矿渣的活性激发剂

矿渣的活性激发剂
矿渣的活性激发剂

矿渣的活性激发剂

王樾,张伟

(南京永能新材料有限公司,江苏南京211100)

摘要:综述了近年来国内外关于矿渣结构的观点,矿渣潜在活性的激发方法及其激发机理。分别介绍了矿渣的物理激发、化学激发和复合激发方法,提出了矿渣活化技术的发展方向。

关键词:矿渣;潜在活性;激发;机理

Abstract:The views about the structure of slag,the ways and mechanism to activate potential activity of slag are recommended.The physical,chemical and multiple methods of the potential activatity of slag are expatiat-ed.The development of slag activation technique in the future is emphasized.

Key words:slag;potential activity;activate;mechanism

0引言

“矿渣”的全称是“粒化高炉矿渣”,是钢铁厂冶炼生铁时产生的废渣,具有较高的潜在活性。矿渣作为传统的水泥工业的原材料之一,主要是基于矿渣潜在活性的利用。如何充分和有效地将矿渣的潜在活性激发出来成为人们关注的课题。

1矿渣的活性来源

矿渣的主要成分与硅酸盐水泥中的氧化物基本相同,即CaO、SiO2、Al2O3、MgO等,只是氧化物之间的比例不同而已。影响矿渣活性因素主要有两个:一是化学成分,活性组分主要指氧化钙、氧化铝、氧化镁;二是玻璃体的含量,矿渣是结晶和玻璃相的聚合体。前者是惰性组分,而后者是活性组分,矿渣中玻璃体占90%左右,而且玻璃相的组分越多矿渣的潜在活性就越大。研究表明[1],矿渣的活性不仅取决于玻璃体的含量,而且取决于矿渣玻璃体的结构。玻璃体是由网架形成体和网架改性体组成。网架形成体主要由SiO42-组成;网架改性体主要由Ca2+组成,它存在于网架形成体的空隙中,以平衡电荷;矿渣中的Al3+和Mg2+不仅是网架的形成体,而且又是网架的改性体。钙离子(Ca2+)以离子键形式存在于六元配键位内,钙或其他类似离子类含量的增加伴随着硅氧四面体网络结果的解聚而增加。而这层稳定的硅氧四面网络是矿渣具有潜在活性的原因[2]。矿渣玻璃体中存在着含有两相的分相结构[3-4]。其中一相为富含钙的连续相,另一相为含硅的、呈类似球状或柱状粒子的非连续相。富钙相所占的比例越大,矿渣在碱性环境中的水化就越迅速,表现的水硬活性就越高;矿渣玻璃体富硅相所占的比例越大,矿渣在碱性环境中的水化就越迟,在水化初期表现出的水硬活性就越低。

2矿渣的活性激发机理

矿渣含氧化铝(7%~20%),氧化铝是使矿渣具有活性和化学安定性的主要成分。氧化铝的含量高,矿渣的活性大。矿渣玻璃体在水中近乎是惰性的,要使矿渣呈现胶凝性能,必须加以激发。矿渣活性的激发常用方法有物理激发、化学激发和复合激发等方法。

2.1物理激发

固体物料在施加冲击、剪切、摩檫、压缩、延伸等机械力作用后,其内部晶体结构会不规则化和产生多相晶型转变,导致晶格缺陷发生、比表面积增大、表面能增加等,随之物料的热力学性质、结晶学性质、物理化学性质等都会发生规律性变化。

高树军则认为[5-6],随着球磨时间的增加,尽管矿渣粒度不再减小,但是颗粒表面仍然可能会产生新的活化点,同时内部产生缺陷和裂纹,使矿渣粉体在碱性水溶液中易于均匀分散,有利于OH-离子

进入矿渣发生水化反应;另一方面,在机械力粉磨的过程中,强烈的机械冲击、剪切、磨削作用和颗粒之间相互的挤压、碰撞作用,可能促使矿渣玻璃体发生一定程度的解聚,使得玻璃体中的分相结构在一定程度上得到均化,这也是矿渣活性提高的重要原因。

通常情况下,将使用矿渣助磨剂也归为物理激发范围。国内外研究和应用的矿渣助磨剂主要是一些表面活性剂。

2.1.1国外研究和应用的矿渣助磨剂

国外研究和应用的矿渣助磨剂主要归结为四类:

(1)三羧酸与有机胺化合物复合类

①低级三羧酸及其衍生物

低级三羧酸是马来酸、衣康酸、琥珀酸、酞酸等,衍生物是指酯类化合物、酰胺化合物、亚胺化合物、碱土金属盐、铵盐、有机铵盐等,其中以使用水溶性化合物为佳。

②有机胺化合物

有机胺化合物是一乙醇胺、二乙醇胺、三乙醇胺、一甲基胺/环己胺、异丙胺、乙二胺、一丁胺,其中以使用三乙醇胺、烷醇胺/脂肪醇胺类为佳。

(2)烯烃与三羧酸无水物的共聚物类

烯烃是乙烯、丙烯、丁烯等。三羧酸无水物是无水马来酸、无水衣康酸、无水宁康酸等,其中以使用无水马来酸为佳。烯烃与三羧酸无水物的配合百分比为(40-60):(60-40)

(3)甘醇或乙醇胺残液类

该助磨剂是利用环氧乙烷与氨反应合成一乙醇胺、二乙醇胺/三乙醇胺后的蒸馏残液或环氧乙烷与水反应合成二甘醇、三甘醇后的蒸馏残液。

(4)烯化甘醇、碳粒与碱分复合类

①烯化甘醇:二甘醇、三甘醇、一丙二醇、二丙二醇、三丙二醇。

②碳粒:炭黑、石墨。

③碱分:碱金属的氟化物和氢氧化物或有机胺。

2.1.2国内研究和应用的矿渣助磨剂

(1)石膏、三乙醇胺类

厦门建筑科学研究院对石膏在高炉矿渣粉磨过程中是否具有助磨效果进行了研究,在石膏掺量2%~5%的情况下,能降低矿粉的休止角,比表面积有所增加,并提高了7d、28d的活性指数。

(2)醇胺和醇类

上海大学对醇胺、醇类复合矿渣助磨剂进行了研究,大约20%的三乙醇胺和20%的丙三醇,其余还有15%硫酸铝溶液和30%的纸浆废液等成分,其掺量为矿渣质量的0.04%~0.08%,可提高矿渣水泥3d强度2~3MPa,28d强度4~6MPa。

(3)三乙醇胺与无机盐复合类

无机盐采用的是亚硫酸钠、硅酸钠、硫酸钠/元明粉。试验中采用元明粉、硫酸钠与三乙醇胺复合的效果最好,能使矿渣水泥早期强度明显高于三乙醇胺,可提高矿渣水泥28d强度5~6MPa。

2.2化学激发

矿渣激发剂的作用主要包括三个方面:①能促进矿渣的解体;②有利于稳定的水化产物的形成;

③有利于水化物网络结构的形成。常用的激发方法有酸激发、碱激发、硫酸盐激发和晶种激发等。

2.2.1酸激发

矿渣的酸激发是指用强酸与矿渣混合进行预处理。用盐酸、硫酸共同处理过的矿渣,具有明显的松散多孔结构[7]。由于矿渣经盐酸或硫酸处理后[8],其含有FeCl3、Al2(SO4)3、AlCl3、Fe2(SO4)3、H2SiO3等多种成分,这些物质水解可形成许多复杂的多核络合物,这些络合物不断缩聚,形成高电荷、高分子聚合物,聚合物与亲水胶体间有特殊的化学吸附与架桥作用,有利于吸附水中悬浮的胶体物质。故酸处理后的矿渣一般用于工业废水的处理和矿渣水泥石的早期强度。

