多肽的基本常识

多肽的基本常识
多肽的基本常识

多肽的基本常识

保存:

大多肽在-20℃很稳定,特别是冷冻干燥并保存在干燥器中,在将它们暴露于空气之前,冷冻干燥多肽可以放于室温。这将是湿度影响减少,当无法冷冻干燥时,最好的方法是以小的工作样量存放。

对于含Cys, Met or Trp的多肽,脱氧缓冲剂对其溶解必不可少,因为这种多肽可易空气氧化,在封瓶前,慢慢流过多肽的氮气或氩气也会降低氧化作用。含Gln或Asn的多肽也容易降解,所有这些肽与不含这些有问题解苷的那些肽相比,生命期有限。

溶解性:

大多肽的道选溶剂是超纯抽气水。稀乙酸或氨水分别对于碱性或酸性多肽的溶解很重要。这些方法不溶的多肽,需要DMF、脲、guanidiniam chloride或acetonitnle来溶解,这些溶剂可能某些实验有副作用。所以我们建议设计多肽时要加注意。

残基Ala, Cys , Ile, Leu, Met, Phe和Val将全增加多肽的溶解难度。

您需要特殊的多肽或任何技术帮助,请随时与我们联系。我们包你完全满意,对于我们不能适当合成的顺序,我们不收费。

多肽的保存和操做

包装 1mg或更少的多肽按净重包装,声明的小瓶重不含相关抗离子和水。例如,氨基酸分析决定的肽含量是80%,在1mg样品中,那么瓶中毛重是1.25mg。

大量的多肽以毛重算。标出的重量含相关抗离子和水,例如,25mg样品中肽百分比为90%,那么,实际肽量为25mg×90%=22.5mg

不要把肽含量和纯度搞混了。肽的纯度可能是100%,而肽含量相关带电基团(如Arg, Lys )的抗离子量和肽新水性决定。这是合成肽的本身特性。

冻干肽的保存

所有产品应存于冰箱,最好为-20℃。多数肽以此方法可以存放几年不变。

肽溶液的保存

溶液肽远比冻干形式不稳定,溶液应为中性pH(pH5-7), -20℃保存的,为避免样品的

反复冻融,最好分成小样存放。一份样品融冻后未用完,应扔掉,细菌降解有时会成为溶液肽的麻烦,为克服此,肽应溶于无菌水,或肽溶液用0.2μ M滤膜过滤。

多肽的重建和操作

多数肽溶于无菌蒸溜水。初次溶解时,要注意使初始浓度比要求浓度大,如果多肽仅有限溶解性,这便允许加入其它溶解剂或缓冲盐。

如果多肽在水中的溶解性有限,有几种选择可帮助溶解:

对碱性肽用稀乙酸(含Arg , Lys , His)

酸性肽用稀氨水(含Asp, Glu)

对极疏水的肽用10%有机修饰物(Acetonitnile , Methanol)

极不溶的肽用DM50或DMF

guanicline hydrochloride或脲的浓溶液也很有用,与上述方法合用,声处理也是

溶解多肽的有效手段。

多肽的包装

目录中所有多肽除特别说明外,纯度为95~98%。包装为小瓶冻干粉。除特别注明外,多肽净重包装,例如,1mg瓶的β-amyloid 1-40精确含1mg的多肽。多肽净重由氨基酸分析得到的肽含量计算。例如,一个多肽样品毛重5mg,氨基酸含量85%,多肽净重为5m g×0.85=4.25mg。请注意,多肽含量不是多肽纯度,与抗离子象乙酸盐和溶剂,特别是水结合量合成多肽的本身特性。多肽纯度可能达100%,但合成品中多肽含量由氨基酸组成,硫水性,和多肽对溶剂和离子的暴露决定,特别是在纯化过程中,无论多肽如何纯,冻干粉多肽含量一般为70-85%。剩余15-30%由其它基本非肽成份构成。

多肽应用和保存

多肽具广泛的溶解性。多肽不溶的主要问题是形成二级结构。除了最太肽外,这点都会发生,在有多重疏水残基的肽中更显著。盐会促进二级结构形成。我们建议先在无菌蒸馏水或去离子中溶解多肽。如需要增加溶解率,可用声处理。溶解仍有问题,加少量稀乙酸(10%)或氨水,会便于溶解。

要长期保存多肽,最好冷冻干燥,冷干粉可在-20℃或更低存放几年而很少或无降解。溶液中的多肽远不稳定。多肽易受细菌降解,应用无菌纯化水溶解。

含有Met, Cgs或Try残基的多肽溶液由于氧化,寿命有限。应溶于无氧溶剂,为防止重复冻融的破坏,建议溶解过量的肽的便实验,其余多肽以固体形成保存。

固相多肽合成Fmoc方法

任何多肽链的关键连接为肽键,由一个氨基酸的氨基与另氨基酸的缩合形成。通常一个氨基酸由一个中心碳原子组成,它由四个基它基团包围:氨基、羰基、基和侧链。侧链,称为R,区别不同氨基酸的结构。某些侧链含有干扰肽键形成的功能团。因此侧链功能团的封闭很重要。

图工显示了Fmoc合成的一般流程,首先第一个Fmoc氨基酸通过一个酸性接头接到不溶载体树脂上,Fmoc去保护通过用碱处理树脂来完成,一般是Poperidine。用预先激活或原位激活连接第二个Fmoc氨基酸。要求总多肽合成后,通过TFA分离来除去树脂和去保护。

Fmoc分离

固相多肽合成中多肽分离主要用酸解

Fmoc法用弱酸,比如TFA或TMSBr。各种添加剂,一般为thiol compound , 水和酚,用来保护多肽的免分离中Carbocation的破坏。

下列保护基与TFA和TMSBr分离相合:(略)

