空速(SV)为682mL/(g·h),硝基苯产率可达90.6%,且选择性很高,优点也很多。

(3)金属氧化物催化剂催化硝化

这种方法是将含TiO2或ZrO2的混合金属氧化物催化苯与稀硝酸气相硝化反应,大概产率可以达到80%~90%。并且用聚乙烯醇为模板制备比表面积为200—300m2/g 的中孔材料WO3/ZrO2 超强酸,使用70%的硝酸作硝化剂,在温度为170℃、常压的反应条件下,产率能达到65%~80%,选择性可以达到99%。

这种方法采用的是金属氧化物作为催化剂,生产成本高,催化剂的含量和不好控制,虽然条件合适的情况下达到的效果很好,但是工业生产设计中条件不好控制。

1.3.3 Lewis酸催化的液相硝化

(1)粘土负载类催化剂催化硝化

因为质子酸蒙脱土的催化活性不高,但与高价金属离子进行离子交换后催化活性可以得到很好的改善。用AL3+、Zr4+、Fe3+、Cr3+、Cu2+、La3+、Mn2+ 等高价金属离子与蒙脱土进行离子交换得到负载型催化剂,对苯与硝酸硝化反应,产率40%~93%,选择性大于96%。这种方法明显的不如固体酸气化酸化。所以也效果不是很好。

(2)分子筛负载类催化剂催化绿色硝化

这种方法以三氟甲基磺酸镧系盐作为强Lewis酸催化69%的硝酸硝化苯,得到75%~ 95%的产率。这种生产方法硝化产生的废弃物少,但是适用于小规模的生产。大规模的生产并不适宜。

1.3.4 离子液体催化的液相硝化

用改性硅胶作载体,将酸性离子液体固载化后作催化剂进行硝化研究。结果表明,此类固载化的催化剂表现出比单纯离子液体更高的活性,苯的转化率为49.3%。此外,此方法在产物分离、催化剂回收利用方面具有明显优势,尤其提供了在工业上进行连续生产的能力。

第二章工艺技术方案的选择

2.1 概述

硝化系指有机化合物分子中的氢原子或基团为硝基所取代的反应。硝化是极为重要的单元反应之一,作为硝化反应的产物,硝基化合物在燃料、溶剂、炸药、燃料、香料、医药、农药和表面活性剂等很多化工领域都有大量的应用实例。

硝基苯是重要的染料、医药中间体,主要用于生产苯胺。在工业上硝基苯是采用一定

浓度的硫酸和硝酸配制的混酸硝化苯来生产的,反应式如下:

硝酸是在硫酸或其它强酸的存在下,形成离子状,和苯发生硝化反应。

硝化反应是强放热反应,它的反应热为14210/mol,在反应的同时,混酸中的硫

酸被反应生成的水释稀,还将产生释稀热(约为反应热的7%~10%)。若反应温度持

续升高,会引起副反应,硝酸大量分解,硝基酚类副产物增加,这些酚类副产物是造

成硝基苯生产发生爆炸事故的主要原因,同时,硝化反应是非均相反应,反应是在酸

层及酸层和有机层的交界面处发生,硝化速度由相间传质和化学动力学所控制,借助

强力搅拌,非均相间保持最大界面,强化传质,才能保持反应平稳进行。所以,必须

要控制反应温度适度、搅拌效果良好,才能保证硝基苯生产的安全操作。硝化反应是

强放热反应同时混酸中的硫酸被反应生成的水所稀释时还将产生稀释热。这样大的热

量若不及时移除,势必会使反应温度上升,引起多硝化及氧化等副反应,同时还将造

成硝酸大量分解,产生大量红棕色的二氧化氮气体,甚至发生严重事故。

2.2 硝基苯传统硝化工艺和绝热硝化工艺的比较

目前国内比较常见的的硝基苯混酸硝化生产方法有传统硝化工艺和绝热法硝化

工艺。它们二者都是采用的是连续式复式反应器进行生产。而混酸硝化法的优点也很

多:

(1)混酸比硝酸会产生更多的硝基正离子,所以混酸的硝化能力强,反应速度快产率高。硝酸被硫酸稀释后,氧化能力降低,不易产生氧化的副反应。

(2) 混酸中的硝酸用量接近理论量,硝酸几乎可全部得到利用。

(3)硫酸比热大,能吸收硝化反应中放出的热量,可以避免硝化的局部过热现象使反应温度容易控制。

(4) 浓硫酸能溶解多数有机物(尤其是芳香族化合物),因而增加了有机物与硝酸的混合程度,使硝化易于进行。

(5)混酸对铸铁的腐蚀性小,因而可使用铸铁设备作反应器。

浓硝酸硝化法的缺点:

(1)反应中生成的水使硝酸浓度降低,以致硝化反应速度不断下降或终止。

(2)硝酸浓度降低,不仅减缓硝化反应速度,而且使氧化反应显著增加,有时会发生侧链氧化反应

(3)硝酸浓度降低到一定浓度时,则无硝化能力。

2.2.1 传统硝化法

传统硝化法主要分三部分:反应部分、洗涤提纯部分、废酸提浓部分。

反应部分:将苯和混酸(混酸的质量组成为硫酸56%、硝酸25%、水19%)同时进入到釜式硝化反应器中进行硝化反应。硝化反应器一般为带有强力搅拌的反应釜,内部装有冷却蛇管,以导出反应热,硝化温度控制在50℃~100℃。硝化反应器一般为串联操作,物料在反应器中的停留时间约为15min,产率为96%一98.5%(一般都能达到98%~98.5%)。反应完成后,反应产物连续由硝化反应器进入分离器,分为有机相和酸相,有机相即为粗硝基苯,去洗涤提纯部分,而酸相即为释稀后的硫酸(组成大约为硫酸67.9%、水31.8%、有机物0.3%),去废酸提浓部分。

洗涤提纯部分:从分离器来的粗硝基苯先用碱水洗涤,任何带入的硝酸、硫酸、一小部分硝基酚、二硝基酚等杂质都被中和并溶解在碱水中,之后混和物进入分离器分为有机相和水相,有机相是已分离了酸性介质但含有小部分苯的硝基苯,水相进入废水罐中,分离后的有机相再进行水洗,洗涤水来自于脱水塔顶的硝基苯和水的共沸物。水洗后的硝基苯再去苯回收塔去分离回收苯,苯和水从苯回收塔项馏出进入回流罐,回流罐又分离出有机相苯和水相,分离出的苯循环回硝化过程,水相进入废水罐。从苯回收塔底出来的即为干燥脱水的产品硝基苯。

废酸提浓部分:废酸提浓目前一般采用真空浓缩法,利用蒸汽加热浓缩器中的废酸至高温,再真空闪蒸出大量的水分,经过提浓后,68%左右浓度的废酸一般可提浓到88%~93%。

