如何测试D类功放-

如何测试D类功放-

如何测试D类功放?

D类功放就是通过PWM(脉冲宽度调制)把模拟信号调制成数字信号(方波),所以测试方法自然跟AB类功放有着不同,一些朋友对于D类功放的测试还是有点模糊,这里跟普及一下。

D类功放的测试过程大部分其实是还原出模拟信号的过程,还原模拟信号就要用到滤波器,常用的滤波器有两种,RC和LC.

1)首先介绍一下RC滤波器,这个比较简单,引用TI的框图介绍如下:

TPA2010是一颗D类功放,输出接负载(喇叭),负载后端接30KHZ的低通滤波器,滤波器之后得到的是模拟信号,再送入测试设备AP或者示波器等。这个滤波器就是简单的RC滤波器:

这个方法有两个地方需要注意:

1 是顺序问题,负载(喇叭)要在滤波器之前,如果放在之后就会大幅衰减。

2 是TI也特别提示的,如果用水泥电阻做负载,建议在电阻上串一个33uH电感,尤其是测试效率时,这个对电流影响很大,这也是为什么方泰规格书上经常会出现4欧+33uH。举例说明一下第二点,例如方泰ft2925在2X4W时候的电流波形,输入1KHz 正弦波、下图是负载是水泥电阻4欧,没有串电感,绿色是电源上的电流,红色和黄色分别是输出的PWM方波。

对上图放大展开看,得到下图:

接下来其他条件不变,负载有4欧改为4欧+33uH电感测试,电源电流波形被还原出正弦波的形状,平均电流减小很多。

同样对上图放大展开看,电流只有很小的纹波。

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

功放机指标测试方法概要

文件名称:功放机电性能测试方法指引 文件编号:TPPEAV201105090001 版本号:A0版 受控状态: 是□否□ 拟制: 批准: 日期: 注: 1.目的 ——使QC岗位所有人员能按标准进行岗位操作,以便满足岗位能力要求;——使各岗位QC操作方法统一,避免操作方法不规范导致失误。 2.适用范围 ——使用于本厂所有质量管理人员及在岗QC。

功放机电性能测试方法指引 一、各声道额定输出功率测试方法: 1.测试所用基本设备仪器: 音频信号源负载盒双针毫伏表调压器 双踪示波器失真测试仪 2.测试条件: ~220V电压8Ω负载1KHz/500mv正弦波信号 各仪器按要求连接好。 3.测试步骤:(以主声道为例,其它声道测试方法同) a.将主音量逐步加大,看示波器上的波形有0.7%失真为宜,然后读出 双针毫伏表各指针此时所得到的伏度数;(要求主高音、低音、平 衡居中) b.此时双针毫伏表上各指针所得到的伏度数即为主声道额定输出伏度 (毫伏表上有两个读数具体到主左、右声道时可根据接仪器时的接 线而定); c.具体的输出功率再进行换算,我们在生产中只测出各声道额定输出 伏度即可; d.名词解释额定输出功率:也叫最大不失真输出功率,将被测功 放机置于~220V电压、8Ω负载、1KHz/500mv正弦波信号下将 音量逐步加大,看示波器上的波形有0.7%失真时读出双针毫伏表 各指针此时所得到的伏度数,然后进行换算所得到的功率。

e.毫伏表的量程根据各声道的输出功率而定,这样能准确反映测量值, 误差小,同时避免损坏仪器。 二、主左、右声道串音测试方法: 1.测试所用基本设备仪器: 音频信号源负载盒双针毫伏表调压器 双踪示波器 2.测试条件: ~220V电压8Ω负载1KHz/500mv正弦波信号 各仪器按要求连接好。 3.测试步骤:(要求主高音、低音、平衡居中) a.将主声道置于额定输出功率,读出左声道现在的dB数,记为L1【此 时L1的dB数计算方法为:若毫伏表在“30V/+30dB”档位,毫伏表 显示的左声道指针在-7dB,那么L1的读数为+30dB+(-7dB) =23dB】; b.然后拔掉左声道的输入信号,此时毫伏表上左声道的指针读数基本 为0,再逆时针旋转控制左声道的毫伏表量程钮,直到能读取毫伏 表左声道指针显示dB数为宜,此时的读数记为L2【此时L2的dB 数计算方法为:若毫伏表在“100mv/-20dB”档位,毫伏表显示的左 声道指针在-8dB,那么L2的读数为-20dB+(-8dB)= -28dB】; c. L1的绝对值加L2的绝对值即为右声道串左声道的声道串音(R/L) 【按a 、b两点给出的数据计算R/L=23 dB的绝对值+(-28dB) 的绝对值】;