基于保护基团的类别,必须使用去保护剂的组合。例如,当Boc和tButyl存在时,它们的Carbocation对应物能与Trp, Tyr和Met反应形成tbutyl产物。EDT是极有效的t-but yl trifluoroacetate清除剂,但它不保护Trp。因此,必须加水以控制烷基化。Trp的吲哚环和Tyr的OH极易与Pmc反应。水再次表现出对此反应的抑制。Trt和Mtr基团也有相似情形。较此适当组合清除剂将极大降低副反应。

tBoc和CBZ多肽合成

tBoc合成法见图3

tBoc法的分离法

Boc使用强酸,比如HF,TFMSA或TFMoTf。分离加入各种添加剂,一般为thiol化合物以保护多肽免受carbocation破坏。

HF分离法(如下)略

TFMSOTf分离

TMSOTf分离

SPPS的一般连接方法

适于固相多肽合成的连接反应要求酰化反应,对同源多肽最有效。

Fmoc SPPS连接方法 FmocSPPS最常用的连接法是活性酯,要么原位,要预先激活。起初P-nitrophenyl和N-hydnxysuccinimide激活酰是常用形式。甚至,有HOBt时,连接反应也很慢,此外,Fmoc氨基酸ONSu、酯与succinimido-carbonyl-β-alanine -N-Hydroxys uccinidide酯副产物的形成相关。今天最常用的激活酯是Opfp和Odhbt。有HoBt时反应速度极快,副产物少。

另一方面,使用象DCC,HBTU,BOP,BOP-Ce,或TBTU活化剂时,能原位进行许多连接反应。Carbondiimide的直接添加是最佳选择。然而,TBTU和HBTU第二个出现,接着BoP, 最后是BoP-CE。再者,酯连接发现BoP/HoBt>Carbodiimido/HoBt> Carbodiimido/ODHbT> Carbodiimide/Opfp。

最近以来,HOAt和其对应Uronium盐同类物HATU的发展,发现此HoBt和HBTU具更强催化活性,结果是增加连接产出,缩短连接时间,消旋降低。故此,更适合阻位氨基酸的连接,使得难合成肽的合成更成功。

tBoc SPPS的普通连接法

Carbodiimides, 主要是DCC是使用多年的连接试剂,主要的问题是激活和酰化过程中dicy clohexylurea的沉淀。并且伴有许多副反应,已有几种产生可溶脲的Carbodiimide,例如DIC, t-butylmethyl-和t-tatyllethyl-carbodiimide, 但是这些试剂未解决副反应的问题。结果生产出了新的激活剂。首先是BOP,随后是PyBrop, PyBOP, HBTU, TBTU和HATU。所有前述试剂都要活性碱

tertiany amines存在时重排,还有,不是所有的Fmoc 对称酐都溶于DCM,或者无论所有试剂如何都不溶。

对称酐的另一种改变是混合酐,Carboxglic-Carbonate或Carboxglic-phosphinic混合酐,典型的情况且是,由活性isobutyl-或isopropyl-choroformate制备这些,

用Nox被阻氨基酸代替phosphinic chloride。通常反应迅速及少或无有副反应。

混合酐,N-carboxy酐(NCAS), 也叫,Leuch酐,已广泛用于多聚氨基酸制备,这类化合物联合Nox保护和活化炭基,一旦和另一个氨基酸或肽残基反应,释放CO2做为副产物。

用光气处理α氨基酸很容易得到NCA衍生物,在严格调控条件下,NCA衍生物常结晶析出,便可使用。这些条件要求严格控制合成中的PH,在PH值低于10时,NCA和肽或氨基酸残基反应产物,肽-Carbamate易失去CO2形成自由α-氨基端,发生聚合。pH10.5时,NCA便水解隆解。所以反应在PH10.2条件下进行。别的条件要求是反应在0℃进行2分钟,要强烈搅动。反应产物老消旋,带有自由α-氨基,可以增加另一个酐而延伸。

液相合成

基于将单个N-α保护氨基酸反复加到生长的氨基成份上,合成一步步地进行,通常从合成链的C端氨基酸开始,接着的单个氨基酸的连接通过用DCC,混合炭酐,或N -carboxy酐方法实现。Carbodiimide方法包括用DCC做连接剂连接N-和C-保护氨基酸。重要的是,这种连接试剂促接N保护氨基酸自己炭基和C保护氨基酸自由氨基间的缩水,形成肽链,同时产出N,N?/FONT>-dyaylcohercylurea副产物。然而,此方法因其导致消旋的副反应,或在强碱存在时形成5(4H)-oxaylones和N-acylurea而受到影响。庆幸地是,这些副反应能最小化,如果还不能完全消除。方法是加入象HoSu或HoBT这样的连接催化剂,此外,此方法也可用于合成N保护氨基酸的活性酯衍生物。依次产生的活性酯将自发与任何别的C保护氨基酸或肽反应形成新的肽。

当从副产品, diaydohexylurea分离活性酯有困难时,可用混合Carbonic酐方法,此方法由两步组成,第一步是在有tertiary碱的有机溶剂中用适当的酰基氯激活Nx

保护氨基酸的炭基,第二步是让肽或氨基酸的自由氨基与Carbonic酐反应。Carbonic 酐通常加到自由氨基的14倍。

虽然此方法在低温时高效高产,产品纯,但也有其缺点,例如,由羰基的强激活酐衍生物有消旋倾向。然而此问题在使用Nx-α-Urethane保护基(Cb2, 或tBoc)时便不会发生。进一步:由于高反应性,混合Carbonic酐倾向5(4H)-oxagolomes, Ure rbanes diacyimide, 酯的形成,并易失调。

促进这些副反应的条件是高温,延长激活时间(即,混合酐形成后,加到alkylc hlorocarbonate和amine成份的时间,amine组成的空间占位,平共处和混合酐的不完整形成。幸运的是,大多这些副反应,除形成哑唑酮和脲烷外,可通过低温进行反应(~-15℃),大为减少,并且缩短活化时间(~1-2分钟)。为了使哑唑酮和尿烷形成最少,要实行如下措施:1)必要性须用无水有机溶剂,乙酸,四氢喃,t-butand, 或a cetonitrile; 2)应使用tertiary碱和N-methglmorpholine;3)必须用C b2或tB oc N- α保护氨基酸。