2.2.2 绝热硝化法

绝热硝化是国外70年代开发成功的硝化新技术,目前已建成年产22万t硝基苯的生产装置。绝热硝化也分三部分:反应部分、洗涤提纯部分及废酸提浓部分,其中的反应部分及废酸提浓部分是作为一个整体来布置的。同传统硝化方法相比绝热硝化的洗涤提纯部分和传统硝化法基本上是相同的,主要差异在反应部分及废酸提浓部分。反应部分:苯是在大量混酸的存在下进入硝化反应釜中硝化的,在传统硝化反应中,混酸:苯的重量比约为3.2:1,而在绝热硝化反应中,混酸:苯的重量比为14.2:1,酸的大量存在,使得硝化反应和释稀时产生的大量热被酸作为显热吸收,使得硝化温度维持在145℃以下,升温后的废酸还可利用这份能量在真空硫酸蒸发器中提浓废酸。绝热硝化一般也为串联操作,物料在反应器中的停留时间约为12min,产率可达到99%。粗硝基苯经碱洗和水洗后,蒸出来反应的过量苯,得到硝基苯产品。

废酸提浓部分:从硝化反应过来的废酸温度约为130℃.浓度约64%~65%。提浓是由真空提浓塔完成的,提浓所需的大部分能量是用从反应中带来的包含在废酸中的显热获得的,(而不是像传统硝化法的废酸提浓所需的能量是由外部供给),提浓后的酸浓度在68%~70%左右温度降至91℃以下,返回到配酸罐中配酸,之后再去硝化。

2.2.3 传统硝化法和绝热硝化法的比较

从工艺上看,传统硝化法与绝热硝化法存在以下区别:混酸大量过量,增加了混酸中的水的含量,绝热硝化取消了硝化反应器中的冷却装置,利用反应热使物料逐渐升温,在压力下完成了硝化反应。

具体工艺条件比较如表1

从上表可以看出,绝热硝化法的混酸量小,四锅串联,没有冷却装置的。而且是带压操作的。但是也有起始温度高,副反应多。带压操作,对设备的耐压性有高标准的要求。所以生产成本会很高,不经济。

而传统的方法需要大量的冷却水移去反应热,反应温度低,设备生产能力小。产品的收率低,副产物即二硝基苯的生产量大。硝酸过量工艺导致硝酸的单耗大,后处理碱耗大,三废污染也是很重要的问题。

绝热硝化法应用于工业生产突破硝化反应必须在低温条件下恒温从做的传统观念,反应速度快,生产能力达,节能低耗,可是说是一种比较好的方法。

所以我设计了传统硝化法的改进方案,为了提高生产能力,克服传统硝化法的缺点,增加产品收率,减少副产物二硝基苯的生产量,将主硝化锅的反应温度放宽提高到90-136摄氏度。

温度是影响反应速率的重要因素之一,由动力学方程式可知,反应速率取决于速率常数K 和反应物浓度,温度主要影响反应速率常数K 值。提高反应温度可以是反应速度加快,生产能力变大。

温度对产品中二硝基物的影响主要表现在温度升高后使硝基苯转化成二硝基苯的活化能容易达到。生产中只要降低被比重硝酸的过剩量。采用高水低硝酸的新混酸,产品中的二硝基含量可以得到有效的控制。

传统苯硝化混算的算的组成为:

324244~46%

46~48%6~10%

HNO H SO H O

对硝基苯甲酸的制备

对硝基苯甲酸的制备(预习报告) 一、实验目的 1、掌握利用对硝基甲苯制备对硝基苯甲酸的原理及方法。 2、掌握电动搅拌装置的安装及使用。 3、练习并掌握固体酸性产品的纯化方法。 二、实验原理 CH3 2 Na2Cr2O7H 2 SO4 + + 4 2 ++ + Na2SO4Cr2(SO4)3H2O 5 该反应为两相反应,还要不断滴加浓硫酸,为了增加两相的接触面,为了尽可能使其迅速均匀地混合,以避免因局部过浓、过热而导致其它副反应的发生或有机物的分解,本实验采用电动搅拌装置。这样不但可以较好地控制反应温度,同时也能缩短反应时间和提高产率。 生成的粗产品为酸性固体物质,可通过加碱溶解、再酸化的办法来纯化。纯化的产品用蒸汽浴干燥。 三、实验药品用量及物理常数

四、实验装置图 反应装置抽滤装置 干燥装置 布氏漏斗 抽 滤 瓶 五、实验流程及步骤 重铬酸钠 15ml 1.安装带搅拌、回流、滴液的装置如图 2.在250ml的三颈瓶中依次加入6g对硝基甲苯,18g重铬酸钾粉末及40ml水。3.在搅拌下自滴液漏斗滴入25ml浓硫酸。(注意用冷水冷却,以免对硝基甲苯因温度过高挥发而凝结在冷凝管上)。 4.硫酸滴完后,加热回流,反应液呈黑色。(此过程中,冷凝管可能会有白色的对硝基甲苯析出,可适当关小冷凝水,使其熔融滴下)。 5.待反应物冷却后,搅拌下加入80ml冰水,有沉淀析出,抽滤并用50ml水分两次洗涤。 6.将洗涤后的对硝基苯甲酸的黑色固体放入盛有30ml 5%硫酸中,沸水浴上加热10min,冷却后抽滤。(目的是为了除去未反应完的铬盐) 7.将抽滤后的固体溶于50ml 5%NaOH溶液中,50℃温热后抽滤,在滤液中加入

硝基苯废水处理工艺设计方案

目录

第一章处理工艺的文献综述 1.1含硝基苯废水对环境的危害 硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用N5O3—苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标准。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好 1.2.2 化学法 针对于处理硝基苯的化学法主要有电化学法和高级氧化法。电化学氧化的基本原理有两

2,5-二氯硝基苯的生产工艺及市场研究报告

2,5-二氯硝基苯的生产工艺及市场研究报告 Point 4:2,5-二氯硝基苯的生产工艺及市场研究报告主要目录 第一章:2,5-二氯硝基苯产品综述 第一节:2,5-二氯硝基苯基本信息及介绍 1. 2,5-二氯硝基苯的基本介绍 2. 2,5-二氯硝基苯的理化性质 3. 2,5-二氯硝基苯国标及主要生产厂家技术指标 第二节:2,5-二氯硝基苯的应用及背景 第二章:2,5-二氯硝基苯国内外生产工艺概况及对比 第一节:2,5-二氯硝基苯国内外生产介绍对比 第二节:2,5-二氯硝基苯最新技术研究 第三节: 2,5-二氯硝基苯上下游产品介绍及现状分析 第三章:2,5-二氯硝基苯国内外生产专利及应用专利 第一节:专利1 第二节:专利2 第三节:专利3 第四节:专利4 ....... 第四章:2,5-二氯硝基苯主要生产工艺详述 第一节:2,5-二氯硝基苯生产工艺流程图 第二节:2,5-二氯硝基苯生产原材料及设备 1. 生产原材料介绍 2. 主要设备及相关参数