功放部分指标检测方法

一、功放的基本概念 功放全称功率放大器,英文缩写为PA,使用场所多,例如直放站。 二、需要使用到的主要仪表 1.信号源:提供射频信号的作用。 2.频谱仪:检测射频信号,读取射频信号值的作用,内带衰减器。 3.网络分析仪:测试端口驻波比时会用到该仪表,内带信号源。 三、需要用到的测试配件 1.衰减器:起到减少信号的作用,保护频谱仪,一般选用衰减为-40dBm的就合适。 2.校准件:它分母头和公头,分别包含open/closed/BB。由于频率的不同、扫描点的不同、 输入射频信号大小的不同,在每次网络分析仪,都要用校准件校对网分。 3.隔直器:起到隔开直流电压的作用,保护信号源和频谱仪,一般在信号源以及频谱仪的 端口上分别安装一个。 4.隔离器:起到使射频信号单方向导通的作用,保护信号源,一般在信号源上安装一个。 5.同轴电缆:射频信号的载体。 四、PA的部分指标的定义 1.端口驻波比:是指到PA的输入输出端口的信号,输入的与反射的信号比。 2.最大输出功率:指模块的最大输出功率。 3.增益:是指模块在线性范围内的放大倍数。 4.增益调节精度:测试ATT的衰减与实际下降的功率是否误差过大。 5.增益平坦度:也称带内波动,检测模块的输出功率在整个频段内的波动有多大。 6.互调:开双信号时,检测模块的三阶互调是否能满足要求。 五、PA的部分指标的检测方法 1.端口驻波比:先校准网分,校准时,分别设置起止频率、扫频点、输出功率(一般为10dBm),设置完毕后按提示用open/closed/BB 三种校准件开始校准。校准完毕后,B B头不取,按marker键,查看校准情况,一般小于1.02 就算合格。测PA输入端口时,模块需通电测试,输出接大功率的负载。测输出端口时,模块不需要通电,输入端口接2W或5W 的小负载。一般情况下,PA的端口驻波比要求<1.3就算合格。 2.最大输出功率:测试前,需校线。校线顺序为先校信号源再校频谱仪的线或先校频谱仪再校信号源的线,两种方法都可以。现以现校信号源为例来说明。首先按隔直器、隔离器、同轴电缆的顺序将此接入到信号源上,注意隔离器有方向性。再把电缆的另一头通过N型转接头与频谱仪相接。开始设置仪表,以DCS的上行PA为例,将信号源、频谱仪的频率设置为1733MHz(起止频率为1710~1755MHz,中心频率为1732.5MHz,但实际设置为1733MHz即可)。信号源的校准功率和输出功率以及频谱仪的校准功率都设置为0dBm,开信号。调节频谱仪的显示,读取数值。例如频谱仪显示为-0.56dBm。关信号,然后将信号源的校准功率设置为-0.56dBm,输出功率依然设置为0dBm,再开信号,观察频谱仪的数值,应为0dBm,否则未校成功。开始校准频谱仪,首先按隔直器、同轴电缆、衰减器、同轴电缆的顺序将此接入到频谱仪上,注意衰减器有方向性。同轴电缆的另一头用SMA转接头与信号源上的电缆相连。信号源输出功率设置为0dBm,开信号。调节频谱仪的显示,读取数值。例如频谱仪显示为-42.62dBm。关信号,然后将

流行的及常用的6款发烧IC音频功率放大器

流行的及常用的6款发烧IC音频功率放大器 6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA7293和TDA7294,它们的标称输出功率在30~100W范围内,适用于家用高保真音频功率放大器。采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。 关键词: 音频功率放大器功率IC TDA7294 TDA7293 应用 LM1875 LM4766 LM3886 一、6片IC简介 本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。 虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。 1. LM1875 LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。它采用TO-220封装,外围元件少,性能优异,直到现在还一直被广泛应用于音响上。LM1875价格低廉,最适合于不想花太多钱又想过发烧瘾的爱好者业余制

几种常见的光放大器的比较

几种常见的光放大器的比较

————————————————————————————————作者: ————————————————————————————————日期:

对几类放大器的认识 在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。现就这几类放大器的工作原理和特殊情况做一下说明。 1)掺铒光纤放大器(EDFA) EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。由于EDFA工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。由于这两个能级之间的能量差正好等于1550nm 光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。 EDFA的组成: 工作原理图:

那么,EDFA的输出公路车是如何控制的呢? 一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。 在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益有什么区别呢? 平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。 如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。