虽然用isobutyl-和ethylchlorocarbonate常用来形成羰酐,但确有别的连接试

剂,例如,EEQD和IIQD用来与CarboxaP成份反应形成erhyl-或isobutyl carbonate 衍生物。不同于传统酐程序,EEQD和IIQD不要求碱,也不要求低温,通常要求一种有机溶剂(有许多也用)中0.1-0.4M浓度的等摩尔量的羰和氨成份。之后EEQD或IIQD

多加5-10%, 温合液室温搅拌15-24小时。真空除去溶剂后,残留物溶于乙酸,用1NH aHCO3 , 10% 枸橡酸和盐水洗剂,之后用无水Na2So4干燥,蒸发,产品可以重晶结或层析纯化。

这种方法避免了用碱,但仍有消旋和尿烷副产物,水平与经典相当。所以优势中于容易方便,但应注意,两种方法的详细比较,目前为重仍未有。

HPLC分析和纯化

分析HPLC使用柱子和泵系统,可以经受传递高压,这样可以用极细的微粒(3-10μ m)做填料。由此多肽要在几分钟内高度被分析。

HPLC分两类:离子交换和反相。离子交换HPLC依靠多肽和固相间的直接电荷相互作用。柱子在一定PH范围带有特定电荷衍变成一种离子体,而多肽或多肽混合物,由其氨基酸组成表现出相反电荷。分离是一种电荷相互作用,通过可变PH,离子强度,或两者洗脱出多肽,通常,先用低离子强度的溶液,以后逐渐加强或一步一步加强,直到多肽火柱中洗脱出。离子交换分离的一个例子使用强阳离子交换柱。如sulfoethy laspartimide通过酸性PH中带正电来分离。

反相HPLC条件与正常层析正相反。多肽通过疏水作用连到柱上,用降低离子强度洗脱,如增加洗脱剂的疏水性。通常柱子由共价吸附到硅上的碳氢烷链构成,这种链长度为G4-G8碳原子。由于洗脱是一种疏水作用。长链柱比短链对小的,高带电肽好。另一方面大的疏水肽用短链柱洗脱好。然而,总体实践中,这两类柱互变无多少显著差别,别类载体由碳水化合物构成,比如苯基。

典型的操作常由两绶冲剂组成,0.1%TFA-H2o和80% acetonitrile 0.1%TFA--H2o 稀acetonitrile。用线型梯变以每分钟0.5%到1.0%改变的速度混合。常见分析和纯化用柱为4.6×250mm(3-10μ m)和22×250mm(10μ m). 如果用径向填柱,那么大小是8×100(3-10μ m)和25×250mm(10μ m)

大量各种缓冲剂含许多不同试剂,比如heptafluorobutyric酸,0.1%磷酸,稀H e formic酸(5-6%, pH2-4), 10-100mM NH4HCO3, 醋酸钠/氨,TFA/TEA,磷酸钠或钾,异戊酚。这样许多不同组合可形成缓冲剂,但要注意一点:硅反相柱料不能长时间暴露于高pH,甚至微碱pH,因为这样会破坏柱子。

纯化

SPPS提取的粗肽含许多副产物,早期的纯化方法包括离子交换,分溶和反溶注析,更现代的方法是反相HPLC,一般于60残基或更少的肽很成功。当反相HPLC失败时,可按合离子交换HPLC。

通常分析HPLC结果用于决定纯化条件。例如,一种太肽用30%(0.1%TFA)acetonitrile洗脱出,这是分析HPL定出的。那么选择acctonitrile浓度更低的缓冲液使得在isocratic条件下(比如28%,0.1% TFA acetonitrile)多肽在溶剂保持时间4-5分钟后洗脱。这样,根据柱子类型,我们的纯化条件用16-35%(0.1%TFA) acetonitrile线型梯度,在一两小时内完成,之后用分析HPLC查检各种比例,使用我们isocranic条件选定的缓冲液。

氨基酸和多肽在生活中的应用

氨基酸和多肽在生活中的应用 一·食品 氨基酸:氨基酸含量比较丰富的食物有鱼类,豆类及豆制品。氨基酸可以用作食品添加剂来提高食物的营养价值;如红牛饮料中含有赖氨酸添加剂;可用于调味,谷氨酸具有鲜味,其钠盐就是味精。 多肽:在普通的面包制作基础上添加一定数量的功能肽,可提高其营养价值并有防止面包老化(功能肽具有保湿性);可作为乳蛋白的替代品,制成特殊的婴幼儿食品,能有效地减轻或消除儿童对乳蛋白的过敏反应,来促进宝宝的生长发育;还可作为调味剂,如阿巴斯甜,是一种低热量的食用调味剂。 二·保健品 氨基酸:如脑白金,瑞年氨基酸等中老年保健品,其中一些氨基酸,如精氨酸、色氨酸、苯丙氨酸等具有缓解压力,避免沮丧及焦虑等状态的作用,有提高精力的作用。 多肽:白蛋白多肽(AP)从卵清蛋白中分离提取的一组低聚肽。它具有调整人体免疫功能、提高血清蛋白含量、改善微循环,进而增强体质、提高防病能力的作用;大豆多肽是从大豆蛋白中分离出来的活性多肽,它具有降低胆固醇在体内重吸收,减少甘油三酯在体内合成,促进脂肪代谢等功能;由于食用多肽具有易被吸收利用的特点,所以,当体内因消耗过多的营养物质,致使体内出现内环境失调,各系统功能处于低效状态,感到疲劳,服用多肽就能迅速地使体内所缺乏的活性物质和营养得到补充,从而达到消除疲劳的目的。 三·药品 氨基酸:精氨酸注射液可用于肝昏迷的急救药,可由明胶水解并精制而成;甘氨酸与重氮化合物作用制成的一系列抗癌药物对胃癌等有显著功效;谷氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基酸单独作用治疗一些疾病,主要用于治疗消化道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉活力、儿科营养和解毒等。 多肽:多肽吸收快速,所以人们把多肽原料中间体作为药品和食品配方的原因,其目的是要加强药效,增强吸收率,可将平常人所食的营养物质,特别是钙等对人体有益的微量元素,吸附、粘贴、装载在本体上;多肽被人体吸收后,可在人体中起信使作用,它作为神经递质传递信息,指挥神经,发挥自身作用,维护人体神经的团队精神和整体效应。 四·美容护肤 氨基酸:一些氨基酸可以增加皮肤营养,改善皮肤问题,可用作护肤品;头部美容的有烫发剂【半肤氨酸(半胧氨酸是还原剂,它能使头发角蛋白的硫一硫键打开,使坚硬而弹性的头发变成柔软容易延伸的还原头发,做成卷曲或波浪形状后,再用氧化剂处理使其重新恢复硫一硫键,义变回天然头发)】、染发剂、护发剂、养发剂, 多肽:可用作多肽护肤品,如表皮生长因子,成纤维细胞生长因子、抗菌肽,生物多肽护肤效果相较于传统护肤品高出许多(但也很贵。。。)。多肽在护肤品中的作用:激活细胞活性,修复受损细胞,促进新陈代谢,构成结缔组织的有机物质,帮助弹力蛋白、胶原蛋白的合成。