2.2.2碱激发

常用的碱性激发剂包括石灰、氢氧化钠、水玻璃、水泥熟料、碳酸钠等。实验表明,Na2CO3较NaOH激发效果好,它的早期强度较高,后期强度也有所发展,当Na2CO3掺量达到6%以上时,强度增幅很大,最佳掺量为6%~10%。

目前普遍认为激发效果较好的是水玻璃。水玻璃的主要作用是破坏硅氧网结构是矿渣结晶体、玻璃体发生解体,参与基材水化反应。水玻璃水解后生成氢氧化钠和含水硅胶,氢氧化钠可提高水化液相的pH值,使矿渣中玻璃态硅氧网络迅速解离,加速水化反应,含水硅胶能与矿渣溶于水得到的钙离子、铝离子等反应生成C-S-H胶凝或水化铝硅酸钙,促进矿渣和硅酸钠的进一步水解。当水玻璃

的质量分数增加时,胶凝体系水化过程中液相碱度增加,水化反应加速,水化产物增多,使胶凝体系强度增加,早期强度增加尤为明显。朱洪波[9]等认为,水玻璃的模数是决定激发矿渣潜在活性的关键因素之一,适当的模数可使矿渣获得较高胶凝性。通常通过氢氧化钠来调节水玻璃的模数,这样的水玻璃称之为改性水玻璃。

2.2.3硫酸盐激活

通常情况下,只加入硫酸盐时,矿渣的活性并不能很好激发。只有在一定的碱性环境中,再加入一定量的硫酸盐,矿渣的活性才能较为充分地发挥出来。这是因为碱性环境中OH-离子将促使矿渣中的硅氧聚合链的键破坏,加速矿渣的分散、溶解,并形成水化硅酸钙和水化铝酸钙。

在CaSO4类激发剂中,半水石膏的激发效果优于硬石膏,烧石膏的激发效果优于二水石膏和半水石膏。

2.2.4晶种的激发

矿渣中加入晶种可以降低水化产物由离子转变成晶体时的成核势垒,诱导水泥加速水化,从而提高了体系的碱度,为矿渣结构的解体提供了更有利的外部条件。晶种激活可使矿渣制品的7d抗压强度从20.8MPa增加到23.6MPa。

晶种可选用天然材料或人造材料,一般含有较多的C-H-S和托贝莫来石。东南大学用磨细后的硅酸盐制品作为晶种,掺量为5%,同比表面积为450m2/kg的矿渣掺量为40%可制成C80的高强高性能混凝土。

2.2.5高温激发

按一般化学反应规律,温度越高反应速度越快。A.R.Brough实验发现[10],在80℃模拟蒸汽养护条件下,试件抗压强度发展的特别快,12h时其强度超过了70MPa,类似于在室温条件下28d强度。

2.3复合激发

通常单独地用一种激活措施,不能显著提高矿渣体系的活性。在实际应用时,需综合各种机械和化学的激活方法,即复合激发。王培铭等人先分别用氢氧化钠/水玻璃和碳酸钾/水玻璃来激发比表面为432m2/kg的矿渣微粉,效果并不理想,最后用水玻璃/氢氧化钠/碳酸钾共同激发,具有较好的效果[11]。马宝国[12]等人发明了一种矿渣复合活化助磨剂,它采用三乙醇胺、聚羧酸减水剂和氢氧化钙的饱和溶液经磁化装置活化处理制得。此助磨剂既能激发矿渣活性,又能提高矿渣细度,助磨效果好,节能,生产工艺简单。

徐福明[13]等人采用二甘醇、三乙醇胺、NNO、元明粉、硫酸铝和膨胀珍珠岩等物质能有效提高矿渣水泥的强度。

3结语

目前,各种激发方法的综合使用已成为矿渣综合利用的研究热点。但是多种激发方法并用时,可能相互会发生抑制或促进作用。因此,要进一步充分激发矿渣的潜在活性,要根据各地不同的矿渣具体情况,通过大量的实验确定最佳激发方法,还要兼顾到社会效益。矿渣必须在碱性环境下活性才能得以激发,但在胶凝材料用量相同时,水泥碱含量越高,混凝土的干缩变形越大。同时人们还担心碱集料反应问题,由于碱集料反应是一个长期的过程,几十年的工程实例也不能排除碱骨料反应。要解决这些问题,就需要对各种激发方法的综合作用机理作进一步的深入研究。

今天,矿渣活化增强剂的发展方向已经由固体(粉体)往液体方向发展。由于液体产品使用计量方便,将会有很好的市场应用前景。

参考文献

[1]袁润章.矿渣结构与水硬活性及其激发机理[J].武汉工业大学学报,1987,(3):297-302.

[2]吴达华,吴永革,林蓉.高炉矿渣结构特性及水化机理[J].石油钻探技术,1997,25(1):31-33. [3]徐彬,蒲心诚.矿渣玻璃体微观分相结构研究[J].重庆建筑大学学报,1997,19(4):53-57.

[4]徐彬,蒲心诚.矿渣玻璃体分相结构与矿渣水玻璃活性本质的关系探讨[J].硅酸盐学报,1997,25(6): 728-733.

[5]高树军,吴其胜,张少明.高能球磨矿渣的形貌及其活性[J].建筑材料学报,2003,6(2):157-161. [6]高树军,吴其胜,张少明.机械力学化学方法活化矿渣研究[J].南京工业大学学报,2002,24(6):61-65.

[7]董超,谢葆青,林红.高炉矿渣混凝剂处理废水的研究[J].山东环境,2000,(2):32-32.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

2009年前三季度全省建材行业经济运行情况

今年前三季度,全省建材行业经济运行保持了良好的发展势头,行业生产、销售保持稳定增长。

(一)生产稳步增长,增幅有所回落。1-9月,全省建材工业规模以上企业完成现价产值同比增长18.1%,比上半年回落2.1个百分点,比去年同期回落9.1个百分点,高于全省工业

9.6个百分点。累计实现产销率97.6%,比去年同期下降0.2个百分点,比上半年提高0.2个百分点。在32个行业小类中,增长较快的有建筑装饰用石开采、黏土砖瓦及建筑砌块、技术玻璃和水泥制品,增速分别达36.8%、34.5%、24.8%。水泥和平板玻璃制造业的产值增速分

别为10.4%和3.7%,均较大幅度的低于全行业平均水平。

(二)水泥产量保持增长,平板玻璃产量持续下滑。1-9月,全省水泥产量同比增长

10.7%,增速比上年同期提高0.5个百分点,比上半年回落2.4个百分点。今年以来,我省平板玻璃产量一直处于下降态势,第三季度开始降幅有所收窄;1-9月,平板玻璃产量同比下

降7.8%,降幅比上半年收窄4.2个百分点。产销基本平衡,水泥产品产销率为98.7%,与上年同期基本持平;平板玻璃产销率为98.1%,同比提高2.7个百分点。

(三)主要产品价格企稳回升。受市场需求不足等因素的影响,8月份之前,水泥价格始终在低位波动;5-8月份环比呈下降趋势,9月份开始企稳回升,42.5水泥出厂价格比8月份提高30元/吨。8月份起平板玻璃价格开始上涨,最高达97元/重量箱,9月份平均价格同比涨幅为29.1%。

(三)行业出口持续大幅下降。水泥等高耗能建材产品出口继续大幅下降。1-9月,全省建材规模以上企业完成出口交货值同比下降16.3%。其中:水泥、石棉水泥制品、平板玻璃出口同比分别下降55.4%、68.9%和33.2%。

(四)经济效益平稳增长。1-9月,全省建材行业规模以上企业实现销售收入同比增长

16.4%,增幅比上半年回落1.6个百分点;实现利税同比增长15.7%;实现利润同比增长12.9%,增速分别高于上半年4.6和7.1个百分点。水泥和金属结构制造业对行业效益的增

长贡献较大,1-9月,这两个子行业分别实现利润占全行业利润总额的54.3%。

(江苏省经信委行业运行处)

[8]于衍真,王建荣,伊爱焦,等.用矿渣处理革废水的试验研究[J].环境科学动态,1999,(4):24-26.[9]朱洪波,董荣珍,马保国,等.碱参量及水玻璃对

碱激发水泥(ASC)性能的影响[A].第一届全国化学激发剂材料研讨会论文集[C].南京:南京工业大学出版社,2004.210-215.