音响系统调试步骤及方法有哪些

音响系统调试步骤及方法有哪些 音响系统的调试一般分为系统调试和声音调试,音响系统调试有步骤,对于音响系统调试的时候需要掌握哪些步骤呢? 1、线路检查:按照图纸,仔细检查线路连接,确认没有问题。 2、设备初始状态设置,把功放输入设置为最小,把所有周边设备的输入输出旋钮设置为0分贝位置或中间位置。按照从前级到后级的顺序通电(先不开功放),检查所有设备通电正常后,给功放通电。 3、初步检查系统状态:适当开大功放的增益控制,CD中放入一张熟悉的音乐,调整调音台输入电平到基本正常位置。慢慢推起一点调音台推子,听听音箱发出来的声音是否正常,是否失真,如果不正常就立即关机检查。 4、音箱及系统极性检测:系统基本正常后,打开所有设备电源,功放电平设置在最大,拉下调音台输出推子,相位仪发生器接入调音台输入通道,打开相位仪电源调整输出增益和调音台输入增益到调音台指示表为0分贝。慢慢推起调音台输出推子,等音箱中发出的“砰砰”声达到足够的响度(如果响度不够,测试结果有时不准确),用相位仪检测器检查每只音箱是否同相或与音箱说明书的描述一致。检测时最好关闭其他的音箱,防止干扰,逐个检测比较准确。如果有不正常的,检查音箱线是否接反或者是系统连接线是否有反相的。调转或更换后再检测。 5、音响系统相位调整:如果同时使用超低频和全频的组合,由于分频系统的存在以及安装位置的原因,可能会有交叉频率干扰或延时时间不同引起的相位问题,所以需要进行相位调整。粉红噪声(PINKNOISE)发生器接到调音台输入通道,调整电平到正常位置,相位仪测试话筒放在场地中间,与音箱成正三角形的位置。推起调音台输出推子,检查频谱仪屏幕在全频与超低频音箱分频频率附近的频段有没有出现谷点。如有,提升均衡器相应频段,如果提升不上来,就是存在相位问题。出现相位问题会直接影响音质,而且用均衡器无非解决。要解决相位问题就需要调整分频器的相位角或音箱之间的延时时间。调整时,注意看频谱仪显示,首先调节低频分频器的相位角,看看有没有改善,如果有改善,确定一个最佳的数值后再调节延时时间,延时时间调整要看现场情况,如果低频音箱距离坐席近,就需要对低音做延时调节,同样也是看频谱仪屏幕,调整延时时间使曲线尽量平一点。把相位干扰减少到最低。 6、音响系统频率均衡:在做完上面的调节后,就需要调节系统的频率响应曲线。把频谱仪的测试话筒放在坐席区域内的一个位置,播放粉红噪声声源,观看频谱仪显示,对有缺

几种常见的光放大器的比较

对几类放大器的认识 在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。现就这几类放大器的工作原理和特殊情况做一下说明。 1)掺铒光纤放大器(EDFA) EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。由于EDFA 工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。由于这两个能级之间的能量差正好等于1550nm光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。 EDFA的组成: 工作原理图: 那么,EDFA的输出公路车是如何控制的呢? 一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。 在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益

有什么区别呢? 平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。 如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。 有上图可以知道,掺铝的金属元素的EDFA在增益的控制上明显要比不掺铝的EDFA平坦的多。 需要注意的是:EDFA在放大信号的同时也放大了噪声,而噪声主要来自EDFA的自身受激辐射,是主要的噪声源,也是系统OSNR劣化的主要原因。 放大器产生的自发辐射噪声功率为:PASE = -58 + NF + G (dBm) 其中NF为光放大器噪声系数(dB)、G为光放大器的增益(dB)

实验五_音响放大器的设计说明

东南大学电工电子实验中心 实验报告 课程名称:电路与电子线路实验2 第 5 次实验 实验名称:音响放大器的设计 院(系):吴健雄学院专业::学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩: 审阅教师:

一、实验目的 1、了解实验过程:学习、设计、实现、分析、总结。 2、系统、综合地应用已学到的模拟电路、数字电路的知识,在单元电路设计的基础上,利用Multisim软件工具设计出具有一定工程意义和实用价值的电子电路。 3、通过设计、调试等环节,增强独立分析与解决问题的能力。 二、实验容 设计一个音响放大器,要现话筒扩音、音量控制、混音功能、音调可调(选作)等功能。 1、基本要求 功能要求:话筒扩音、音量控制、混音功能 额定功率:0.5W(失真度THD≤10%) 负载阻抗:8Ω 频率响应:fL≤50Hz ,fH≥20kHz 输入阻抗:20kΩ 话音输入灵敏度:5mV 2、提高要求 音调控制特性:1kHz处增益为0dB,125Hz和8kHz处有±12dB的调节围。 3、发挥部分 可自行设计实现一些附加功能。 三、电路设计 1、项目分析 1)话音放大器 ①话放的输入音源采用驻极体话筒; ②话放增益一般为5~10倍左右,可采用同相放大器实现; ③由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20k,所以话音放大器的作用是不失真地放大声音信号(最高频率达到10kHz)。其输入阻抗应远大于话筒的输出阻抗。 2)混合前置放大器