氨基酸多肽与蛋白质

第十五章 氨基酸、多肽与蛋白质 (Amino Acids,Peptides and Protein ) 一、教学目的和要求 1.掌握氨基酸的分类、常见氨基酸的结构和名称。 2.掌握氨基酸的化学性质。 3.理解多肽的一般结构。 4.了解蛋白质的一级结构 、二级结构、三级结构和四级结构。 5.了解蛋白质的性质。 6.了解氨基酸、蛋白质在生命活动中的重要意义。 二、教学重点与难点 重点是氨基酸的化学性质。 难点是蛋白质的一级结构 、二级结构、三级结构和四级结构。 三、教学方法和教学学时 (1)教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合,配合适量的课外作业。 (2)教学学时:2学时 四、教学内容 1、氨基酸。 2、多肽。 3、蛋白质。 4、核酸。 五、总结、布置作业 15.1 氨基酸Amino Acids 一、氨基酸的结构和分类 在蛋白质中常见的氨基酸约20种,除脯氨酸外都是α-氨基酸,除甘氨酸外都含手性碳原子且大多 为 L-构型。 组成蛋白质常见的氨基酸有20种,除甘氨酸外,其他氨基酸都有手性碳原子,具有旋光性,其构型 L 型,投影在右的为D 型。D 、L 氨基酸在生理活性上差别很大。 二、氨基酸的化学性质 1. 氨基酸的两性和等电点 研究表明,氨基酸晶体是以偶极离子的形式存在的: R-CH-COO NH 2 R-CH-COO - N + H 3 R-CH-COOH N + H 3 H 3O + OH OH H O + 氨基酸在溶液中的存在形式与溶液的pH 值有关,如果调节pH 使氨基酸成为正负电荷相等的偶极离子,

此时溶液的pH 值称为该氨基酸的等电点(pI) 等电点是每一种氨基酸的特定常数。 当pH <pI ,主要以正离子形式存在,在电场中会向阴极移动; 当pH >pI ,主要以负离子形式存在,在电场中会向阴极移动; 当pH =pI ,主要以偶极离子形式存在,在电场中会向阴极移动; 2. 与亚硝酸反应 放出氮气((Van Slyke 定氨基法) R-CH-COOH +NH 2 HNO 2 R-CH-COOH +OH N 2O H 2 测定放出的氮量,便可计算分子中氨基的含量。 3. 与甲醛反应 R-CH-COOH NH 2 HCHO HOCH 2-N-CH 2OH R-CH-COOH 甲醛固定氨基后,便可用碱滴定羧基。 原理:-OH 的-I 效应降低了N 原子上的电子云密度,使氨基的碱性消失,再用碱滴定-COOH ,从而测定氨基酸的含量——氨基酸的甲醛滴定法。 4. 络合性能 R CH O Cu O R CH O N H 2O NH 2 5. 氨基酸的受热反应 α-氨基酸: C H 3NH 2 O 3 H C H 3NH O CH 3 NH O β- γ - δ- 氨基酸脱水与相应的羟基酸脱水相似。 6. 与水合茚三酮反应——生成兰紫色物质 O O OH OH H 2N-CH-COOH R O O OH O N 此反应可用来鉴别氨基酸。 7. 失羧作用 -CH-COOH NH 2 H 2N-CH 2(CH 2)3Ba(OH)2-CO 2 H 2N-(CH 2)5 -NH 2 赖氨酸 尸胺 蛋白质腐烂时之所以极臭就是因为生成了剧毒的尸胺和腐肉胺(1,4-丁二胺)。 8. 失羧和失氨作用 (CH 3)2CHCH 2-CHCOOH + H 2O NH 2 (CH 3)2CHCH 2CH 2OH 2 + NH 3

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1.生物催化作用 作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2.结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。 4.运输功能 有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。 5.代谢调节功能 执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。 6.保护防御功能 细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一些非免疫性疾病的预防和治疗。

多肽合成基础知识汇编

多肽合成基础知识汇编 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

----------------------------------------------------------------------------------------- 多肽合成 基础知识汇编 编制: 合成部 ----------------------------------------------------------------------------------------- 一、多肽合成概论 1.多肽化学合成概述: 1963年,[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc 固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%-20%约达人体固体总量的45%肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较咼,如大豆中蛋白含量约为38%而黄豆中咼达40%微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%-80%干酵母中蛋白质含量也高达46. 6%病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1?生物催化作用 作为生命体新陈代谢的催化剂一一酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2?结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白, a -角蛋白是组成毛发、羽毛、角质、皮肤的结 构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的