[10]Brough.A.R ,Atkinson .A.Sodium silicate-based ,alkali -activated slag mortars Part I [J].Strength ,hydration and microstructure Cement and Concrete Research 2002,32:865-879.

[11]王培铭,金左培,张永明.碱矿渣胶凝材料复合

激发剂的研究[A].第一届全国化学激发剂材料研讨会论文集[C].南京:南京工业大学出版社,2004:255-

259.

[12]马宝国,万雪峰,李相国,等.中国专利,CN1958501A.

[13]徐福明,李宗勇,曹务霞.中国专利,CN1803693A.

作者:王樾(1982-),女,硕士,工程师,有机化学专业。

(编辑:郝然)(收稿日期:2009-10-12)

碱激发矿渣地质聚合物的制备与力学性能

碱激发矿渣地质聚合物的制备与力学性能 摘要对碱激发矿渣地质聚合物的合成机理与合成方法,结构形貌表征的基本方法与手段,结构与性能的关系及所用实验手段。结果表明:用NaOH 作为碱激发剂激发粒状高炉矿渣制备的地质聚合物具有水化速度快、早期强度高、强度增加快等优点。随水化龄期延长,结构更加致密,形成PSS 型结构的地质聚合物。 Study on Preparation and Mechanical Property of Synthesis of Geopolymer by Alkali-activated Slag Powder FangRui YunSining Abstract Mechanism and process of Preparation,structure and shape,the relationship between structure and function,alkali-activated slag powd er were studied. The results showed that the geopolymer has some advantages, such as fast hydration speed, high early strength and quickly increasing compressive strength. With prol ongation of hydration age, the geopolymer of PSS structure was formed and its microstructure became d enser than before. 目录

矿渣粉基本知识

矿渣粉基本知识 1、什么是矿渣粉? 矿渣,是高炉炼铁产生的水渣,矿渣粉是高炉水渣通过细磨后,达到 相当细度且符合相当活性指数的粉体。 2、矿渣粉国家标准是什么? 目前执行的国家标准是GB/T18046-2008《用于水泥和混凝土中的粒化 高炉矿渣粉》。 3、什么是矿渣粉的活性指数? 简言之:即用50%矿粉和50%水泥拌合制作标准砂浆试件测试的强度,与用100%水泥制作标准砂浆试件测试强度的百分比,就是矿粉的活性指数。 4、矿渣粉分几个等级? 共分为S105、s95、S75三个级别,具体的意义是:如:S105-28天活性指数不小于105%。也就是说:50%矿粉和50%水泥拌合制作试件测试的强度大于100%水泥制作试件测试强度的105%以上的矿粉才符合S105级的要求。其他依此类推。 5、GB/T18046-2008矿渣粉的技术要求有哪几项? 共10项:密度、比表面积、活性指数、流动度比、含水量、三氧化硫 含量、氯离子含量、烧失量、玻璃体含量、放射性等,如下表:

6、矿渣粉的作用及特点? (1)减少坍落度损失;(2)大大提高混凝土耐久性;(3)对混凝土的显著增 强作用;(4)优良的碱骨料抑制剂y(5)增强混凝土的抗腐蚀性;(6)提 高混凝土的可泵性;(7)减少混凝土泌水。(8)改善了混凝土的微现结构 使水泥浆体的空障率明显下降,强化了集料界面的粘结力,使得混凝土的物理力学性能大大提高(8)减少水泥用量节约成本 8、如何确定矿粉(s95级)在混凝土中的掺量? “单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量 (1)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为2030%。 (2)对于地下结构、强度要求中等的混凝土结构,排量一般为30-50%° (3)对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%。 (4)对于有较高耐久性能更求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达50-70%。 9、销售中客广重点关注哪些矿粉质量指标? (1)矿渣粉的7天活性指数:对于矿粉的28天活性指数一般都能够满足要求,而7天活性指标,就不容易达标了7天活性越高,混凝士里就可以 加矿粉,从而为混凝土企业增加利润。s95级7天活性指数一般要大于75%

钢铁行业利用废渣生产矿渣微粉的生产工艺

LM立式磨在矿渣微粉行业的生产工艺及利用 黎明重工科技股份有限公司 摘要矿渣微粉是近年才兴起的一种新型建材,发展较快。同时也有不同的生产工艺,企业要根据自身的情况选择适合的生产工艺及规模 关键词矿渣微粉立式磨挤压机球磨机振动磨 0.引言 钢铁工业是关系到一个国家国计民生的基础工业,同时也是能源消耗大户和固体物排放大户,每年排放大量的固体废渣占用大量的耕地,破坏生态平衡、污染环境。 钢铁行业的固体废物包括尾矿、高炉矿渣(或化铁炉渣)、钢渣、尘泥、自备电厂排出的粉煤灰以及工业垃圾等,根据冶金总院的统计显示,目前,钢铁行业每年固体废物产生量约1.7亿吨,其中高炉矿渣和化铁炉渣约5000万吨,铁合金渣90万吨,钢渣2000万吨,尘泥1660万吨,粉煤灰及炉渣540万吨。 水泥工业和钢铁工业一样,属于基础工业,在国民经济中占有重要地位,同时也是主要的能源消耗大户之一。为了减少对自然资源的过度消耗,保护生态环境,水泥企业一直都在利用工业废渣,如粒化高炉矿渣、粉煤灰等,其中以粒化高炉矿渣的利用最为普及,且效果最佳,但大多数都用做水泥掺合料或生产矿渣水泥。利用矿渣微粉制备高性能混凝土作为一项新技术,其应用不到十年。 由于矿渣微粉生产成本低,销售价格低于水泥价格,而且是高性能混凝土的优质原料,适用于大型的商品混凝土搅拌站,它可等量代替各种混凝土中的水泥用量,同时它作为混凝土的改性剂,可明显改善混凝土的性能,具有良好的经济效益和社会效益。 自从国内首条年产50万吨矿渣微粉生产线于2000年8月在上海宝田新型建材有限公司投产以来,国内相继建成和在建的共有数十条矿渣微粉生产线。本文从矿渣微粉生产线现状、生产工艺及综合利用方面进行浅述,希望能与国内同行进行交流。 1.矿渣微粉生产现状

钢渣活性及膨胀性试验

钢渣活性及膨胀性试验 1目的与适用范围 本方法适用于评价钢渣用作基层和沥青层材料使用时的活性及膨胀性。 注:对钢渣性能评定时宜附加测定游离氧化钙或氧化镁的含量。 2仪具与材料 (1)台秤、磅秤及天平:秤的称量20㎏,感量10g,天平称量2㎏,感量1g。 (2)容量瓶:2000mL,带圆形玻璃皿盖。 (3)加热装置:煤气炉、电炉等。 (4)漏斗:直径50㎜的玻璃漏斗。 (5)烘箱:能控温在105℃±5℃。 (6)标准筛:根据需要选用。 (7)土工击实试验设备一套,包括内径152㎜、高170㎜的金属圆筒,套环高50㎜,直径151㎜和高50㎜的筒内垫块,底座,击实仪等。击实锤的底面直径50㎜,总质