① 混合前置放大器的作用是将放大后的话音信号与Line In (输出MP3作为背景音乐信号源)信号混合放大,起到了混音的功能; ② 使用加法器实现信号的合成。 3)功率放大 ① 功率放大的作用是给音响放大器的负载提供一定的输出功率; ② 当负载一定时,希望输出的功率尽可能的大,输出信号的线性失真尽可能的小,效率尽可能的高; ③ 常用形式有OTL 电路和OCL 电路等。 4)电路结构框图 5)电路增益分配 (1)输出功率:W P o 5.0= (2)负载:Ω=8L R (3)对应输出电压: 由公式L o o R U P /2=得:V R P U L o o 2== (4)电压增益: 已知输入电压mV U i 5=,则电压增益400/==i o V U U A (5)方法倍数分配:

专业功放主要指标性能测试

专业功放(模拟)测试方法及主要性能指标 专业功放的基本测试方式和常用仪器 A、常用普通测试方式 工具仪器:双踪示波器(20M)、同步失真仪、毫伏表、音频信号发生器、功率负载 基本连接示意图如下: 各种测试仪器实物图: 负载信号发生器(上) 双踪示波器(下)毫伏表 使用此类方式的测试,连接简单、测试方便、比较直观,对输出波形可进行直观的观测。缺点测试精确度不高,误差较大。对参数要求精度很高的产品不适用。

B 、Audio precisionATS 专业音频分析仪测试方式 工具仪器:功率负载、Audio precisionATS(简称AP)及配套设备(电脑等) 连接示意图如下: Audio precisionA TS-2专业音频分析仪见下图: 下图是软件运行界面:

AP测试时使用的单位介绍 1、测试信号幅度时的单位及其定义为 单位定义换算 V (伏)基本单位 Vrms 有效值 Vp 峰值1Vp=1.414Vrms Vpp 峰峰值1Vp=2.828Vrms dBv (伏特分贝)以1V为零电平的分贝=20*log(V/1V) dBu (电压分贝)以0.7746V为零电平的分贝=20*log(V/0.7746v) dBm (毫瓦分贝)以600Ω1mW为零电平的分贝0dBm=1mW(600Ω阻抗) dBg 以发生器的值为零电平的分贝=20*log(V/发生器幅值)dBr (基准分贝)以基准为零电平的分贝=20*log(V/基准值)dBrinv dBr的反相=20*log(V/基准值) W (功率)电功率=V A=V2/R 2、相对量的单位 功能单位定义 THD+N Ratio % 100*(噪声+失真)/(信号+噪音+失真) THD+N Ratio dB 20log[(噪音+失真)/(信号+噪音+失真)] SMPTE/DIN % 100*失真/高频信号 SMPTE/DIN dB 20log(失真/高频信号) Crosstalk dB 20log(非工作通道/工作通道) Wow&Flutter % 100*(抖动频率分量)/(测量的频率) 3、频率单位 单位定义 Hz 基本单位 F/R (分频)是参考频率的倍数 dHz (deltaHz 差频)与参差频率相差的频率 Cent Octaves 八度音阶 Decades 与参考频率的对数值 %Hz (频率比)与参考频率的百分比 d% (差频比)减参考频率后与参考频率的百分比 MdPPM 减参考频率后与参考频率的倍数比 PPM 1kHz=1000PPM;1MHz=1PPM 4、相对以上单位的参考值设定

关于功放测试的概念

通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,此时输入功率定义为输入功率的1dB压缩点。为了防止接收机过载,从干扰基站接收的总的载波功率电平需要低于它的1dB压缩点。 放大器有一个线性动态范围,在这个范围内,放大器的输出功率随输入功率线性增加。随着输入功率的继续增大,放大器渐渐进入饱和区,功率增益开始下降,通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。 为什么放大器会产生三阶交调? 如果有两个频率相近的微波信号和本振一起输入到混频器,由于混频器的非线性作用,将产生三阶交调。当两个或多个干扰信号同时加到接 收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机,其中三阶互调最严重。由此形成的干扰,称为互调干扰。互调干扰和交调干扰一样,主要产生在高放和变频级。 在射频或微波多载波通讯系统中,三阶交调截取点IP3(Third-order Intercept Point)是一个衡量线性度或失真的重要指标。交调失真对模拟微波通信来说,会产生邻近信道的串扰,对数字微波通信来说,会降低系统的频谱利用率,并使误码率恶化;因此容量越大的系统,