第三节:2,5-二氯硝基苯生产工艺流程及主要参数 1. 2,5-二氯硝基苯生产工艺基本原理 2. 2,5-二氯硝基苯生产工艺工艺流程 3. 2,5-二氯硝基苯生产后续的环化处理方法 第四节:2,5-二氯硝基苯生产单耗及成本量化 第五节:质量控制 第六节:2,5-二氯硝基苯生产技术的前瞻性分析及生产成本注意事项第五章:2,5-二氯硝基苯市场概述 第一节:2,5-二氯硝基苯的市场特征 第二节:2,5-二氯硝基苯的目标市场及核心竞争力 第三节:2,5-二氯硝基苯及相关产品进出口情况分析 第六章:2,5-二氯硝基苯国内生产厂家及市场分析 第一节:国内2,5-二氯硝基苯生产概况 第二节:国内2,5-二氯硝基苯生产厂家及生产规模 1. 主要生产厂家概述 2. 2,5-二氯硝基苯拟建项目介绍及分析 3. 主要生产厂家规模调研 第三节:国内2,5-二氯硝基苯产量及产能情况分析及预测 第四节:国内2,5-二氯硝基苯需求量情况分析及预测 第五节:国内2,5-二氯硝基苯价格变动趋势分析及预测 第七章:2,5-二氯硝基苯国外生产厂家及市场分析 第一节:全球生产概括 1. 全球2,5-二氯硝基苯生产概况 2. 国外2,5-二氯硝基苯主要生产厂家介绍 第二节:国外2,5-二氯硝基苯产量及产能情况分析及预测 第三节:国外2,5-二氯硝基苯需求量情况分析及预测 第八章:2,5-二氯硝基苯上下游产品及应用市场发展趋势分析 第一节:2,5-二氯硝基苯上下游产品市场比例及发展趋势 1. 2,5-二氯硝基苯上游及其市场研究

对硝基苯甲酸的制备1

对硝基苯甲酸的制备 一、实验目的: 1. 掌握利用对硝基甲苯制备对硝基苯甲酸的原理及方法。 2. 熟练掌握回流、抽滤、重结晶等过程的操作。 3. 练习并掌握固体酸性产品的纯化方法。 二、实验原理: 三、实验操作流程图: 250mL + 6g 对硝基甲苯 18g K 2Cr 2O 7 40mL H 2O 颜色 ? 搭建回流 搅拌装置 小火微沸 回流0.5h 颜色 ? 稍 冷 倒入盛有80mL 冷水的250m L 的烧杯 S 抽 滤 粗产品 颜 色 ? 25mL ×2 水洗涤 转移到盛有 30mL 50% H 2SO 4 的250m L 烧杯 (研碎固体) 直火煮沸 10min 转移到盛有 50mL 5% NaOH 的250m L 烧杯 滤 液 1g 活性C 脱 色 趁热抽滤 滤 液 冷 却 搅拌下缓慢转移到盛有 60mL 15% H 2SO 4的250mL 烧杯 冰水冷却 10min S ↓ 颜色 ? 抽 滤 少量水洗涤2次 产 品 100~105℃ 烘箱干燥 20min CH 3 NO 2 +Na 2Cr 2O 7+4H 2SO 4 + ++Na 2SO 4Cr 2(SO 4)35H 2O CO 2H NO 2 煮 沸3 min 50℃温热溶解 抽 滤 缓慢加入 25mL 浓 硫酸20m i n 加完 滤液(倒入指定废液桶) 沉 淀 物 t <沸腾温度 pH 为1~2 10mL ×2水洗 称重 计算产率

四、实验注意事项 1. 在滴加硫酸反应过程中由于反应剧烈放热,必要时可用冷水冷却,以免对硝基甲苯因升华而凝结在冷凝管内壁,故必须严格控制硫酸的滴加速度。 2. 滴加完后加热反应过程中,冷凝管内壁可能有对硝基甲苯析出,这时可适当关小冷凝水,使其熔融滴下。 3. 粗产品加硫酸煮沸的目的是溶解未反应的铬盐。 4. 沉淀用NaOH溶液处理的目的是除去未反应的对硝基甲苯(m.p.为51.3℃)和进一步除去铬盐(生成Cr(OH)3沉淀),如过滤温度过低,则对硝基苯甲酸钠也会析出而被滤去。 5. 不能把硫酸往脱色后的滤液中滴加,否则生成的沉淀会包含一些钠盐而影响产物的纯度。中和时应使溶液呈强酸性(pH为1~2),否则需补加少量的硫酸。 6. 所得的产品对硝基苯甲酸除可用升华法进行精制外,还可用50%的乙醇溶液精制。

48硝基苯(硝基苯、邻硝基甲苯、间硝基甲苯、对硝基甲苯)水质硝基苯类化合物的测定气相色谱法HJ592-2010

水质 硝基苯类化合物的测定 气相色谱法 1适用范围 本标准规定了水中硝基苯类化合物的气相色谱法。 本标准适用于工业和生活污水中硝基苯类化合物的测定。 当样品体积为500ml 时,本方法的检出限、测定下限和测定上限,见表1。 表1 方法检出限及测定上限、下限 2方法原理 用二氯甲烷萃取水中的硝基苯类化合物,萃取液经脱水和浓缩后,用气象色谱氢火焰离子化检测器进行测定。 2,4,6-三硝基苯甲酸水溶性强,在加热时脱羟基转化为1,3,5-三硝基苯。因此,将二氯甲烷萃取后的水进行加热,再用二氯甲烷萃取单独测定2,4,6-三硝基苯甲酸。 3 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯化学试剂,实验用水为新制备的蒸馏水。 3.1 浓硫酸(H 2SO 4):P=1.84g/ml 3.2 二氯甲烷(CH 2CI 2):液相色谱纯。 3.3 乙酸乙酯(C 4H 8O 2):液相色谱纯。 3.4 无水硫酸钠(Na 2SO 4): 使用前在350℃马弗炉中灼烧4h ,冷却至室温,装入玻璃瓶中备用。 3.5 硝基苯类化合物标准溶液: P=1.00mg/ml 。 于4℃密闭避光保存。可以使用市售有证标准物质。 3.6 2,4,6-三硝基苯甲酸:粉末状固体颗粒,纯度>98.5%。 3.7 2,4,6-三硝基苯甲酸标准溶液:P=1.00mg/ml 。 避光保存,一周内有效。 3.8载气:氮气,纯度≥99.99%(体积分数)。 法 作业指导书 项目 硝基苯类(硝基苯、邻 硝基甲苯、间硝基甲苯、 对硝基甲苯) 适用范围 工业、生活污水 编制人 批准人 朱小平 共 5 页 第 1 页 批准日期 2014年3月10日

对硝基苯甲醚的工艺设计

对硝基苯甲醚的工艺设计 年产吨对硝基苯甲醚部分工艺设计化工开发设计任务书题目:年产__吨对硝基苯甲醚部分工艺设计学生姓名___祁婕___班级08107341学号0810731219专业_应用化学指导教师____叶斌______ 一、任务和目的对硝基苯甲醚是一种重要的中间体,主要用于生产染料、农药和医药工业中。对硝基苯甲醚的工艺设计的目的,主要是以专业基础课的学习为基础,针对要求的化工项目,设计合理的工艺流程,选择相应的工艺设备等。解决化工产品生产车间设计实际问题的能力,掌握化工工艺流程设计、物料恒算、设备选型、车间工艺布置设计等的基本方法和步骤;从技术上的可行性与合理性两个方面树立正确的设计思想。通过本课程设计,提高运用计算机设计绘图(AutoCAD)的能力。二、