多肽合成思考-练习题.doc

2.多肽的类别及其分类原则, 大小 9肽以下 寡肽 15肽以下 小肽 结构 同聚肽: 15-50肽 多于50肽 线性肽,环肽 中肽 大肽 来源 抗菌肽,激素肽,毒肽 液相合成法 固相合成法 多肽合成思考/练习题 1. 目前多肽的常见定义?多肽的结构单元? a —氨基酸以肽链连接在一起而形成的化合物,其分子量不超过10, 000 ,并且不存在三级以上结构。 结 构单元是氨基酸 多肽同相合成法、液相合成法的对应英文? Fmoc Chemistry 固相合成单循环包括 几个步骤?对应名称? 柴聚肽:色素肽,糖肽,脂肽,缩酯肽 Liquid phase peptide synthesis, LPPS Solid phase peptide synthesis,SPPS Fmoc Chemistry 固相合成单?循环:缩合,洗涤,去保护,中和及洗涤,下一轮 缩合 5.多肽合成中常见副产物有哪些?多肽偶联反应的最高追求?多肽裂解中常常加入俘获剂(Scavengers)0 Scavengers 的主要作用是啥?常见俘获剂有哪些?各|'|特点? 副产物:形成天冬酰亚胺,或发生差向异构化作用 8. 多股合成中如何检查偶联反应的完成程度、树脂替代度和Fmoc 脱除程度? 9. 解决困难肽序合成的常见方法?各自特点? 10. 请比较经Boc-、Fmoc-. Z-三种保护基保护的氛基酸的特点。 11. 多肽固相合成中产生二酮哌嗪(diketopiperazine, DKP)是一常见副反应。请给出产生二酮哌嗪的主要原因以 及减 少DKP 形成的常见方法。 减少DKP 形成的常见方法:使用与叔丁基等效的大基团来以位阻阻止DKP 的形成。 12. 请给出多肽消旋的主要原因以及目前公认的2种机理P157。 多股合成过程中,部分氨基酸在活化的过程中会导致不同程度的消旋,特别容易消旋的氛基酸有:Cys, His, Phe,当然这些消旋化还和溶剂,温度以及合成中的有机碱等因素有关。对于这些敏基酸,可以通过采用高效 缩合试剂,减少反应时间,可以减少消旋的比例

多肽氨基酸知识

(一)基本氨基酸 组成蛋白质得20种氨基酸称为基本氨基酸。它们中除脯氨酸外都就是*氨基酸,即在a-碳原子上有一个氨基。基本氨基酸都符合通式,都有单字母与三字母缩写符号。 按照氨基酸得侧链结构,可分为三类:脂肪族氨基酸、芳香族氨基酸与杂环氨基酸。 1、脂肪族氨基酸共15种。 侧链只就是炷链:Gly, Ala, Vai. Leu. lie后三种带有支链,人体不能合成,就是必需氨基酸。 侧链含有羟基:Scr, Thr许多蛋白酶得活性中心含有线氨酸,它还在蛋白质与糖类及磷酸得结合中起重要作用。 侧链含硫原子:Cys, Met两个半胱氨酸可通过形成二硫键结合成一个胱氨酸。二硫键对维持蛋白质得髙级结构有重要意义。半胱氨酸也经常出现在蛋白质得活性中心里。甲硫氨酸得硫原子有时参与形成配位键。甲硫氨酸可作为通用甲基供体,参与多种分子得甲基化反应。 侧链含有竣基:Asp(D), Glu(E) 侧链含酰胺基:Asn(N). Gln(Q) 侧链显碱性:Arg(R), Lys(K) 2、芳香族氨基酸包括苯丙氨酸(Phe.F)与酪氨酸(Tyr.Y)两种。酪氨酸就是合成甲状腺素得原料。 3、杂环氨基酸 包括色氨酸(Trp.W)、组氨酸(His)与脯氨酸(Pro)三种。其中得色氨酸与芳香族氨基酸都含苯环,都有紫外吸收(280nm)o所以可通过测量蛋白质得紫外吸收来测立蛋白质得含量。组氨酸也就是碱性氨基酸,但碱性较弱,在生理条件下就是否带电与周用内环境有关。它在活性中心常起传递电荷得作用。组氨酸能与铁等金属离子配位。脯氨酸就是唯一得仲氨基酸,就是a- 螺旋得破坏者。 B就是指Asx.R卩Asp或Asn:Z就是指Glx,R卩Glu或Gin。 基本氨基酸也可按侧链极性分类: 非极性氨基酸:Ala, Vai. Leu. lie, Met, Phe. Trp. Pro 共八种 极性不带电荷:Gly, Ser. Thr, Cys, Asn. Gin, Tyr 共七种 带正电荷:Arg, Lys, His 带负电荷:Asp, Glu (二)不常见得蛋白质氨基酸 某些蛋白质中含有一些不常见得氨基酸,它们就是基本氨基酸在蛋白质合成以后经疑化、拨化、甲基化等修饰衍生而来得。也叫稀有氨基酸或特殊氨基酸。如4-疑脯氨酸、5-疑赖氨酸、锁链素等。其中羟脯氨酸与疑赖氨酸在胶原与弹性蛋白中含星较多。在甲状腺素中还有3.5- 二碘酪氨酸。 (三)非蛋白质氨基酸 自然界中还有150多种不参与构成蛋白质得氨基酸。它们大多就是基本氨基酸得衍生物,也有一些就是D-氨基酸或队丫、L氨基酸。这些氨基酸中有些就是重要得代谢物前体或中间产物,如瓜氨酸与乌氨酸就是合成精氨酸得中间产物0-丙氨酸就是遍多酸(泛酸,辅酶A前体) 得前体,丫-氨基丁酸就是 传递神经冲动得化学介质。 二、氨基酸得性质 (一)物理性质 *氨基酸都就是白色晶体,每种氨基酸都有特殊得结晶形状,可以用来鉴别怨种氨基酸。除胱氨酸与酪氨酸外,都能溶于水中。脯氨酸与疑脯氨酸还能溶于乙醇或乙MI中。 除甘氨酸外.a-氨基酸都有旋光性.*碳原子具有手性。苏氨酸与异亮氨酸有两个手性碳原子。从蛋白质水解得到得氨基酸都就是L-型。但在生物体内特别就是细菌中.D-氨基酸也存在, 如细菌得细胞壁与某些抗菌素中都含有D-氨基酸。