要求IP3越高,IP3越高表示线性度越好和更少的失真。本主要介绍了三阶交调截取点(IP3)测量方法。 2.计算三阶交调截取点 IP3通常用两个输入音频测试,这里所指的音频与我们在低频电子线路的音频有区别,实际上是两个靠的比较近的射频或微波频率,当两个或多个正弦频率正好落在放大器的带宽内并通过一个非线性放大时,其输出信号将包括各种频率分量。三阶交调分量2F1-F2,2F2-F1是非线性中三次方项产生的,由于落在带宽内,是我们主要关注的非线性产物 频谱仪 1. VBW:显示带宽-在测试时能看到更宽的频率范围,如果要 观测的信号更精细,则需要减少; RBW:分析带宽;比如,测试CDMA的功率,既不能太大, 也不能太小,应该与信号的带宽相对应;还有测试链路噪 声等,也需要对RBW有一定的要求。 2. RBW,分辨率带宽,有人也叫参考带宽,表示测试的是多 大带宽的功率,如测试一GSM 2W干放满功率单载波输出 时,RBW设为100KHz时测得30dBm,设为200KHz测

几款简单功放

■W' 几款简单功放 江苏省泗阳县李口中学 沈正中 1、放大MP3信号简单小功放电路图 图1电路音质不错, 20mA 左右的直流,感觉 挺好,就是音量有点偏小。 图2电路音量大,但 音质不好,加大电流,音 质变好,时间长可能烧坏 三极管。因此对图2做如 下电路改进: isms.—30m 注 \〈 C HIH* SB BG 3V —6V 百 3V — 6V SB 1 15 皿3 R* CZF <1 L — BG 为申对率管”放 大系数为50—100 NPN 上 改进电欝持点: 1>采用了输出变压器.畏商了电路效 率.敢善了音质口 2,工作点稳定 由电阻R 构威的徭査电路接难输出变M >SB 的”热端材(即三极管的 集电械).利用SB 初级疑组的宜流电粗,取欝电压负反馈借号.稳 定了故大器的工作点" 療申鉢由齡缺陷? 1, 负我与三极管直精”电略车匹配,效率极低卡 2, 炭載中很很大的直流流过,便扬声器青團严重偏裔中心位置”减 小了扬声器的最尢不失真输出功率: 3>储畫电路不能稔定电路工作衣亠 4,电路画法不规范*例如.佶号源(MP3)不是直接接地? PNP 3- 2、简单小功放 R2 170 ------ 1 — Cl ltJuF C2 1 jinxF TL F VI L ^050 3AX81 3V-&V H - ?AX31 图2

0 0 ■W'

3、一款简单易制的功放电路图 一般的集成功放电路外围元件较多且需要较大 的散热器。本文介绍的功放电路简单,自制方便。 电路如图1所示。用一块TDA2822M 功放集成 电路接成BTL 方式,外围元件只有一只电阻和两只 电容,不用装散热器,放音效果也令人满意。 元件选择与安装: 集成电路TDA2822M 为8脚双列直插式封装, 如果买不到可用TDA2822代替,TDA2822的封装 与TDA2822M 相同,它们区别在于:TDA2822M 从3V 到15V 均可工作,而TDA2822必须把电压降 到8V 以下。R1的数值要求不拘,一般选用 10千 欧的碳膜电阻。C1可选用0.1UF 和涤纶电容, 圏2垦茸印劃电路板匡’由于电路詡草■皿制板可用铲題浚刑炸.电再桎车屮钻乱? 用*辭砂粧毬牛皮抵诂少■水擦亮*闱木枕命據干? 徐上一愷幣香亀稱用蔽r 干佶把元件宣接焊探鹏辭 直那可. 胖好后橙査无谋.然垢先不接搞声郵,按上电 源.關正负宦出堆之闾电压应小于0- IV.按上扬曲 器丫用手粧廉轄人螺,攝芦關親发出较大的-电“声“ 世耐即可输人储号试罟’ 檢用科应t£磨匚由干卒功我为直抵稱含’所□穩人 倍节不址肃区眾戎井「如果输丸帖号 有直流成井H 应加程骑人嬉申搂一貝HigF 左右的电客RI 奔,苦刚希有瞿丈的直淹理濫汛过 丙声舂|便之3t 热聽毀. 在丈疑中「符時惟1宙透行ifi 当的改制则睾卑覽划理想卜黄进启的电路如阳日所 禾.丄便KIF 左规* friff W*X?=t TDA28S2M TMift TDA2S22M 器*如圈4所示.敵热胖用甲]>?m 4拦 加mm.寛25mni 的畅冷制威.拌衣嚴热片*开 5 - £卜任却 “叫便I 的權,耳把載懐片潸鼎熨折碗“形.快鴉鹅器阿先在TDA2a-2M 匕故点建肃(辞脐可訓厝3AX3 ]箋^AXSl 鴛覺中眼几按朗!5 GO 用细蠅彝扎号却可.底生棺的是祀TDA 話弟则的弓)膵数 写在厳洛片时證而*以呢埠慢时出 错’珈蠶懐罂厉,晋殂开至凰 tfc 壽嫩黑平错.此世也可用于梵E 小爲賦电 踣的戟找幻用两了功柱竜络做虛陡身听立体击功率搖续憶. 来推功阿牛小書箱*效卑很那. 4、只用三个分立元件自制最简单的实用功放 笔者先用3DD303C 等三只分立元件,制作了最简单实用的单管单声道功放, 可谓是一款音质优美、 最 简单的经典功放。 C2为100UF/160V 的电解电容 IIHI