量4.5g。击锤在导管内的总行程为450㎜。 (8)多孔板:直径148㎜,布满2㎜圆孔,黄铜制,用于上方的多孔板中间有百分表触点,供安装百分表测定变形用,也可用多孔吸水板代替。 (9)恒温水浴:能同时放置150㎜试件3个,持续保持水温80℃±3℃6h以上。 (10)水:蒸馏水、纯净水。 (11)比色管:工业用水标准比色管。 (12)其它:滤纸(化学分析用)、铲子、刷子、毛巾等。3试验步骤 3.1试样准备 在钢渣的陈放地从料堆内部1m处取足够数量的钢渣样品,从3处以上取样混合后按分料器法或四分法处理,供试验使用。 注:钢渣试验结果与取样关系很大。如果钢渣已经破碎且在空气中经较长时间陈放,通常可基本上完成膨胀,试验结果不能反映实际集料中存在的未膨胀颗粒的情况。

因此取样必须力求代表钢渣的实际破碎和陈放情况。由于钢渣有多孔与致密之分,需注意其比例接近实际情况。 3.2钢渣遇水后的比色试验按以下步骤进行: 3.2.1配制标准液:将重铬酸钾按0.006g/mL的浓度加入蒸馏水中配制标准比色液,装入100mL比色管中。 3.2.2称取天然状态的钢渣500g,放在烧杯中,加入约1500mL纯净水.至烧杯的标线处,盖上玻璃皿盖。 3.2.3将烧杯放在热源上加热,调整火力,使其约在15min 内沸腾,然后调为微火沸腾状态45min,合计为1h。 3.2.4加热结束后,立即移下烧杯,补充加水至烧杯的标线处,适当搅拌。 3.2.5用漏斗及滤纸过滤,将开始阶段的20mL过滤液废弃,再继续过滤得到300mL过滤液,作为比色液。 3.2.6将比色液100mL装入比色管中,在背后放一张白纸,与标准比色液比较,评定有无颜色异常。此步骤必须在加热结束后20min以内完成。 3.3钢渣膨胀性检测按下列步骤进行:

矿渣粉进场检验标准

矿渣粉进场检验标准 2.3.1 本梁场制梁混凝土采用通化金刚冶金渣综合利用有限公司生产的S95(活性指数)磨细矿渣粉。其各项指标均符合《客运专线预应力混凝土预制梁暂行技术条件》(铁科技[2004]120号)、GB/T18046-2008《用于水泥和混凝土中的粒化高炉矿渣粉》、铁科技[2012]249号文的有关规定。每批进场矿渣粉须有质保书或试验报告单,其性能指标见表 2.3。磨细矿渣粉进场必须附有出厂证明书、试验报告单。每批不大于120t同厂家、同批号、同品种、同出厂日期磨细矿渣粉,需要进行进场抽验,任何新选货源或使用同厂家、同批号、同品种、同出场日期产品达3个月者,进场需要全面检验。 表2.3 矿渣粉性能指标及检验频率 序号检验项目标准要求抽验项 目 全检项 目 备注 1 密度, g/m2≥2.8 √ 2 比表面积, m2/kg 400~500 √√ 3 烧失量,%≤3.0 √√ 4 氧化镁含量,%≤14 √ 5 三氧化硫含量,%≤4.0 √ 6 Cl-含量,%≤0.02 √ 7 含水率,%≤1.0 √ 8 流动度比,%≥95 √√

序号检验项目标准要求抽验项 目 全检项 目 备注 9 碱含量,%/ √ 10 活性指 数,% 7d ≥75 √√ 28d ≥95 2.3.2 首批进场的磨细矿渣粉必须进行全项目检验,全检项目为:密度、比表面积、烧失量、氧化镁含量、三氧化硫含量、氯离子含量、含水率、流动度比、碱含量、活性指数,其中碱含量、氯离子含量由制梁场试验室委托铁道部产品质量监督检验中心铁道建筑检验站或桥梁与基础检验站进行检验,随机的抽取不少于20kg矿渣粉作为检验试样。试验室抽检项目为:密度、比表面积、烧失量、需水量比、流动度比、活性指数。 2.3.3 磨细矿渣粉进场后,由设备物资部对进场矿渣粉核查生产厂名、品种、等级、重量、出厂日期、出厂编号等,作好记录,并由设备物资部委托梁场试验室按规定取样做常规检验。经检验确认符合相关技术要求后,由试验室向设备物资部、安质部提交检验报告单后,方可使用。 2.3.4 检验方法符合GB/T18046-2008《用于水泥和混凝土中的粒化高炉矿渣粉》标准中的规定。 2.3.5 检验结果评定 2.3.5.1 符合本细则2.3要求的为合格品。若其中任何一项不

矿渣微粉质量技术标准

QB 佳木斯市松江水泥有限公司质量技术标准 QB/ZL 1006-2011 受控状态 分发号 程序编号: 2011-03-01制订2011-04-26实施佳木斯市松江水泥有限公司化验室制订

QB/SJJC001--2010佳木斯市松江建材有限公司 粒化高炉矿渣粉质量技术标准 1. 范围 本标准规定了粒化高炉矿渣粉的定义、组分与材料、粒化高炉矿渣粉的质量技术要求及试验方法、检验规则、包装标志、运输和贮存等。 本标准适用于佳木斯市松江建材有限公司粒化高炉矿渣粉的生产、检验与销售。 2.规范性引用文件 GB/T 18046 用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 203 用于水泥中的粒化高炉矿渣 3.术语和定义 下列术语和定义适用于本标准 3.1 粒化高炉矿渣 在高炉冶炼生铁时,所得以硅铝酸钙为主要成分的熔融物,经淬冷成粒后,具有潜在水硬性材料,即为粒化高炉矿渣(简称矿渣) 3.2 粒化高炉矿渣粉 以粒化高炉矿渣为主要原料,可掺加少量石膏或粉煤灰制成一定细度的粉体,称作粒化高炉矿渣,简称矿渣粉。 4.组分与材料 4.1 矿渣 符合GB/T 203 规定的粒化高炉矿渣。 4. 1 .1 进厂矿渣水分≤10.0%,烘干矿渣水分≤2.0%, 4.1.2 质量系数K≥1.2 4.1.3 目测矿渣中不得混有外来夹杂物,如含有铁尘泥,未经充分淬冷矿渣等。 4.2 石膏 符合GB/T 5483中规定的G类或M类二级(含)以上的石膏或混合石膏。 4.3 粉煤灰 符合GB/T 1596 中规定的F类或C类粉煤灰。 4.4 助磨剂 符合JC/T 667的规定,其中加入量不应超过矿渣粉质量的0.5%。 5.矿渣粉质量技术标准 矿渣粉应符合下表的技术指标规定

超活性矿渣微粉在混凝土中的应用

超活性矿渣微粉在混凝土中的应用 摘要:水泥混凝土是建筑行业最主要的建材之一,力学性能是其最近本的性能指标,随着混凝土的广泛应用,其对环境的影响也越来越受到人们的关注。如何研制高性能、环保绿色的混凝土是现在研究的一个主要课题。 关键词:超活性矿渣微粉环保绿色混凝土 目前提高混凝土强度的主要手段是使用高标号水泥、使用高效减水剂减小水胶比、掺入硅灰等。配置c60混凝土一般采用52.5等级的水泥和i级粉煤灰等优质原材料。但就目前原材料市场来看,优质的混凝土原材料应经供不应求:水泥中的矿物掺合料增多,质量下降;粉煤灰由于用量增大,满足生产的基本上只能ii级甚至是iii级f类粉煤灰。这和高性能混凝土的配制、生产又是个很大的矛盾。本试验使用超活性矿渣微粉(以下简称超微粉)可用 p.o42.5水泥和iii级粉煤灰配制出c60混凝土并达到设计强度要求,满足生产需要并能够显著降低实际生产成本。 1 试验原材料 1.1水泥:山东水泥厂p.o4 2.5,执行标准gb 175-2007. 1.1.1水泥化学指标 loss sio2 al2o3 fe2o3 cao mgo so3 k2o na2o 3.52 23.37 9.09 2.78 52 4.34 2.6 0.7 0.23 1.1.2水泥物理指标 抗折强度(mpa)抗压强度(mpa)安定性标准稠度用