多肽合成

多肽合成技术 多肽化学已经走过了一百多年的光辉历程,1902年,Emil Fischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,Fred Sanger发明了氨基酸序列测定方法,并为此获得了1958年的Nobel 化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,Lou Carpino 首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍 多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。 1.1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因

氨基酸和肽类

第17章氨基酸和肽 本章重点:介绍20种编码氨基酸的结构、分类和命名;氨基酸的两性电离和等电点;氧化脱氨、茚三酮反应、脱羧反应;肽的命名;肽键的结构及其与医药相关的生物活性肽。 蛋白质可以被酸、碱或蛋白酶催化水解,在水解过程中,蛋白质分子逐渐降解成相对分子质量越来越小的肽段,直到最终成为氨基酸混合物。氨基酸(amino acid)是分子中具有氨基和羧基的一类含有复合官能团的化合物,是蛋白质的基本组成成分;肽(peptide)是氨基酸分子间脱水后以肽键(peptide bond)相互结合的物质,除蛋白质部分水解可产生长短不一的各种肽段外,生物体内还有很多肽游离存在,它们具有各种特殊的生物学功能,在生长、发育、繁衍及代谢等生命过程中起着重要的作用。本章主要介绍组成蛋白质的氨基酸结构、种类、性质。 学完本章以后,你能否回答以下问题: 1.组成天然蛋白质的氨基酸有多少种?其结构特点是什么? 2.何谓氨基酸的等电点?中性氨基酸的等电点是小于7、等于7、还是大于7? 3.什么是肽单位?它有哪些基本特征? 17.1氨基酸的结构、分类和命名 17.1.1 氨基酸的结构 温习提示:羟基酸和羰基的结构。手性碳原子,D/L和R/S构型标记法。 氨基酸是一类取代羧酸,可视为羧酸分子中烃基上的氢原子被氨基取代的一类产物,根据氨基和羧基在分子中相对位置的不同,氨基酸可分为α-,β-,γ-,…,ω-氨基酸。 R CHC OOH R CHC H COOH R CHC H2CH2C OOH 2 NH2NH NH2 2 α-氨基酸β-氨基酸γ-氨基酸 目前在自然界中发现的氨基酸有数百种,但由天然蛋白质完全水解生成的氨基酸中只有20种,与核酸中的遗传密码相对应,用于在核糖体上进行多肽合成,这20种氨基酸称为编码氨基酸(coding amino acid)。它们在化学结构上具有共同点,即在羧基邻位α-碳原子上有一氨基,为α-氨基酸(脯氨酸为α-亚氨基酸)。由于氨基酸分子中既含有碱性的氨基又含有酸性的羧基,在生理条件下,羧基几乎完全以—COO-形式存在,大多数氨基主要以—NH3+形式存在,所以氨基酸分子是一偶极离子,一般以内盐形式存在,可用通式表示为: R C H C OO +NH 3 式中R代表侧链基团,不同的氨基酸只是侧链R基不同。20种编码氨基酸中除甘氨酸外,其它各种氨基酸分子中的α-碳原子均为手性碳原子,都有旋光性。 氨基酸的构型通常采用D/L标记法,有D-型和L -型两种异构体。以甘油醛为参考标准,

多肽合成技术

精心整理 多肽合成技术多肽化学已经走过了一百多年的光辉历程,1902年,EmilFischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,MaxBergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,FredSanger 发明了氨基酸序列测定方法,并为此获得了1958年的Nobel化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield 提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,LouCarpino首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍 多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。 1.1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因为吲哚性质比较稳定。当然在特殊的情况下,有些氨基酸也可以不保护,象,Asn,Gln,Thr,Tyr。

多肽的基本常识

多肽的基本常识 保存: 大多肽在-20℃很稳定,特别是冷冻干燥并保存在干燥器中,在将它们暴露于空气之前,冷冻干燥多肽可以放于室温。这将是湿度影响减少,当无法冷冻干燥时,最好的方法是以小的工作样量存放。 对于含Cys, Met or Trp的多肽,脱氧缓冲剂对其溶解必不可少,因为这种多肽可易空气氧化,在封瓶前,慢慢流过多肽的氮气或氩气也会降低氧化作用。含Gln或Asn的多肽也容易降解,所有这些肽与不含这些有问题解苷的那些肽相比,生命期有限。 溶解性: 大多肽的道选溶剂是超纯抽气水。稀乙酸或氨水分别对于碱性或酸性多肽的溶解很重要。这些方法不溶的多肽,需要DMF、脲、guanidiniam chloride或acetonitnle来溶解,这些溶剂可能某些实验有副作用。所以我们建议设计多肽时要加注意。 残基Ala, Cys , Ile, Leu, Met, Phe和Val将全增加多肽的溶解难度。 您需要特殊的多肽或任何技术帮助,请随时与我们联系。我们包你完全满意,对于我们不能适当合成的顺序,我们不收费。 多肽的保存和操做 包装 1mg或更少的多肽按净重包装,声明的小瓶重不含相关抗离子和水。例如,氨基酸分析决定的肽含量是80%,在1mg样品中,那么瓶中毛重是1.25mg。 大量的多肽以毛重算。标出的重量含相关抗离子和水,例如,25mg样品中肽百分比为90%,那么,实际肽量为25mg×90%=22.5mg 不要把肽含量和纯度搞混了。肽的纯度可能是100%,而肽含量相关带电基团(如Arg, Lys )的抗离子量和肽新水性决定。这是合成肽的本身特性。 冻干肽的保存 所有产品应存于冰箱,最好为-20℃。多数肽以此方法可以存放几年不变。 肽溶液的保存 溶液肽远比冻干形式不稳定,溶液应为中性pH(pH5-7), -20℃保存的,为避免样品的 反复冻融,最好分成小样存放。一份样品融冻后未用完,应扔掉,细菌降解有时会成为溶液肽的麻烦,为克服此,肽应溶于无菌水,或肽溶液用0.2μ M滤膜过滤。 多肽的重建和操作 多数肽溶于无菌蒸溜水。初次溶解时,要注意使初始浓度比要求浓度大,如果多肽仅有限溶解性,这便允许加入其它溶解剂或缓冲盐。 如果多肽在水中的溶解性有限,有几种选择可帮助溶解: 对碱性肽用稀乙酸(含Arg , Lys , His) 酸性肽用稀氨水(含Asp, Glu) 对极疏水的肽用10%有机修饰物(Acetonitnile , Methanol) 极不溶的肽用DM50或DMF guanicline hydrochloride或脲的浓溶液也很有用,与上述方法合用,声处理也是 溶解多肽的有效手段。