基本内容和要求学习工艺设计的基本原理、方法和应遵循的原则。能依据给出的设计要求和关键参数,能设计提出合理的工艺流程。并用计算机画出带有工艺控制点的工艺流程图。写出工艺操作过程及过程分析、控制要点。学习查阅主要的工艺设计数据参考书,正确地进行工艺过程的物料衡算和热量衡算并进行设备的选型和设计计算。完成设计说明书的编写并提交打印件。三、时间安排1.设计时间为3周,即2011-10-24-------2011-11-11。2.第一周进行课程设计动员、下达课程设计任务书;查阅资料、确定生产工艺;物料衡算;开始能量计算。3.第二周继续查阅资料;能量计算;结合工程设备选型;绘制工艺流程图。4.第三周结合工程实际收集所需资料及检索相关规范标准规范,以及计算的内容编写设计说明书;装订并交设计报告。年产吨对硝基苯甲醚部分工艺设计

对氨基苯甲酸的制备方法

对氨基苯甲酸乙酯的制备方法 【【实验目的】 1. 通过苯佐卡因的合成,了解药物合成的基本过程。 2. 掌握氧化、酯化和还原反应的原理及基本操作。 3.学习以对甲苯胺为原料,经乙酰化、氧化、酸性水解和酯化,制取对氨基苯甲酸乙酯的原理和方法。 【实验原理】 苯佐卡因的合成涉及四个反应: (1)将对甲苯胺用乙酸酐处理转变为相应的酰胺,其目的是在第二步高锰酸钾氧化反应中保护氨基,避免氨基被氧化,形成的酰胺在 所用氧化条件下是稳定的。 (2)对甲基乙酰苯胺中的甲基被高锰酸钾氧化为相应的羧基。氧化过程中,紫色的高锰酸盐被还原成棕色的二氧化锰沉淀。鉴于溶液 中有氢氧根离子生成故要加入少量的硫酸镁作为缓冲剂,使溶液 碱性不致变得太强而使酰胺基发生水解。反应产物是羧酸盐,经 酸化后可使生成的羧酸从溶液中析出。 (3)使酰胺水解,除去起保护作用的乙酰基,此反应在稀酸溶液中很容易进行。 (4)用对氨基苯甲酸和乙醇,在浓硫酸的催化下,制备对氨基苯甲酸乙酯。 反应式如下: 【实验试剂】 对甲苯胺、高锰酸钾、无水乙醇、95%乙醇溶液、乙醚、锌粉、无水硫酸镁、七水硫酸镁、浓盐酸、18%盐酸溶液、浓硫酸、冰醋酸、10%氨水溶液、10%碳酸钠溶液 【实验器械】 数字显示熔点仪、电子台秤、电磁炉、磁力搅拌器、烘箱、球形冷凝管、直形冷凝管、空气冷凝管、刺型分馏柱、接收器、蒸馏头、圆底烧瓶(100mL、50mL)、烧杯(500mL、250mL、100mL)、量筒(50mL、10mL)、锥形瓶、抽滤瓶、布氏漏斗、分液漏斗、玻璃棒、药匙、pH试纸、表面皿【实验装置】

图1 图2 图3 【实验步骤】 (一)对甲基乙酰苯胺 在100mL圆底烧瓶中,加入10.7g(0.1mol)对甲苯胺、14.4mL(0. 25mol)冰醋酸、0.1g锌粉(<=0.1g),搭建装置(图1)作为反应装置,加热,使反应温度保持在100~110℃,当反应温度自动降低时,表示反应结束。取下圆底烧瓶,将其中的药品倒入放有冰水的500mL烧杯中,冷却结晶,然后抽滤,取滤渣即对甲基乙酰苯胺。取2g对甲基乙酰苯胺(其它的放入烘箱中烘干)放入50mL圆底烧瓶中,再加入10mL2:1的乙醇—水溶液和适量活性炭,搭建回流装置(图2)进行重结晶,加热15分钟后趁热抽滤除去活性炭,再冷却结晶,抽滤得成品,用滤纸干燥后,取部分测熔点,并记录数据。将烘干后的对甲基乙酰苯胺与重结晶后的对甲基乙酰苯胺一起称重,记录数据。 (二)对乙酰氨基苯甲酸 在100mL烧杯A中加入7.5g(0.05mol)对甲基乙酰苯胺、20g七水硫酸镁,混合均匀。在500mL烧杯B中加入19g高锰酸钾(不可过量)和42 0mL冷水,充分溶解。从B中移出20mL溶液于100mL烧杯C中,再将A中的混合物倒入B中,加热至85℃,同时不停搅拌,直至溶液用滤纸检验时无紫环出现,再边搅拌边逐滴加入C中溶液,至用滤纸检验紫环消褪很慢时停止滴加。趁热抽滤,在滤液中加入盐酸至生成大量沉淀,抽滤,收好产品。 (三)对氨基苯甲酸 称量上一步产物,并测熔点,记录数据。在100mL圆底烧瓶中加入5. 39g对乙酰氨基苯甲酸和40.0mL18%盐酸溶液,小火回流(图2)30分钟。然后,冷却,加入50mL水,用10%氨水溶液调节pH至有大量沉淀生成(此时pH≈5),抽滤,干燥产品,称重,测熔点,记录数据。 (四)对氨基苯甲酸乙酯 在100mL圆底烧瓶中加入1.09g对氨基苯甲酸、15.0mL95%乙醇溶液,旋摇圆底烧瓶,使尽早溶解,之后在冰水冷却下,加入1.00mL浓硫酸,生成沉淀,加热回流(图2)30分钟。然后将反应混合物转入250mL烧杯中,

环境空气硝基苯实验作业指导书

硝基苯类化合物的测定 1、方法依据 环境空气硝基苯类化合物的测定苯吸收填充柱气相色谱法(空气和废气监测分析方法第四版) 2、适用范围 本法检出限为2.5×10-2ng(进样1μl),采样体积50L、样品溶液为10ml 时,最低检出浓度为0.005mg/m3。 3、测定原理 空气中硝基苯用苯吸收,经OV-17色谱柱分离,用电子捕获检测器测定,以保留时间定性,峰高外标法定量。 4、试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂。 5.1 纯苯:用全玻璃蒸馏器重蒸馏,色谱分析下无干扰峰。 5.2 硝基苯、苯胺、对-硝基甲苯、2,4-二硝基甲苯、氯苯。 5、仪器和设备 5.1 多孔玻板吸收管。 5.2 微量注射器:5μl。 5.3 空气采样器:流量0~1L/min。 5.4 气相色谱仪:具电子捕获检测器。

柱温:170℃;气化室温度:180℃;检测器:220℃;氮气流量:32ml/min 。 6、样品 6.1 样品采集 串联两支内装10.0ml 苯的多孔玻板吸收管,以0.1L/min 的流量采样,采样时间视硝基苯浓度而定,采样后,以苯定容至10.0ml ,待测。 7、分析步骤 7.1 标准溶液的配制 称取0.10g (准确至0.0001g )硝基苯,置于100ml 容量瓶中,以纯苯稀释至标线作为标准贮备液,每毫升含1.000mg 硝基苯。 7.2 标准曲线的绘制 将标准贮备液逐级用苯稀释配制成每毫升液体含0、0.05、0.10、10.0及100.0μg 的硝基苯标准液,待色谱仪基线平直后,进标准溶液1.00μl ,待定标样的保留时间及峰高,以峰高对含量(μg )绘制标准曲线。 7.3 标准色谱图 参照空气和废气监测分析方法第四版标准色谱图。 8、结果计算 8.1 与绘制标准曲线相同条件下操作,以保留时间定性,峰高定量。 8.2 计算公式如下: n V W W m mg 213/+=)硝基苯(