水量 % 凝结时间 3d 28d 3d 28d 初凝终凝 4.3 8.9 26.4 47.7 合格29.2 205 265 1.2粉煤灰: 细度% 烧失量% so3含量 % 需水量比 % 游离氧化钙 % 活性指数% 33% 4.98% 0.57 108% 0.05 76% 1.3河砂:试验采用中粗砂,各项指标满足规范要求,含泥量 2.8%。细度模数 3.1。 1.4石子:采用连续级配,最大粒径25mm,最小粒径5mm,各项性能指标满足要求。 1.5外加剂:采用nf-2高效减水剂,主要以萘系和氨基磺酸盐系列为主,复合其他辅助材料而成。 1.6p7000级超活性矿渣微粉,生产厂家:济南鲁新建材。 1.6.1化学指标 化学成分sio2 cao al2o3 fe2o3 mgo so3 loss % 33.34 37.55 16.06 0.73 9.89 0.34 0.21 1.6.2物理指标 比表面积(m2/kg) 活性指数( %)需水量比( %)密度(kg/m3) 含水量( %) 750 123 96 2.88 0.2 注:本试验的整个过程中都是在原材料干燥状态下完成的。

发挥矿渣微粉最大活性性能

发挥矿渣微粉最大活性性能 发布: 2010-3-10 09:11 | 编辑: 刘辉 | 来源: 北京欧亚环球建材技术研究院摘要: 1 前言 随着人们对矿渣微粉的性能和经济价值的逐渐认识,最近几年,很多水泥企业、水泥制品、混凝土企业都在生产、应用矿渣微粉。 由于矿渣、水泥物料的粒度、易磨性等条件不同,生产矿渣微粉历史短,经验不足等原因,有些企业生产矿渣微粉的设备产量低、电耗高,矿渣微粉的活性指数低,没有完全发挥矿渣微粉最大活性性能。 针对这些问题,探讨如何在粉磨矿渣电耗比较低的情况下,提高矿渣微粉的比表面积,提高矿渣微粉活性指数,发挥其最大的活性性能。 高活性指数矿渣微粉应用到水泥可等量替代大量熟料、应用到混凝土可等量替代大量水泥,并且能够提高混凝土的综合性能,达到降低生产成本、节能减排目的。 2 目前矿渣的粉磨状况 矿渣在粉磨过程中,比表面积增长十分缓慢,当矿渣微粉比表面积大于450㎡/kg时,由于研磨介质产生静电吸附现象,造成颗粒聚集、糊球,致使磨机产量降低,电耗增加,产品比表面积降低。 有的企业为了提高产量降低电耗,在矿渣粉磨的同时加入10%左右的粉煤灰,起到助磨作用,其结果是磨机产量有所提高,矿渣微粉活性却下降,其潜在的活性性能却没有完全发挥,这种矿渣微粉只能掺入水泥15%以下,才能保证原水泥的强度指标不降低。 目前国内大多数企业生产矿渣微粉比表面积在380㎡/kg~420㎡/kg之间,矿渣微粉活性并没有完全发挥,掺入水泥后虽然后期强度有所增长,但是,3d强度却降低3~5Mpa,活性指数≤S75级矿渣微粉国家标准。 这种粉磨方式存在: 一、磨机产量低,电耗高。

矿渣粉基本知识

矿渣粉基本知识1、什么是矿渣粉?

6、矿渣粉的作用及特点? (1)减少坍落度损失;(2)大大提高混凝土耐久性;(3)对混凝土的显著增强作用;(4)优良的碱骨料抑制剂;(5)增强混凝土的抗腐蚀性;(6)提高混凝土的可泵性;(7)减少混凝土泌水。(8)改善了混凝土的微观结构,使水泥浆体的空隙率明显下降,强化了集料界面的粘结力,使得混凝土的物理力学性能大大提高(8)减少水泥用量节约成本 8、如何确定矿粉(S95级)在混凝土中的掺量? “单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量: (1) 对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为20-30%。 (2) 对于地下结构、强度要求中等的混凝土结构,掺量一般为30-50%。 (3) 对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%。 (4) 对于有较高耐久性能要求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达50-70%。 9、销售中客户重点关注哪些矿粉质量指标? (1)矿渣粉的7天活性指数:对于矿粉的28天活性指数一般都能够满足要求,而7天活性指标,就不容易达标了。7天活性越高,混凝土里就可以多加矿粉,从而为混凝土企业增加利润。S95级7天活性指数一般要大于75%。(2)比表面积:代表矿渣粉的细度,一般为420㎡/㎏左右 (3)45u筛余:代表矿粉颗粒的分布情况,筛余越小越好。一般矿粉的筛余在2%以下。这个指标在国家标准里未列入。但一定程度放映了企业的质量管理水平,同样是客户关注的。 (4)氯离子含量:氯离子对钢筋有腐蚀作用,因此越小越好。矿粉中的氯离子含量一般要小于0.06%。 10、我公司立磨生产矿粉的特点? 我公司采用立磨矿渣粉生产线,属于自动化控制的先进矿渣粉磨工艺。生产的矿粉,细度稳定在420-450m2/kg范围内,颗粒级配合理,质量稳定性好。

我国矿渣微粉行业分析

我国矿渣微粉行业分析(2018) 核心提示:近年来矿渣粉行业发展迅速,短短几年间产量就破亿吨。整体来看,近5年的产量均在1亿吨上下,2013年是目前为止的产量峰值,产量达1.26亿吨。2014年和2015年产量连续大幅下滑…… 一、什么是矿渣微粉? “矿渣”的全称“粒化高炉矿渣”,它是高炉冶炼生铁时产生的废渣,主要分为水淬渣、气冷渣和造粒渣三种产品。高炉矿渣化学成分与水泥熟料相似,只是氧化钙含量略低。将矿渣粉磨制到一定细度,即为矿渣微粉。矿渣微粉可作为混凝土的原材料,代替成本更高的水泥,也可以作为改性剂,改善混凝土的性能。 我国对于矿渣的利用经历了三个主要阶段: 1995年以前,粒化高炉矿渣主要是作为水泥混合材使用,以混合粉磨为主。由于矿渣难磨,在水泥中的掺量有限,一般不超过30%。 1995~2000年,我国学习国外技术,矿渣微粉开始作为高性能混凝土的高掺合料,在建筑工程中推广使用。当时年产30万吨矿渣微粉生产线,一次性投资至少在5000万元左右,投资相当大。1996年,上海宝钢企业开发总公司筹建国内首条年产50万t/a矿渣微粉生产线,受东南亚经济危机影响,到1998年才开始开建,2000年8月投产。 2000年之后,随着粉磨设备节能技术和矿渣微粉应用经济技术研究的深入,广大水泥企业认识到,矿渣微粉最经济的粉磨细度应控制在400m2/kg左右。在大力发展循环经济的推动下, 矿渣微粉的产量年年翻番,2007年时产量超过1000 万吨/年。

图1:矿渣粉生产工艺流程 国际上采用将矿渣单独磨细至比表面积达400m2/kg以上,用此粉作水泥混合材可提高掺入比例达70%以上而不降低水泥强度。用此微粉作混凝土掺合料可等量取代20%-50%的水泥,能配制成高性能混凝土,起到节能降耗、降低成本、保护环境和提高矿渣利用附加值的作用。我国矿渣微粉分为S105,S95,S75三个级别,级别越高,其比表面积越高,活性越好。