Boc法_固相多肽合成(精)

Boc法固相多肽合成 SPPS是以在不溶性聚合物支持体上按序添加ɑ-氨基和侧链保护的氨基酸为基础的。而Boc法则是以易酸解的Boc基团作为N-ɑ-保护基团。切除此保护基团后,下一个被保护氨基酸通过使用连接试剂或预先激活的受保护氨基酸衍生物添加上去。多肽链的C端通过一连接体与树脂相连,其依赖于不同的连接剂的使用而被切割成为多肽酸或多肽酰胺。通常选择性使用氨基酸侧链保护基团而使得切除树脂的同时切除这些侧链保护基团。 Boc基团用TFA切除。肽基树脂的最后切除和侧链保护基团的切除需要使用强酸,在 Boc化学中使用HF酸或TFMSA。DCM和DMF是树脂脱保护耦联和洗涤的首选溶剂。 Boc法其缺点是反复使用TFA酸解脱保护会导致多肽复合物中易酸解的保护基团产生一些副反应,而且Boc基团的切割和脱保护要求使用危险的HF和昂贵的实验仪器,而这些都是研究者不愿使用的。 一般的Boc法固相合成方式描述如下。 一、树脂合成: 1、 Peptide acid Merrifield Resin and PAM Resin 2、 Peptide carboxamide MBHA Resin 二、肽链合成:

氨基酸的耦联同Fmoc SPPS 类似,不同的是氨基酸N末端保护基Boc 的脱除。 N-端Boc基团的切除: 在HF切割以前须将 N-端Boc保护基团用TFA除去。因为它不仅会阻碍后面的HF切割除去t-bu基团,而且还会通过离子交换切除所有肽链中Boc基团保护的氨基酸。手工切割N-端Boc基团方法是用TFA/DCM比为1:1的溶液在室温条件下洗涤反应15分钟。 三、切割 无水HF是多肽中Boc树脂切割的常用试剂。在大多数Boc树脂多肽的所有的切割程序中HF是最通用和危害最小的。其主要缺点就是它的高毒性和反应活性,因此必须使用防HF头罩及切割仪器。其它的强酸如TFMSA和TMSOTF也能用来替换HF作为PAM和MBHA树脂的切割剂。虽然比HF活性小,但是在使用它们的时候同样需加以注意。此处仅介绍HF切割法。 3.1 切割前的树脂准备 多肽树脂切割前的准备对防止副反应的发生及切割和脱保护的完全起着相当重要的作用。切割试剂和脱保护方法的选择不仅仅与所用树脂有关,而且同肽链的氨基酸顺序及其侧链保护基团的选择有关。在合成前确定所用树脂和侧链保护基团适合于所用的切割方法。所有树脂在切割前必须完全的洗净和干燥。 特殊情况处理: 1 His的Dnp保护基团的切割

多肽合成常见问题

… Peptide Synthesis Department ------------------------------------------------------------------------------------------------------------------------------------------- P S I Advanced Peptide Instrumentation & Technology 1.如何进行多肽合成? Fmoc and Boc methodologies are both employed, using solid and solution phase reactions. Fmoc chemistry is most suitable for simple peptides and sequences prone to oxidation, but the use of Boc chemistry allows us to synthesise difficult sequences, and gives a greater flexibility in the synthesis of modified peptides. Most peptide synthesis is carried out in the solid phase, but certain modifications are carried out in solution after peptide synthesis and cleavage from the resin. 2.Fmoc 法固相合成的基本流程是如何进行的? 详细流程如下图: 3.什么样的肽端(C- and N-terminal endings )比较好? This depends on the application you have in mind for your peptides. It may be a good idea to choose the terminal ends of the peptide dependent on the natural occurrence of the sequence: 1. The peptide(s) should mimic an internal sequence of a protein. The peptide(s) should not be charged at the ends. The N-terminus of the peptide(s) should be acetylated and the C-terminus should be an amide. 2. The peptide sequence is the C-terminal end of a protein. The C-terminus should be the free acid and the N-terminus should be acetylated. 3. The peptide sequence is the N-terminal end of a protein. The C-terminus should be an amide and the N-terminus should be in the natural free amine form. ? For cytotoxic T-cell epitope studies the peptides should have both, a free amino group at the N-terminus and a free acid at the C-terminus. These ends are the natural equivalents to the peptide fragments, processed intracellularly from whole proteins. ? Peptides with acetylated N-terminus and an amide as C-terminus are more resistant to exopeptidases, which may be an important factor regarding the time a peptide will be functional in a biological assay. ? Biotinylated peptides can be useful in combination with streptavidin coated surfaces (e.g. beads, plates or