年生产12000吨二硝基苯工艺设计书

年产12000吨二硝基苯工艺设计书 1.1设计的目的,意义及要求 设计的目的及意义 化工课程设计是高等工业学校各专业教学计划的重要组成部分,是学生在毕业前进行的、全面运用所学的专业知识的综合训练,是培养学生综合素质和解决工程实际问题能力的一个重要的实践性教学环节。该过程是学生在校期间所学知识、理论及各种能力的综合应用与升华,是创新潜能得到激发的过程,是对各专业教学目标、教学过程、教学管理和教学效果的全面检验。 化工课程设计教学环节的教学目的是对学生从事科学研究的基本训练,是在教师指导下,通过毕业论文的教学过程,培养学生探求未知、探求真理的科学精神,以及优良的科学品质与科学素养,培养学生开展科学研究的方法。使学生了解本学科的发展动态和最新科学技术,检验学生综合运用基础理论、基本知识和基本技能,解决科学与技术领域有关问题的能力,检验科研基本训练的实际效果。 工程设计是工程师工作实践中最富创造性的容。设计能力不同于理论分析能力、表达能力和动手能力,它是一种如何将思维形式的知识转化为客观上尚未存在而可以实现的物质实体的创造能力,即不仅是认识客观、表现客观而且是创造客观的能力。因此设计能力的培养对工科学生尤为重要。 具体来讲化工课程设计有如下目的、意义: (1)通过课程设计的训练,使学生进一步巩固加深所学的基础理论、基本技能和专业知识,使之系统化、综合化。 (2)在课程设计中着重培养学生独立工作、独立思考并运用已学的知识解决实际工程技术问题的能力,结合课题的需要更应注意培养学生独立的获取新知识的能力。 (3)通过化工课程设计加强对学生计算、绘图、实验方法、数据处理、编辑设计文件、使用规化手册等最基本的工作实践能力的培养。 (4)通过化工课程设计的训练,使学生树立起具有符合国情和生产实际的正确的设计思 想和观点;树立起严谨、负责、实事、刻苦钻研、勇于探索并具有创新意识及与

对氨基苯甲酸的制备

告验报实对氨基苯甲酸的制备合成化学实验名称课程名称 2 实验次数姓名汪建红化学化工学院二级学院专业化学 18 日实验日期: 3 月 mmHg % 大气压验条件:室温℃相对湿度 一、实验目的、熟悉制备对氨基苯甲酸的原理和方法;1 、熟练掌握回流装置的安装和使用; 2 、熟练掌握真空泵的使用方法。3二、实验原理、对氨基苯甲酸的用途1PABA,磺胺药具有抑制细菌把的组成部分(PABA)对氨基苯甲酸是维生素B(叶酸)10作为组分之一合成叶酸的反应的作用。、对氨基苯甲酸合成涉及的三个反应2)将对甲苯胺用乙酸酐处理变为相应酰胺,此酰胺比较稳定,这样可以在高锰酸钾1(氧化反应中保护氨基,避免氨基被氧化;)高锰酸钾将对甲基乙酰苯胺中的甲基氧化成相应的羧基;由于反应中会产生氢氧2(反应产物羧酸盐避免碱性太强而使酰基发生水解;根离子,故要加入少量硫酸镁作缓冲剂,经酸化后得到羧酸,能从溶液中析出。)水解除去保护的乙酰基,稀酸溶液中很容易进行。( 3 、合成对氨基苯甲酸的反应式3O(CHCO)23NHCOCHCHp-CHCHNHp-CHHCHCO+ 3266443323NaCHCO 232KMnONHCOCHHp-CHC2MnO+HCO+Kp-CHCONHCOH+KOH+ 44363246232+KCOHp-CHCONHCH+HHCOp-CHCONHC26432634 HCOCp-NHHHHCOCONHCp-CHHCH++COOH 26422463232三、仪器与试剂,直型水冷凝管,烧杯,锥形瓶,酒精灯,铁架台,℃)(100仪器:圆底烧瓶,温度计布什漏斗,真空泵,抽滤瓶。供参考. 试样:对甲苯胺(A.R),醋酸酐(A.R),结晶醋酸钠(CHCOONa·3HO)或无水醋酸钠23(A.R),高锰酸钾(A.R),硫酸镁晶体(MgSO·7HO)(A.R),乙醇(A.R),盐酸(A.R),硫酸(A.R),24氨水(A.R)。 四、实验装置图

硝基苯废水处理工艺设计方案

目录 第一章处理工艺的文献综述2 1.1含硝基苯废水对环境的危害2 1.2处理硝基苯的技术方法现状2 1.2.1 物理法2 1.2.2 化学法2 1.2.3 生物法3 第二章工程设计资料与依据4 2.1 废水水量4 2.2 设计进水水质4 2.3 设计出水水质4 2.4 设计依据5 2.5 设计原则与指导思想5 第三章工艺流程的确定5 3.1 废水的处理工艺流程5 3.2 工艺流程说明6 3.3 工艺各构筑物去除率说明7 第四章构筑物设计计算7 4.1 设计水量的确定7 4.2 调节池7 4.3 微电解塔8 4.4 FENTON氧化池 10 4.5 中和反应池11 4.6 沉淀池12 4.7 生活污水格栅14 4.8 生活污水调节池16 4.9 生化处理系统17 4.10 二沉池19 4.11 污泥浓缩池20 第五章构筑物及设备一览表22 5.1 主要构筑物一览表 22 5.2 主要设备一览表23 第六章管道水力计算及高程布置23 6.1 平面布置及管道的水力计算23 6.2 泵的水力计算及选型26 6.3 高程布置和计算28 第七章参考文献31

第一章处理工艺的文献综述1.1含硝基苯废水对环境的危害 硝基苯,分子式为C 5H 6 NO 2 ,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸 点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用 N 5O 3 —苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标 准。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好 1.2.2 化学法 针对于处理硝基苯的化学法主要有电化学法和高级氧化法。电化学氧化的基本原理有两