音响系统调试方法

一)调试前的准备1、音箱位置的摆放:舞台主扩音箱朝台前两侧摆放,分体式音箱中低音音箱在最下,中音音箱于中间,高音音箱放在最上,因为低音箱发声方向性小,人体、桌、椅等物体吸收少。高音音箱方向性强,易被物体吸收。两套音箱的辐射区尽量彼此相叠,以增大立体声听音区。歌舞厅两侧的辅助扩声音箱箱口偏向厅后区,以满足后区观众听音需要,使厅内声场分布较均匀。不宜在厅后墙壁置音箱,要确保声像统一,避免出现反馈。 2、音箱接线:音箱接线必须采用音箱线,每根应在200 股以上。音箱线两根颜色不同,连接音箱和功放输出端子应严格区分,两个声道完全一致,决不能错接,否则会导致音箱反相放声,使声场分布不均匀,放声音质变坏。 3、音响设备的连接:音响设备连接必须采用音频电缆,电缆屏蔽线和芯线应牢固焊接,避免虚焊现象出现。注意各插头的接线规则,不能任意颠倒,尤其卡侬插头平衡连接,卡侬插头与大二芯插头做平衡非平衡转换连接,应按规范进行。调音台后接设备的前两台尽量采取平衡方式连接,以减少系统噪声,提高抗干扰能力。常用连接中卡侬插头的 2 脚与大二芯或大三芯插头的尖端芯连接。 4、依照各种歌舞厅音响设备的连接图接好调音台、音源以及周边设备。 5、调音台的输入通道参量均衡提衰量处于0dB 状态,输入推子和主控推子均处于最低位置。 (1)压限器:噪声门阀关闭,输入增益0dB ,压缩阀处于0dB ,压缩比2:1,启动时间10ms ,回复时间500ms ,输出增益0dB

(2)(房间)均衡器:输出增益0dB ,各刻度频点处于0dB 上,提衰范围±2dB ,低切键弹出。 (3)延迟器:处于直通状态。 (4)反馈抑制器:处于旁路状态,削波电平调节放在2 点位置。 (5)激励器:激励电平按键弹出,调谐旋钮处于12 点位置,混合比例旋至最低位置,低音补偿处于关闭状态。 (6)电子分频器:各频段放大量放在9 点位置,低端交叉点频率放在800HZ ,高端交叉点频率放在2KHZ 上,输入电平调在0dB 处。 (7)功率放大器:将左右声道输入电平调节放在满刻度的2/3 上,使功放留有储备量。 (8)效果机:置于旁路状态。 (二)系统开机 先接通调音台电源,接着接通周边电源,最后接通功率放大器(功放)电源。将调音台的输入通道推子推至2/3,输入通道增益调至4/5,主控推子推到0dB 左右,试听整个扩声系统的静态噪声,若总的静态噪声较大,打开压限器噪声门,直到噪声稍能听见为止,拉下主控推子,输入声音信号,将左、右声道主控推子再推起,播放声音。

最简单的甲类功放

最简单的甲类功放 2010年7期《无线电》上刊登了《场效应管耳机放大器DIY手记◎梓门编译》,自己DIY一个,感觉电路简单,但音量小,于是在网络上找到一些相近的资料,特对照参考,应加一个前级放大。BD8MI整理 摘自https://www.360docs.net/doc/6614459001.html,/Solid/IRF610-Class-A-Headphone-Amp/ 作者:Giovanni Militano,加拿大。 电路简洁、元件都是常见的,适合电脑、MP3等输出信号较大的设备。 原设计专用于耳机,作者为他自己的 32欧姆 Grado SR80 耳机设计的。但电路同样可以推动小功率的扬声器(偶是推的15W小音箱),音质不错,喜欢静静地欣赏音乐的朋友可以尝试下。电路如下: 下面简要说明制作过程和一点说明: 1、电路采用了LM317构成的恒流源作为负载,提高了电流增益,作者注明最大效率为25%。但因电路没有电压放大,所以只适合输输出信号较大的设备。当然,你也可以为它再增加一级FET的小信号放大电路,偶用的是常见的2SK245。 2、恒流源的电流取值,作者设定的是250mA,但经过偶试验,电流在100mA听感也不错,而且发热量要小了很多,几乎可以不用散热器。最好是多准备几个电阻(图中的5W电阻)自己感觉下。 3、电源问题,如果打算使用电脑的开关电源(直接用电脑电源的12V供电),需要做好滤波,偶用了两级LC滤波,滤除电源带来的噪声;如果是线性的电源适配器,简单的电容滤波即可。要求更高的可以用专门线性稳压电源供电。 4、偏置电压的调整:如果没有设备测试,完全可以靠听感进行调整,一般的场效应管栅极开启电压为4V多一点,在附近范围仔细调整,直到获得最佳听感。如果使用的电源电压并不固定,可以用个TL431甚至78L05~78L09稳压后用电阻分压,再送到偏置电压调整电位