多肽氨基酸知识

(一)基本氨基酸 组成蛋白质的20种氨基酸称为基本氨基酸。它们中除脯氨酸外都是α-氨基酸,即在α-碳原子上有一个氨基。基本氨基酸都符合通式,都有单字母和三字母缩写符号。 按照氨基酸的侧链结构,可分为三类:脂肪族氨基酸、芳香族氨基酸和杂环氨基酸。 1.脂肪族氨基酸共15种。 侧链只是烃链:Gly, Ala, Val, Leu, Ile后三种带有支链,人体不能合成,是必需氨基酸。 侧链含有羟基:Ser, Thr许多蛋白酶的活性中心含有丝氨酸,它还在蛋白质与糖类及磷酸的结合中起重要作用。 侧链含硫原子:Cys, Met两个半胱氨酸可通过形成二硫键结合成一个胱氨酸。二硫键对维持蛋白质的高级结构有重要意义。半胱氨酸也经常出现在蛋白质的活性中心里。甲硫氨酸的硫原子有时参与形成配位键。甲硫氨酸可作为通用甲基供体,参与多种分子的甲基化反应。 侧链含有羧基:Asp(D), Glu(E) 侧链含酰胺基:Asn(N), Gln(Q) 侧链显碱性:Arg(R), Lys(K) 2.芳香族氨基酸包括苯丙氨酸(Phe,F)和酪氨酸(Tyr,Y)两种。酪氨酸是合成甲状腺素的原料。 3.杂环氨基酸 包括色氨酸(Trp,W)、组氨酸(His)和脯氨酸(Pro)三种。其中的色氨酸与芳香族氨基酸都含苯环,都有紫外吸收(280nm)。所以可通过测量蛋白质的紫外吸收来测定蛋白质的含量。组氨酸也是碱性氨基酸,但碱性较弱,在生理条件下是否带电与周围内环境有关。它在活性中心常起传递电荷的作用。组氨酸能与铁等金属离子配位。脯氨酸是唯一的仲氨基酸,是α-螺旋的破坏者。 B是指Asx,即Asp或Asn;Z是指Glx,即Glu或Gln。 基本氨基酸也可按侧链极性分类: 非极性氨基酸:Ala, Val, Leu, Ile, Met, Phe, Trp, Pro共八种 极性不带电荷:Gly, Ser, Thr, Cys, Asn, Gln, Tyr共七种 带正电荷:Arg, Lys, His 带负电荷:Asp, Glu (二)不常见的蛋白质氨基酸 某些蛋白质中含有一些不常见的氨基酸,它们是基本氨基酸在蛋白质合成以后经羟化、羧化、甲基化等修饰衍生而来的。也叫稀有氨基酸或特殊氨基酸。如4-羟脯氨酸、5-羟赖氨酸、锁链素等。其中羟脯氨酸和羟赖氨酸在胶原和弹性蛋白中含量较多。在甲状腺素中还有3,5-二碘酪氨酸。 (三)非蛋白质氨基酸 自然界中还有150多种不参与构成蛋白质的氨基酸。它们大多是基本氨基酸的衍生物,也有一些是D-氨基酸或β、γ、δ-氨基酸。这些氨基酸中有些是重要的代谢物前体或中间产物,如瓜氨酸和鸟氨酸是合成精氨酸的中间产物,β-丙氨酸是遍多酸(泛酸,辅酶A前体)的前体,γ-氨基丁酸是传递神经冲动的化学介质。 二、氨基酸的性质 (一)物理性质 α-氨基酸都是白色晶体,每种氨基酸都有特殊的结晶形状,可以用来鉴别各种氨基酸。除胱氨酸和酪氨酸外,都能溶于水中。脯氨酸和羟脯氨酸还能溶于乙醇或乙MI中。 除甘氨酸外,α-氨基酸都有旋光性,α-碳原子具有手性。苏氨酸和异亮氨酸有两个手性碳原

多肽固相合成

发明 英文解释: solid phase peptide synthesis 简写为SPPS 在肽合成的技术方面取得了突破性进展的是R.Bruce Merrifield,他设计了一种肽的合成途径并定名为固相合成途径。由于R.BruceMerrifield在肽合成方面的贡献,1984年获得了诺贝尔奖。下面给出了肽固相合成途径的简单过程(合成一个二肽的过程)。 氯甲基聚苯乙烯树脂作为不溶性的固相载体,首先将一个氨基被封闭基团(图中的X)保护的氨基酸共价连接在固相载体上。在三氟乙酸的作用下,脱掉氨基的保护基,这样第一个氨基酸就接到了固相载体上了。然后氨基被封闭的第二个氨基酸的羧基通过N,Nˊ-二环己基碳二亚胺(DCC,Dicyclohexylcarbodiimide)活化,羧基被DCC活化的第二个氨基酸再与已接在固相载体的第一个氨基酸的氨基反应形成肽键,这样在固相载体上就生成了一个带有保护基的二肽。 重复上述肽键形成反应,使肽链从C端向N端生长,直至达到所需要的肽链长度。最后脱去保护基X,用HF水解肽链和固相载体之间的酯键,就得到了合成好的肽。 固相合成的优点主要表现在最初的反应物和产物都是连接在固相载体上,因此可以在一个反应容器中进行所有的反应,便于自动化操作,加入过量的反应物可以获得高产率的产物,同时产物很容易分离。 化学合成多肽现在可以在程序控制的自动化多肽合成仪上进行。Merrifield成功地合成出了舒缓激肽(9肽)和具有124个氨基酸残基的核糖核酸酶。1965年9月,中国科学家在世界上首次人工合成了牛胰岛素。固相合成法的诞生 多肽合成研究已经走过了一百多年的光辉历程。1902年,Emil Fischer 首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,多肽合成才开始有了一定的发展。

相关文档
最新文档