矿渣微粉可行性研究报告

矿渣微粉可行性研究报告

目录1 总论 1.1前言 1.2项目提出的必要性 1.3项目基本根况 1.4生产规模及产品品种 1.5项目可行性研究的依据 1.6可行性研究工作范围 1.7可行性研究设计原则 1.8技术装备 1.9资金筹措 1.10主要技术经济指标 1.11结论和建议 2 市场预测 2.1全国矿渣微粉市场及预测 2.3沈阳市水泥及矿渣粉市场现状及预测 3 主要建设条件 3.1原料 3.2供电 3.3供水 3.4交通运输 3.5建设场地 3.6工程地质 3.7地震 3.8气象条件 4 技术方案 4.1生产工艺 4.1.1工艺设计条件 4.1.2物料平衡表

4.1.3主要工艺设备 4.1.4各种物料的储存量及储存期4.1.5主机检修起重设备 4.1.6生产车间工作制度 4.1.7工艺流程 4.1.8高炉矿渣微粉特性 4.2总图运输 4.3电气 4.4过程控制 4.5给水排水 4.6土建工程 4.6.1建筑 4.6.2结构 4.7通风、空调、动力 4.8机、电仪修理 5 环境保护 5.1设计中采用的标准 5.2污染源 5.3环境现状和预测 5.4环保措施和污染物的排放5.5环保投资 6 节约与合理利用能源 6.1节能措施 6.2节能效果 7 工业卫生与劳动安全 7.1设计依据 7.2工业卫生设施 7.3劳动安全设施 7.4职业安全卫生机构 8 项目实施进度

9 组织机构设置、劳动定员及人员培训 9.1组织机构设置 9.2劳动定员 9.3人员培训 10 投资估算 10.1概述 10.2编制范围 10.3编制依据 10.4投资估算表 11 经济效益评价 11.1概述 11.2项目总投资资金筹措 11.2.1建设投资 11.2.2建设期利息 11.2.3流动资金 11.2.4总投资 11.3资金筹措 11.4生产成本与费用计算 11.4.1可变成本计算 11.4.2固定成本计算 11.4.3无税产品成本计算 11.5财务经济评价 11.5.1财务评价条件 11.5.2财务评份指数 11.5.3不确定分析 11.6分析结论 1、总论

激发转炉钢渣制备高活性辅助胶凝材料探讨(doc 12页)

激发转炉钢渣制备高活性辅助胶凝材料探讨(doc 12页)

激发转炉钢渣制备高活性辅助胶凝材料的研究 0引言 目前,我国排放的钢渣70%以上都是转炉钢渣,而转炉钢渣的化学成分及矿物组成与硅酸盐水泥熟料接近,因而从理论上分析,钢渣在水泥和混凝土中应用是有潜力的。但是由于转炉钢渣的活性较低,其作为混合材料在水泥中的利用受到了限制。对粉磨后钢渣的颗粒粒径分布与水泥强度之间的关系进行研究后认为,应尽量提高钢渣粉l0.0-30.2μm范围内的颗粒含量,减少>30.2μm的颗粒含量。另有研究表明:对钢渣进行预粉磨处理后可以显著提高钢渣的活性,随着钢渣比表面积的增加,钢渣的活性增加;此外,钢渣的活性也受到钢渣的细度、颗粒形貌等因素的影响闻。笔者利用物理激发和化学激发两种方式对转炉钢渣的活性进行激发,对掺33%钢渣胶凝材料的水化产物种类和形貌、硬化浆体孔结构进行观察表征,揭示激发剂对钢渣的作用机理以及大掺量钢渣在复合胶凝材料早期水化过程中的作用机理,从而为提高钢渣作为辅助性胶凝材料在水泥中的掺量提供理论支持,达到节能减排的目的。 1试验材料及试验方法 1.1原材料

钢渣比表面积按GB/T8074--2008测定;水泥标准稠度用水量、凝结时间、安定性按GB/Tl346~2001测定;水泥胶砂强度按GB/T17671—1999测定;粒度分布采用JL-1166激光粒度分析仪测定。 SEM分析采用日本日立S2500型扫描电镜,将待测样品上喷镀铂导电层,观察水化断面的水化产物及内部结构形貌。 压汞法测试孔结构采用美国产Poremaster—GT6.0压汞仪。测试孔结构的样品制备步骤为:试块敲成2.5-5.Omm碎块并去除外表面,用丙酮溶液浸泡,在80℃干燥箱中烘干后进行测试。 XRD分析采用德国布鲁克公司的D8一ADVANCE型X射线衍射仪。 1.2.3活性指数 钢渣活性指数按下式计算: 式中: A ——活性指数,%; 28 R——掺钢渣水泥的28d抗压强度,MPa; ——水泥S的28d抗压强度,MPa。 R 2 试验结果与讨论 2.1钢渣粉XRD分析 钢渣粉的XRD图谱见图l。

碱激发地质聚合物的研究进展

碱激发地质聚合物的研究进展 指导老师: 学生姓名: 专业班级:材料工程801 摘要 碱激发胶凝材料是近年来发展的新型胶凝材料.许多固体废弃物均可作为它的原料.这将为充分利用工业固体废弃物开辟一条新的途径。本文主要介绍了碱激发胶凝材料的制备、应用及研究现状。从国内、国外两方面了介绍了碱激发胶凝材料的发展现状及理论科研成果。阐述了碱激发地质聚合物胶凝材料的优点,同时指出在该领域中存在的问题以及对未来的展望。 关键词:碱激发,地质聚合物,胶凝材料

Research progress on Alkali stimulate geological polymer Name: Longtao chen Instructor : Xiping lei Abstract Alkali stimulate cementitious material is the recent development of new cementious material. Many solid waste could be used as its raw material. It will to make full use of industrial solid wastes opened up a new way. This article mainly introduced the alkali stimulate cementitious material preparation, application and research actuality. Both from domestic and overseas are introduced alkali stimulate cementitious material development present situation and the theory of scientific research. Expounds the alkali stimulate geological polymer cementitious material advantages, in this field is also pointed out the existing problems and outlook for the future. Keywords: alkali inspired, geological polymer, gelled material

矿粉知识

矿粉 一、矿粉的概念 (1) 磨细矿粉即磨细水淬高炉矿渣粉,又称矿渣微粉,其英文缩写为GGBS或GGBFS (2) 磨细矿粉是以高炉水淬矿渣为主要原料经干燥、粉磨处理而制成的超细粉末材料;是制备高性能水泥和混凝土的优质混合材。 二、矿粉的技术指标 1、矿粉的活性指数是采用标准试验测试确定的,简单的说:矿粉替代50%水泥,拌合制作标准砂浆试件,然后测试砂浆28天强度。含矿粉砂浆强度与不含矿粉基准砂浆强度比,就是矿粉的活性指数。 常用的S95是一个矿粉等级。其中…S?表示矿粉,来源于英文SLAG (矿渣)。…95?表示活性指数不小于95%。 标准:S105/95/75,7天活性指数:不小于95、75、55,28天活性指数:不小于105、95、75 2、流动度比:小于85、90、95 3、密度。2.8g/cm3,比表面积:不小于350m2/kg 4、矿粉的技术指标 粒化高炉矿渣的质量可用质量系数K得大小来表示: K=(CaO + Al2O3 + MgO)/(SiO2 + MnO + TiO 2) 式中CaO、Al2O3、MgO、SiO2、MnO、TiO2为相应氧化物的重量百分数。