功率放大器性能指标测试

功率放大器性能指标测试 1、测试要求: 1.1电源为额定工作电压±2%,频率50H Z±1HZ 1.2测试信号标准频率:模拟:1KHZ,数字997HZ,超低音:30HZ (常用:80HZ,40HZ,100HZ) 1.3整机必须工作在以下状态: 1.3.1主音量电位器置最大 1.3.2如果有中置、环绕、超低音、音量置0dB 1.3.3音调电位器置中点。 1.3.4如果有等串响度,置于OFF位置。 1.3.5如果有声场处理器,置于关断位置。 1.3.6如果有其它滤波器,置于关断位置。 1.3.7接上额定负载,测试时用假负载,不允许用喇叭作负载。 1.3.8当测试卡拉OK功能时,把混响、延时、效果关最小位置。2 3、使用设备:双通示波器:HITACHI V-252 单针毫伏表:KIKUSUI AVM23

信号发生器:LODESTAR AG-2603AD 失真仪:ZD ZQ4121A 负载电阻:8?、4?、6?或额定负载。 4、失真限制的输出功率。 4.1测试目的:主要了解该机的输出功率是否达到额定功率。 4.2测量方框图:如图1 4.3输入信号:输入信号为标准参考频率,信号电平为额定源电动 势电平。 4.4测量步骤: 4.4.1按规定将被测样置于1.3状态,各通道接上足够功率的额 定负载电阻。 4.4.2调节主音量电位器,直到输出电压的总谐波失真达到额定 值,测量输出电压V 4.4.3失真限制的输出功率按下公式计算:P=V2/R(“V”为额定失真限制的输出电压;“R”为额定负载的阻值。) 5、信噪比: 5.1测量目的:主要考核整机在静态状态下,噪声输出电平是否 达到指标要求。 5.2测量方框图:如图1 5.3测量输入信号:信号频率为标准参考频率,信号电平为:额 定源电动势电平 5.4测量步骤:

各类典型功放电路大比拼

各类典型功放电路大比拼 笔者对音响的热爱已十几年,特别是自己动手,由当年的卡座到如今CD,转盘,解码器,前后级,音箱等,虽说不上精通,却也有一定的认识。早年喜欢到处试听人家的进口器材,有时还傻愣愣地捧着自己的土作品去撼人家十几倍价位的进口器材,当然那时是无法与人家比拟,无数的失败,尝试,差距却日益接近,到了两年前,已经可以用进口器材十分一的土作品去撼倒对方。当然,由于物理工艺,即外壳强度的处理,如今我所做的功放最高只能到七八千元一台的价钱去卖给人家。从我所卖出的功放,只要价钱上了千五元以上,从来都不会让买主有意见的,至于千五元以下的,勉强相当于六七千的进口纯功放,性价比反而不及贵的功放。 这么多年来,经我制作卖出的功放已愈千部,电路也是五花八门,基本上的典型电路都做过了,所以在此谈谈各种电路的音质差别。以下对比是在电源,外壳,元件,输出级,搭配的其它器材等各方面都一致的情况为依据的,所不同之处仅电路而已。 1双电源不对称两级差动电路(如PIONEER M22K)详细电路 2双电源对称,第一级典型差动,第二级共射放大(如PHILIP 的LHH1000)

3双电源对称,第一级共射共基差动,第二级共射共基(如金嗓子E-305V) 详细电路 4双电源对称,第一,二级共射共基差动,第三级共射共基(如金嗓子A-100)详细电路

电路1,这是很多进口八千元以下的低档机的常用电路,不少人认为这样是属于单端甲类电压放大模式,可杜绝交越失真。在实际试听中,这种电路给人一种柔慢的感觉,低频较松,人声的感情比较丰富,相当突出,有一定的厚度但量感不足,高频有衰落的表现(实测闭环增益在10-60000Hz),有一种雾里看花的感觉,乐器的轮廓让人很难定得准。总体而言,音色方面是较接近于胆机的表现。这跟进口八千元以下的纯功放音色表现相近。 电路2,这种电路在进口器材中采用得相对较少,可能是它高不成低不就吧,通常是几千到万五元的档次。在这样机中我采用了直流伺服,因而低频表现好于电路1,控制力比较合适,清晰度也有一定的改进,人声中的喉音,鼻音清晰可闻,量感也不错,中高频通透,只是乐器的轮廓还稍嫌不够,总体表现优于电路1。 电路3,与前两种电路差距拉大了,不少几万元的进口高中档机也使用这种电路模式。尤其是中高频段的清晰度,可能是归功于采用了共射共基电路吧,音色表现出式,人声,乐器的质与量相当充足,再没有蒙胧的感觉,尤其是人声与小提琴,忧怨,轻快,稳重,演绎者的感情都能清楚地交代,高频比前两种电路顺了不少,没有一点衰落的感觉。 电路4,曾经有不定期一段时期,国内的发烧友十分推崇“简洁至上”的理论,当时笔者也属 于人云亦云的时期,因而那时常用电路1与2,后来,随着经验增多,对电路进行一点点的缓慢