苯硝化生产硝基苯工艺过程与防范对策

苯硝化生产硝基苯工艺过程与防范对策 摘要 本文对硝基苯的生产工艺进行了简要阐述,分析了生产工艺危险性,并列举案例分析,最后针对硝基苯的安全生产,提出了安全预防措施,这对硝基苯的生产能长期、稳定、安全运行具有重要意义。 关键词:硝基苯工艺危险性预防措施 引言 硝基苯是一种重要的化工原料和中间体,用于生产苯胺、联苯胺、二硝基苯等多种医药和染料行业,也可用作于农药、炸药及橡胶硫化促进剂的原料,其中主要用途是制取苯胺和聚氨酯泡沫塑料,目前,90%以上的硝基苯用于生产苯胺[1-3]。工业上硝基苯生产工艺过程主要包括苯硝化反应、硝基苯洗涤、硝基苯精馏等单元过程,生产过程中使用了大量易燃易爆、有毒有害、强腐蚀、强氧化的化学危险品。由于苯硝化反应中副反应生成的杂质(主要是硝基酚盐类)爆炸危险性很高,而且极易积累在精馏塔釜等受热部位,监测和处理不及时就容易发生爆炸,使其生产过程中安全事故具有突发性、灾害性的特点。因此对苯硝化生产硝基苯工艺过程进行危险性定量分析及对爆炸事故的安全研究,并提出具体的预防措施意义重大。 1 硝基苯生产工艺 1.1硝基苯简介 硝基苯,有机化合物,又名密斑油、苦杏仁油,无色或微黄色具有苦杏仁味的油状液体[4]。化学式为C6H5NO2,难溶于水,密度比水大,相对密度1.205,熔点6℃,沸点210~211℃,闪点为87.8℃,爆炸下限为1.8%(93.3℃)。易溶于乙醇、乙醚、苯和油。遇明火、高热会燃烧、爆炸。与硝酸反应剧烈。低毒,半数致死量(大鼠,经口640mg/kg),硝基苯由苯经硝酸和硫酸混合硝化而得。实验室制硝基苯由于溶有硝酸分解产生的二氧化氮而有颜色,除杂方式:加氢氧化钠溶液,分液。 1.2硝基苯的应用 硝基苯是重要的基本有机化工原料,用于生产染料、香料、炸药等有机合成工业,经催化加氢或铁粉还原可得苯胺,这是硝基苯的最主要用途,由苯胺进而生产各种有机

硝基苯的开题报告

150 m3/d硝基苯废水处理工艺设计的开题报告 硝基苯类化合物是一种有机合成原料,是一种重要的有机溶剂,同时也是一种具有致癌、致突变性或生殖毒性,难以氧化、难生物降解的有毒有机污染物质,用常规的废水处理方法难以使之净化。美国环保局已将其列入129 种优先控制污染物之中,我国环境保护中优先控制的52 种有害物质之一。随着硝基苯类化合物需求的增加和生产规模的不断扩大,硝基苯废水的排放量越来越大,给环境造成了的严重污染,已经成为废水处理的一大难题。因此,对此类废水的治理研究,特别是事故应急废水的处理研究具有很高的实用价值。 1.设计依据: 《国家污水综合排放标准》(GB18918-2002); 室外排水设计规范(GB500014—2006); 混凝土结构设计规范(GBJ10-89); 给水排水工程结构设计规范(GBJ69-84); 建筑结构设计统一标准(GBJ68-89); 电力装置的电测量仪表装置设计规范(GBJ 63-90); 建筑结构荷载规范(GBJ9-87); 中华人民共和国《工业企业厂房标准》(GB5096-93); 城市区域环境噪声标准(GB3096-2003); 《工业企业厂界噪声标准》(GB12348-1990); 恶臭污染物排放标准(GB14554-93); 上海安装工程概算基价表(2000) 2.设计原则: 1、本设计方案严格执行有关环境保护的各项规定,污水处理后必须确保各项出水水质指标均达到《国家污水综合排放标准》 (GB18918-2002)中三级标准排放标准要求。

2、采用简单、成熟、稳定、实用、经济合理的处理工艺,保证处理 效果,并节省投资和运行管 理费用,确保出水的各项指标达到排放标准。 3、设备选型兼顾通用性和先进性,运行稳定可靠、效率高、管理方便、维修维护工作量少、价格适中。 4、系统运行灵活、管理方便、维修简单,尽量考虑操作自动化,工 艺控制简单,操作方便,减少操作劳动强度。 5、设计美观、布局合理,与厂区内设施统一协调考虑,构筑物尽量 采用地上式,布置在机房内,方便设备维修保养。 6、废水处理设施力求占地面积小,工程投资省,运行费用低,设置 必要的监控仪表,提高控制操作的自动化程度。 7、设计时充分考虑废水处理系统产生的噪声、异味,以及污泥的处理,避免对环境造成二次污染。 8、建筑设计在满足工艺要求的前提下,建筑风格及色调上力求新颖、简洁、明快,结合环境,建设一座和谐有致、绿色低碳,节能环保的 废水处理站。 3.设计内容和范围: 设计内容为废水处理站区的土建、工艺、电气、控制系统的设计以及 工程投资估算等。 1、污水处理站的总体设计,包括工艺、土建、电气设计等;(处理 系统进、出水的第一个阀门开始与结束)。 2、废水处理站的设计主要分为废水处理和污泥处理及处置两大部分。1)污水处理 调查研究水量、水质变化情况,结合污水本身所特有的情况,选择技 术成熟、经济合理、运行灵活、管理方便、处理效果稳定的方案。 2)污泥处理与处置 废水处理过程中产生污泥,应进行后续稳定处理,防止对环境造成二 次污染;并妥善考虑污泥的定期外运,最终委托专业单位外运处置。 4.废水来源及水质特点、水量: 废水主要来源于于化工、染料,医药,农药及炸药等行业,这些行业 的生产废水中含有大量硝基苯、苯酚、苯胺等有机污染物;

间二硝基苯生产工艺规程

NO 24-HNO 3=O 2N —<(C ==?S-^O 2 +H 2O 3.3酸性二硝基苯的中和精制,酸性二硝基苯中含有酸(主要为硝 酸)和副反应生成的邻、对二硝基苯,用氢氧化钠中和酸性硝基苯 中的硝酸,利用亚硫酸钠磺化取代反应,生成不溶于水的邻、对硝 基苯磺酸钠,以达到精制的目的。 3.4精制锅的间二硝基苯的水洗。用水洗去除中和精制后产生的少 量的碱和邻、对硝基苯磺酸钠,从而制得高纯度的间二硝基苯。 有关反应如下: NO 2 SO 3Na <<=>>-^NO 2 +Na 2SO 4 ------------ ? Ch +H 2O NO 2 +Na 2SO 4 NO 2 -<(S^>-SO 3Na +NaNO 2 3.5硝化反应的抽取。用硝基苯萃取硝化废酸中的二硝基苯,同行 斯硝基苯同硝化废酸中的剩余硝酸反应生成二硝基苯。抽取后的废 主反应: NO, +HoO 副反应:Z VNO 2 + HNO 3 =

酸送浓酸岗位提炼后循环使用或外售。硝基苯抽取后成为酸性硝基苯,作为硝化的原料。 有关反应如下: HNO3+NaOH=NaNO3+H2O 四、工艺过程的叙述 4.1各种原料的接受 4.1.1粗硝基苯从硝基苯车间粗硝基苯储罐由输送泵送到木工段硝基苯计量槽(V102)中。 4.1.2硫酸从废酸回收工段浓缩岗位槽自流到木工段硫酸计量槽(V105)中。 4.1.3 .98%硝酸从硝基苯工段硝酸储罐经泵送至木工段硝酸计量槽 (V104)中4.1.4.30%的液碱从硝基苯工段液碱储罐经泵送至木工段液碱计量槽(V106)中。 4.1.5亚硫酸钠经提升机(LS101)送至三楼,供亚硫酸钠配制罐 (104AB)使用。 4.2硝基苯的硝化421硝化开车前的检查和准备 1)检查硝化锅各部位是否正常,水压、汽压、电压是否稳定,温度计,真空表,报警装置是否好用。 2)硝化锅的数字显示仪和记录仪,两表温差不能超过2度,并记 录好两表的同步温度水温差。 3)领取操作记录表,做好记录。