质量系数反应了矿渣中活性组分与低活性和非活性组分之间比值。质量系数越大,则矿渣的活性越好。 3、矿粉和粉煤灰的区别 (1) 两者来源不同:粉煤灰来源于热电厂排放的烟气经收尘处理后收集得到的飞灰;而磨细矿粉则是由炼铁高炉排出的熔融态矿渣经水淬(粒化)后再进行干燥、磨细加工而得到的超细粉末。 (2) 两者化学组成不同:一般粉煤灰含很高的SiO2、Al2O3,但CaO却非常低(仅为1-5%);磨细矿粉则具有与普通硅酸盐水泥非常相近的化学组成,如CaO 30-42%, SiO2 35-38%, Al2O3 10-18%, MgO 5-14%,等。 (3) 两者水化活性不同:粉煤灰不具有自身水化硬化特性,只能在有活性激发剂(如硅酸盐水泥等)作用下,才能具有强度;磨细矿粉却具有自身水化硬化特点,能在加水拌和后自行水化硬化并具有强度。当有硅酸盐水泥激发时,其活性得到更充分的发挥。 4、矿粉和粉煤灰的区别 (1) 两者的允许掺量不同:粉煤灰在水泥中的允许掺加量为20-40%,但在混凝土中最大掺量一般不超过35%;磨细矿粉在水泥或混凝土中的掺加量则可达20-70%。一些欧洲国家甚至允许掺到85%。 (2) 两者在混凝土中的掺加方式不同:粉煤灰一般采用“超量”取代水泥方式以保证混凝土强度达标;磨细矿粉则通常采用“等量”取代水泥方式配制混凝土,其强度仍然可以满足设计要求。 5、掺矿粉混凝土拌和物性能特点 与空白混凝土相比,掺加超细度矿粉混凝土拌和物具有如下基本性能特点: (1) 凝结时间延长,坍落度损失小,对夏季施工有利;

2020年矿渣微粉在商品泥凝土中的应用参照模板可编辑

矿渣微粉在商品泥凝土中的应用 [摘要] 本文介绍了国内外矿渣微粉的应用情况,并分析了矿渣微粉对商品混凝土性能的影响,说明了将矿渣微粉与I 级粉煤灰复合配制商品混凝土可以发挥优势互补效应,使混凝土的性能得到进一步改善。阐述了矿渣微粉在商品混凝土应用过程中应注意的问题。 [关键词] 矿渣微粉;商品混凝土 1 引言 矿渣作为水泥混合材在我国已有40 多年的历史,但20 世纪90 年代以前,大多数是将矿渣和水泥熟料一起粉磨,属粗放型应用。由于矿渣与水泥熟料的易磨性相差很大,与熟料混磨后的矿粉较粗,其比表面积为300m2/ kg 左右,在水泥水化时矿渣的活性不能充分发挥。因此,掺混合材的水泥一般都是早期强度低,凝结时间长。如将矿渣经过单独粉磨得到矿渣粉,由于其比表面积达到400m2/ kg 以上,颗粒较细,则其活性可以得到充分发挥,这种颗粒细小的粉磨矿渣就是磨细矿渣( GGBFS) (矿渣微粉) 。 2 矿渣微粉在国内外的应用情况 1862 年德国人发现水淬矿渣具有潜在的活性后,矿渣长期作为水泥混合材使用。1865 年德国开始生产石灰矿渣水泥。随着矿渣硅酸盐水泥良好的耐久性及应用价值不断为人们所认识,19 世纪初在欧洲得到了广泛的应用。德国有关矿渣硅酸盐水泥的研究资料比硅酸盐水泥的还要多。1933 年出现了湿碾矿渣及湿碾矿渣混凝土技术,50 年代这一技术曾在大型混凝土和预制混凝土中应用,因湿碾矿渣浆具有储存和运输困难的缺点,该技术并未得到广泛推广。1958 年南非将水淬矿渣烘干磨细,克服了湿碾矿渣浆储存及运输困难的缺点,首次将矿粉用于商品混凝土。进入60 年代,随着预拌混凝土工业的兴起和发展,矿粉作为混凝土的独立组分得到了广泛应用,90 年代在东南亚、我国台湾、香港地区也得到了广泛的使用。目前,国外一些发达国家已将掺有矿粉的混凝土普遍用于各类建筑工程。西欧掺有矿粉的水泥约占水泥总用量的20 %;荷兰矿粉掺量65 %~70 %的水泥约占水泥总销量的6 0 % ,几乎各种混凝土结构都采用此种水泥;英国矿粉的每年销售量已达到100 多万吨;美国、加拿大现在也将矿粉掺入水泥中应用于各种建筑工程;在日本、新加坡、东南亚地区矿粉普遍地应用于商品混凝土和掺入水泥中。 美国1982 年发布了《混凝土和砂浆用的磨细粒化高炉矿渣》标准(ASTM C989 - 82) ,并于1989 年进行了修订。澳大利亚、加拿大、英国等在1980 年- 1986 年期间也相继制定了矿粉的材料标准。日本在1986 年由土木学会制定了《混凝土用矿渣粉》标准草案,于1995 年3 月正式修订为日本的国家工业标准(J ISA6206 - 19 95) ,日本1988 年还制定了《掺高炉矿渣粉的混凝土的设计与施工指南(草案)》。这些标准的制定和实施极大地推动了矿粉混凝土技术的研究,并促使矿粉混凝土技术得到了令人瞩目的发展。在我国,矿渣运用的历史久远,但都是作为活性混合材添加在水泥熟料中,成为硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥。随着国际上对矿粉研究地不断深入和大规模地开发利用,我国20 世纪80 年代改革开放的力度不断加大,预拌混凝土的崛起与发展以及政府日益注重的环境保护,自20 世纪90 年代起,我国开始了矿粉的特性及应用研究工作。1998 年上海市实施地方标准《混凝土和砂浆用粒化高炉矿渣微粉》,1999 年《粒化高炉矿渣微粉在混凝土中应用技术规程》制定颁布。2000 年国家标准《用于水泥和混凝土的粒化高炉矿渣粉》( GB18046 - 2000) 颁布实施,2002 年国家标准《高强、高性能混凝土用矿物外加剂》颁布,在该标准中正式将矿渣微粉命名为“矿物外加剂”纳入混凝土第六组分。磨细矿渣作为一个独立的产品出现在建筑市场,广泛应用于商品混凝土中。矿粉的应用逐渐成熟,并被广

钢渣的处理方式

钢渣综合利用方法和处理工艺的介绍 钢铁工业是国民经济的基础产业,在国家经济快速发展的形势下,钢铁工业也呈现出跳跃式发展的态势,钢产量近几年不断提高,钢渣作为炼钢工艺流程的衍生物随着钢产量的提高年产量不断递增。 据最新资料统计,2004年我国钢渣的产生量为3819万t,钢渣利用率仅为10%左右,该数据显示钢渣利用率很低,距离钢铁企业固体废弃物“零”排放的目标尚远。 积极开发和应用先进有效的处理技术和资源化利用新技术,提高其利用率和附加值,是钢铁企业发展循环经济,实现可持续发展的重要课题之一。 钢渣利用途径和制约钢渣利用率的因素 钢渣的利用途径大致可分为内循环和外循环,内循环指钢渣在钢铁企业内部利用,作为烧结矿的原料和炼钢的返回料。钢渣的外循环主要是指用于建筑建材行业。 1 钢渣的内循环利用 钢渣返烧结主要是利用钢渣中的残钢、氧化铁、氧化镁、氧化钙、氧化锰等有益成分,而且可以作为烧结矿的增强剂,因为它本身是熟料,且含有一定数量的铁酸钙,对烧结矿的强度有一定的改善作用,另外转炉渣中的钙、镁均以固溶体形式存在,代替溶剂后,可降低溶剂(石灰石、白云石、菱镁石)消耗,使烧结过程碳酸盐分解热减少,降低烧结固体燃料消耗。 钢渣在钢铁企业内部循环历来受到重视和普遍采用,配加转炉渣的烧结矿可改善高炉的流动性,增加铁的还原产量。但是配矿工艺对返烧结有影响,过度使用会造成磷等有害元素的富集;配加转炉渣的烧结矿品位、碱度有所降低。 研究表明,当高炉炉料使用100%自熔性球团矿时,5%转炉渣作为溶剂加入会引起高炉运行不畅,原因是明显影响球团矿的软熔特性,增大软熔温度间隔,使炉渣粘性有增大趋势。 另外钢渣的成分波动较大,烧结配矿时要求钢渣各种氧化物成分波动≤±2%,粒度要求一般小于3mm,钢渣在成分上很难满足要求,对钢渣破碎和筛分的要求也高。