实验八 食品中总抗坏血酸的测定(2,4-二硝基苯肼比色法)

实验八食品中总抗坏血酸的测定(2,4-二硝基苯肼比色法) Method for determination of ascorbic acid in foods (by colorimetry with 2,4-dinitrophenylhydrazine) (一)目的 掌握2,4-二硝基苯肼比色法测定食品中总抗坏血酸含量。 (二)原理 总抗坏血酸包括还原型、脱氢型和二酮古乐糖酸,样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,再与2,4-二硝基苯肼作用生成红色脎,根据脎在硫酸溶液中的含量与总抗坏血酸含量成正比,进行比色定量。 (三)仪器与试剂 1.仪器和设备 1.1 恒温箱(37±0.5)℃。 1.2 可见—紫外分光光度计 1.3 捣碎机 2.试剂 本实验用水均为蒸馏水。试剂纯度均为分析纯。 2.1 4.5 mol/L硫酸谨慎地加250mL硫酸(相对密度1.84)于700 mL水中,冷却后用水稀释至1000 mL。 2.2 85%硫酸谨慎地加900 mL硫酸(相对密度1.84)于100 mL水中。 2.3 2%2,4—二硝基苯肼溶液溶解2g 2,4—二硝基苯肼于100 mL 4.5 mol/L 硫酸内,过滤。不用时存于冰箱内,每次用前必须过滤。 2.4 2%草酸溶液溶解20g草酸(H2C2O4)于700 mL水中,稀释至1000mL。2.5 1%草酸溶液稀释500mL 2%草酸溶液到1000mL。 2.6 1%硫脲溶液溶解5g硫脲于500 mL 1%草酸溶液中。 2.7 2%硫脲溶液溶解10g硫脲于500mL 1%皋酸溶液中。 2.8 l mol/L盐酸取100mL盐酸,加入水中,并稀释至1200 mL。 2.9 抗坏血酸标准溶液溶解100mg纯抗坏血酸于100 mL l%草酸中,配成每毫升相当于l mg抗坏血酸。 2.10 活性炭将100g活性炭加到750mL l mol/L盐酸中,回流1—2h,过滤,用水洗数次,至滤液中无铁离子(Fe3+)为止,然后置于110℃烘箱中烘干。

对氨基苯甲酸乙酯的制备

对氨基苯甲酸乙酯的制备 【摘要】 本试验阐述了局部麻醉剂苯佐卡因的制备方法。采用对甲基苯胺为原料。将对甲基苯胺先用乙酸进行酰胺化,以此来保护氨基,使其在第二步时不致于被氧化,然后将苯环上的甲基用高锰酸钾氧化成羧基,因为反应产物是盐,所以加入盐酸使其水解,从而得到对氨基苯甲酸,最后加入乙醇,在浓硫酸的催化下酯化制得对氨基苯甲酸乙酯。期间,对每一步的产品进行称重和熔点测试,并对最后的产物——对氨基苯甲酸乙酯进行红外光谱测试。 纯的对氨基苯甲酸乙酯,其熔程为91℃~92℃,颜色状态是白色的晶体状粉末。实验最终得到对氨基苯甲酸乙酯0.26g,熔程为83.3℃~84.4℃,为奶白色晶体粉末。 【引言】 对氨基苯甲酸乙酯(别名:苯佐卡因),白色晶体状粉末,无嗅无味。分子量165.19。熔点91-92℃。易溶于醇、醚、氯仿。能溶于杏仁油、橄榄油、稀酸。难溶于水。 其作用:1.紫外线吸收剂。主要用于防晒类和晒黑类化妆品,对光和空气的化学性稳定,对皮肤安全,还具有在皮肤上成膜的能力。能有效地吸收U.V.B 区域280-320μm 中波光线区域)的紫外线。添加量通常为4%左右。2.非水溶性的局部麻醉药。有止痛、止痒作用,主要用于创面、溃疡面、粘膜表面和痔疮麻醉止痛和痒症,其软膏还可用作鼻咽导管、内突窥镜等润滑止痛。苯佐卡因作用的特点是起效迅速,约30秒钟左右即可产生止痛作用,且对粘膜无渗透性,毒性低,不会影响心血管系统和神经系统。1984年美国药物索引收载苯佐卡因制剂即达104种之多,苯佐卡因的市场前景是广阔的。 以对硝基苯甲酸为原料制备苯佐卡因,此方法是h.svlkowshi于1895年提出的,反应时将对硝基苯甲酸在氨水的条件下,用硫酸亚铁还原成对氨基苯甲酸,然后在酸性条件下用乙醇酯化,得到苯佐卡因产品。制备方法如下:在第一步反应中,在氨水的条件下,硫酸亚铁在碱性环境下容易形成氢氧化物沉淀。硫酸亚铁还原生成的氨基苯甲酸,由于其羰基与铁离子形成不溶性沉淀,而混于铁泥中不易分离,此外对氨基苯甲酸的化学活性比对硝基苯甲酸的活性低,故其第二步的酯化反应的效率也不高,产物的收率较低。 本实验以对甲苯胺为原料,通过乙酰化、氧化、酸性水解和酯化四个步骤,制取苯佐卡因。本制备方法所用的条件较温和,但反应步骤较多,收率低,在工业生产中,生产环节多而不易于控制,一般用于实验室制备少量产品。【实验目的】 1. 通过苯佐卡因的合成,了解药物合成的基本过程。 2. 掌握氧化、酯化和还原反应的原理及基本操作。 3.学习以对甲苯胺为原料,经乙酰化、氧化、酸性水解和酯化,制取对氨基苯甲酸乙酯的原理和方法。 【实验原理】 苯佐卡因的合成涉及四个反应:

水中硝基苯类作业指导书

Lem wm XX/XXX水中硝基苯类的测定 一.主题内容 本文规定了地表水、地下水、工业废水、生活污水和海水中硝基苯类的监测方法。具体采样及分析方法、检出限等参数见下表:

二.注意事项 (一)还原-偶氮光度法测定工业废水中硝基苯类(总浓度) 1、水样应采集于棕色玻璃瓶内,硫酸调节pH为1~2,并在4?C下保存,采集后24h内分析完毕。 2、在酸性条件下测定,当酚含量高于200mg/L,乙醇高于5%(v/v),甲醇高于2.5%(v/v),丙酮高于10%(v/v),对本方法有正干扰。 3、显色温度对反应有影响,最佳反应温度在22 ~30?C,若室温高于或低于此温度范围,可在恒温水浴中显色,或采用同时绘制校正曲线的办法进行测定。保存在冰箱的水样及试剂,比色前一定放置到室温,以消除温度的影响。 4、色度较深的废水,可分取与显色相同体积的水样,按同样的操作步骤,但免去加1mL 2% NEDA溶液步骤,测量其吸光度。由水样吸光度减去上述所测得的吸光度的差值,查出相应的苯胺含量。 5、对色泽很深或酚含量较高的水样,测得苯胺时,可采用蒸馏法以消除干扰。蒸馏操作步骤为:分取100mL水样于蒸馏瓶中,用4%氢氧化钠溶液调至碱性,加热蒸馏。待蒸馏出80mL时,停止加热,稍冷后,往蒸馏瓶中加入20mL 水,继续蒸馏至100mL蒸馏液为止。 6、样品溶液、标准溶液和空白对照必须用同一批试剂同时操作,所加试剂量也要求准确。 7、当水样中苯胺类化合物含量是硝基苯类化合物含量的7倍时,本方法任适用。若苯胺比例增大,则误差增大。 8、2% NEDA溶液配制时,可在水浴上温热至溶液清亮并全部溶解,过滤后稀释至所要体积。储存于棕色玻璃瓶中,冰箱保存。此溶液不宜多配,当溶液浑浊时应重新配制。 9、水样经还原操作过滤时,应使用慢速滤纸。 10、加10%氢氧化钠溶液(m/v)于经还原操作的水样中,当pH调至4~5时,溶液可能出现絮状沉淀,而不经还原操作的水样则无絮状沉淀。因此,氢氧化钠溶液用量会略多于经还原操作的水样。

年产12000吨二硝基苯工艺设计研究(DOC 35页)

xxxxxx大学 化工课程设计 学院: xxxxxxxxxxxxxx学院 专业:化学工程与工艺年级: 题目:年产12000吨二硝基苯工艺设计研究 学生姓名:学号: 指导教师:职称: 2013年12月30日

本发明涉及一种混二硝基苯的生产工艺。所说的混二硝基苯包括邻二硝基苯、间二硝基苯和对二硝基苯三种同分异构体。其特征是以硝基苯为原料,经混酸(硝酸-硫酸的混合物)连续硝化生产混二硝基苯。该工艺过程主要操作参数是:反应温度控制在50~100℃,但控制在80~90℃硝化反应效果更好;硝酸与硝基苯的投料比例控制在1.01~1.06∶1;废酸浓度控制在80~90%;反应停留时间控制在0.5~4小时。由于本发明是连续硝化生产混二硝基苯工艺,使得本发明有以下几个优点:1)设备的生产能力大;2)生产过程易于控制,生产稳定,产品的质量高;3)改善了工作环境,有利于操作工人的身体健康,有利于环境保护;4)降低了劳动强度,降低了生产成本。

1 前言 1.1设计的目的,意义及要求 设计的目的及意义 化工课程设计是高等工业学校各专业教学计划的重要组成部分,是学生在毕业前进行的、全面运用所学的专业知识的综合训练,是培养学生综合素质和解决工程实际问题能力的一个重要的实践性教学环节。该过程是学生在校期间所学知识、理论及各种能力的综合应用与升华,是创新潜能得到激发的过程,是对各专业教学目标、教学过程、教学管理和教学效果的全面检验。 化工课程设计教学环节的教学目的是对学生从事科学研究的基本训练,是在教师指导下,通过毕业论文的教学过程,培养学生探求未知、探求真理的科学精神,以及优良的科学品质与科学素养,培养学生开展科学研究的方法。使学生了解本学科的发展动态和最新科学技术,检验学生综合运用基础理论、基本知识和基本技能,解决科学与技术领域有关问题的能力,检验科研基本训练的实际效果。 工程设计是工程师工作实践中最富创造性的内容。设计能力不同于理论分析能力、表达能力和动手能力,它是一种如何将思维形式的知识转化为客观上尚未存在而可以实现的物质实体的创造能力,即不仅是认识客观、表现客观而且是创造客观的能力。因此设计能力的培养对工科学生尤为重要。 具体来讲化工课程设计有如下目的、意义: (1)通过课程设计的训练,使学生进一步巩固加深所学的基础理论、基本技能和专业知识,使之系统化、综合化。 (2)在课程设计中着重培养学生独立工作、独立思考并运用已学的知识解决实际工程技术问题的能力,结合课题的需要更应注意培养学生独立的获取新知识的能力。 (3)通过化工课程设计加强对学生计算、绘图、实验方法、数据处理、编辑设计文件、使用规范化手册等最基本的工作实践能力的培养。 (4)通过化工课程设计的训练,使学生树立起具有符合国情和生产实际的正确的设计思 想和观点;树立起严谨、负责、实事求是、刻苦钻研、勇于探索并具有创新意识及与他人合作的工作作风。

对硝基苯甲酸的制备

对硝基苯甲酸的制备 一、实验目的 1、掌握利用对硝基甲苯制备对硝基苯甲酸的原理及方法。 2、掌握电动搅拌装置的安装及使用。 3、练习并掌握固体酸性产品的纯化方法。 二、实验原理 CH3 2 Na2Cr2O7H 2 SO4 + + 4 2 ++ + Na2SO4Cr2(SO4)3H2O 5 该反应为两相反应,还要不断滴加浓硫酸,为了增加两相的接触面,为了尽可能使其迅速均匀地混合,以避免因局部过浓、过热而导致其它副反应的发生或有机物的分解,本实验采用电动搅拌装置。这样不但可以较好地控制反应温度,同时也能缩短反应时间和提高产率。 生成的粗产品为酸性固体物质,可通过加碱溶解、再酸化的办法来纯化。纯化的产品用蒸汽浴干燥。 三、实验药品用量及物理常数

四、实验装置图 反应装置抽滤装置 干燥装置 布氏漏斗 抽 滤 瓶 五、实验流程图 重铬酸钠 15ml 六、实验注意事项 1、安装仪器前,要先检查电动搅拌装置转动是否正常,搅拌棒要垂直安装,安装好仪器后,再检查转动是否正常。 2、从滴加浓硫酸开始,整个反应过程中,一致保持搅拌。 3、滴加浓硫酸时,只搅拌,不加热;加浓硫酸的速度不能太快,否则会引起剧烈反应。 4、转入到40ml冷水中后,可用少量(约10ml)冷水再洗涤烧瓶。 5、碱溶时,可适当温热,但温度不能超过50℃,以防未反应的对硝基甲苯熔化,进入溶液。 6、酸化时,将滤液倒入酸中,不能反过来将酸倒入滤液中。 7、纯化后的产品,用蒸汽浴干燥。 七、教学方法 1、本实验为芳烃侧链的氧化反应。可组织学生讨论芳环侧链的氧化方法有哪些?氧化的规 律有哪些?试写出下列化合物氧化的产物:(1)对甲异丙苯(2)邻氯甲苯(3)萘(4)对叔丁基甲苯(5)苯 2、本实验为非均相反应,可组织学生讨论提高非均相反应的措施除了电动搅拌外,还有哪 些措施? 3、组织学生讨论滴液漏斗和分液漏斗的区别,直形冷凝管和球形冷凝管的区别。 4、组织学生讨论为什么酸化时,要将滤液倒入酸中,而不能反过来将酸倒入滤液中。

相关文档
最新文档