矿渣粉活性指数及流动度比的测定

附 录 A (规范性附录) 矿渣粉活性指数及流动度比的测定 A.1 范围 本附录规定了粒化高炉矿渣粉活性指数及流动度比的检验方法。 A.2 方法原理 A.2.1 测定试验样品和对比样品的抗压强度,采用两种样品同龄期的抗压强度之比评价矿渣粉活性指数。 A.2.2 测定试验样品和对比样品的流动度,两者流动度之比评价矿渣粉流动度比。 A.3 样品 A.3.1 对比水泥 符合GB 175规定的强度等级为42.5的硅酸盐水泥或普通硅酸盐水泥,且7d 抗压强度35MPa ~45MPa ,28d 抗压强度50MPa ~60MPa ,比表面积300m 2/kg ~400m 2 /kg ,SO 3含量(质量分数)2.3%~2.8%,碱含量(Na 2O+0.658K 2O )(质量分数)0.5%~0.9%。 A.3.2 试验样品 由对比水泥和矿渣粉按质量比1:1组成。 A.4 试验方法及计算 A.4.1 砂浆配比 对比胶砂和试验胶砂配比如表A.1所示。 表A.1 胶砂配比 胶砂种类 对比水泥/g 矿渣粉/g 中国ISO 标准砂/g 水/mL 对比胶砂 450 — 1350 225 试验胶砂 225 225 1350 225 A.4.2 砂浆搅拌程序 按GB/T 17671进行。 A.4.3 矿渣粉活性指数试验及计算 分别测定对比胶砂和试验胶砂的7d 、28d 抗压强度。 矿渣粉7d 活性指数按式(A.1)计算,计算结果保留至整数: 07 77100R R A ?= ……………………(A.1) 式中:

7A ————矿渣粉7d 活性指数,%; 07R ————对比胶砂 7d 抗压强度,单位为兆帕(MPa ); 7R ————试验胶砂7d 抗压强度,单位为兆帕(MPa )。 矿渣粉28d 活性指数按式(A.2)式计算,计算结果保留至整数: 028*******R R A ?= ……………………(A.2) 式中: 28A ————矿渣粉28d 活性指数,%; 028R ————对比胶砂 28d 抗压强度,单位为兆帕(MPa ); 28R ————试验胶砂28d 抗压强度,单位为兆帕(MPa )。 A.4.4 矿渣粉的流动度比试验 按表A.1胶砂配比和GB/T 2419进行试验,分别测定对比胶砂和试验胶砂的流动度,矿渣粉的流动度比按式(A.3)计算,计算结果保留至整数。 m 100L L F ?= ……………………(A.3) 式中: F ————矿渣粉流动度比,%; m L ————对比样品胶砂流动度,单位为毫米(mm ); L ————试验样品胶砂流动度,单位为毫米(mm ) 。

碱激发胶凝材料及混凝土研究进展

田长安等:固体氧化物燃料电池电解质材料的研究进展 · 151 · 第37卷第1期 碱激发胶凝材料及混凝土研究进展 孔德玉1,张俊芝1,倪彤元1,蒋靖2,方诚1 (1. 浙江工业大学建筑工程学院,杭州310014;2. 杭州建工建材有限公司,杭州 311107) 摘要:综合评述了碱激发胶凝材料及其混凝土的研究进展,总结了影响碱激发胶凝材料性能的主要因素,着重介绍了采用碱激发胶凝材料配制的混凝土性能最新研究进展,包括新拌混凝土拌合物和易性、硬化混凝土强度和抗化学侵蚀、碱集料反应、对钢筋的保护作用等耐久性问题以及硬化混凝土变形性能等,并提出当前研究存在的问题和今后研究的发展方向。 关键词:碱激发胶凝材料;混凝土;力学性能;耐久性 中图分类号:TQ172 文献标志码:A 文章编号:0454–5648(2009)01–0151–09 RESEARCH PROGRESS ON ALKALI-ACTIV ATED BINDERS AND CONCRETE KONG Deyu1,ZHANG Junzhi1,NI Tongyuan1,JIANG Jing2,F ANG Cheng1 (1. College of Civil Engineering & Architecture, Zhejiang University of Technology, Hangzhou 310014; 2. Hangzhou Construction & Building Materials Co. Ltd., Hangzhou 311107, China) Abstract: Research on alkali-activated binders and concrete made with alkali-activated binders are reviewed. Factors affecting the properties of the alkali-activated cement are summarized and emphasis is placed on the properties of concrete made with al-kali-activated binders, including the workability of the fresh concrete, the strength, deformation and durability such as chemical attack resistance, alkali-aggregate reaction and protection of the steel bar in reinforced concrete. Some suggestions for future investigations are also made. Key words: alkali-activated binder; concrete; mechanical property; duration 20世纪30年代,Purdon等[1]研究发现,少量NaOH在水泥硬化过程中可起催化作用,使水泥中铝硅酸盐易溶而形成硅酸钠和偏铝酸钠,进一步与氢氧化钙(CH)反应形成水化硅、铝酸钙,使水泥硬化并重新生成NaOH,催化下一轮反应,由此提出“碱激发”理论。此后,前苏联开展大量相关研究,开发新型碱矿渣水泥,我国于20世纪80年代也开展了相关研究,取得大量研究成果。[2–3] 研究发现,与硅酸盐水泥相比,碱矿渣水泥具有需水量小,水化热低,强度高,耐久性好等优点,[4] 但也存在凝结硬化速度快,[4–5] 硬化混凝土干缩大等致命缺点,[6–9] 限制了其大范围推广应用。 20世纪70年代,受“碱激发”理论启发,法国科学家Davidovits[10]以偏高岭土为主要原料,开发新型碱激发偏高岭土胶凝材料,并将其命名为地聚合物(geopolymer)。研究发现,地聚合物具有许多硅酸盐系列水泥难以达到的优异性能,在土木工程、固核固废、高强、密封及高温材料等方面均显示出很好的开发应用前景。[11–12] 由于偏高岭土价格较高,近年来采用各种工业废渣,如:粉煤灰、矿渣、炉渣、尾矿等铝硅酸盐材料部分或全部取代偏高岭土制备碱激发复合胶凝材料再次成为国内外的研究热点。目前,国内外在碱激发胶凝材料组成、水化产物及机理、碱激发水泥混凝土拌合物和易性、水泥石–集料界面结构、硬化混凝土物理力学性能及耐久性等方面已取得大量研究成果。综述了国内外在碱激发胶凝材料及混凝土的研究进展,希望为实现碱激发胶凝材料在我国作为一种新型胶凝材料应用 收稿日期:2008–04–25。修改稿收到日期:2008–08–03。 基金项目:浙江省科技计划项目(2007C23058);杭州市科技计划项目(20070733B20)。 第一作者:孔德玉(1972—),男,博士,副教授。Received date:2008–04–25. Approved date: 2008–08–03. First author: KONG Deyu (1972–), male, Ph.D., associate professor. E-mail: kongdeyu@https://www.360docs.net/doc/6613209075.html, 第37卷第1期2009年1月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 37,No. 1 January,2009

相关文档
最新文档