简单音响电路的设计与实验

简单音响电路的设计与实验 一.设计任务 1.音响放大器设计 1)输出小信号进行放大扩音。 2.主要指标要求: 1.最大输出功率 02 P W 2.负载R L=8Ω。 3.频率变化范围f=20HZ-20KHZ 二. 实验目的 1.掌握模拟电路系统设计的基本方法。 2.掌握功率放大器的特性和质量参数的测试方法。 3.通过实验加深互补对称功率放大电路的理解。 4.学习电压放大倍数及最大不失真输出电压幅度的测试方法 三、实验说明 1、音响系统的组成框图 2、音响系统简介 1)功率放大器 功率放大器可采用分立元器件组成,也可以使用集成功率放大器,前者常用于大功率或要求较高的音响系统中,后者常用于小功率或要求不太高的音响系统中,使用集成功率放大器应注意:在任何情况下,集成功率放大器都不能工作在超过极限参数或绝对额定值所规定的工作条件下。 2)前置放大器 前置放大器属于小信号低噪声放大器。可采用分离元件电路,也可采用低

噪声运算放大器。采用分离元件电路时,为了减少噪声,一般静态工作点选取较低。 四、实验仪器 1、实验箱(TPE-A2) 2、.示波器(V212) 3、函数信号发生器(DF1642A ) 4、双通道交流毫伏表(AS2294D ) 5、台式数字万用表(VC8045) 6、扬声器 五、实验原理 1)前置放大器的设计 前置放大器实际就是对一个小信号进行放大的作用。因为功率放大器对输入信号有一定的要求,太弱的功率放大器“不理睬”,所以功率放大器之前需要增加一至数级的放大器。将小信号逐步放大到功率放大器需要的信号幅度。而反相比例放大电路使用比较方便,所以本实验采用了反相比例放大电路。如下图 1 R R U U A f i O uf - == 2)功率放大器的设计 功率放大器任务是将音频放大到足够推动扬声器,不同于前置放大器,功率放大器不仅对信号进行放大,而且放大了电流信号,以满足外接负载的功率要求。功率放大器还应具有频率特性平坦、高信噪比和优良的动态特性等功能。经过对比 采用互补对称功率放大电如上图

功放和音响的选用(常用)

如何用好音响系统中的功率放大器 看了本文的题目,你会说“用功放还是问题”?的确,在一个音响系统中,要用好功放确实不是你所想象的那样简单,真有必要探讨一番。 一.选用多大功率的功放? 大凡在选用功放前,首先碰到的问题是选用多大输出功率的功放,这不但关乎一个音响系统所能达到的效果和稳定性,而且关乎系统的造价。 大家知道一个功放的输出功率有很多种表示方法,有额定输出功率、音乐功率、峰值功率,他们之间可以相差数倍,有的相差十倍,而且这些输出功率的数值跟负载阻抗成反比,即负载阻抗越小,同一功放的输出功率越大。理论上,阻抗减小一半,输出功率增大一倍。 现在我们来定义功放的额定输出功率。所谓额定输出功率是指在一定的负载阻抗下(通常是8Ω)及一定的谐波失真下(根据厂家给出的0.1%或0.3%等),在输入端馈入正弦波信号,在输出端负载上,获得的最大功率,利用公式P=U2/R求得。 这里要提醒大家注意的是,虽然定义功放的额定输出功率是一件非常严格的事,但有的厂家在宣传时还是不那么严格。有的以小负载时的额定功率作为标称值,有的甚至以音乐功率或峰值功率标注。大有误导公众之嫌。这就要靠我们利用掌握的知识及经验来判断。(后文将专门叙述)。 其次,在一个厅堂内如何来选功放?在实际应用中,我们一般不会直接选400W输出或800W输出的功放。因为功放输出的大小,对我们关心的在厅堂里声音够不够响,实在不是一回事。系统的功放输出的功率,从类型来讲,有是的推全频主声道音箱的,有是的推拉声象音箱的,有的是推舞台返送音箱的,有的是推超低音音箱的,数量、作用相差很大,同时

又与所推的音箱的灵敏度相关,另外,还与厅堂的声学环境有很大关系。这么多因素对声压级大小(通常说声音响不响)的影响,我们可以用一个公式进行量化表征: W=10(LP-LS+20lgr)/10 LP:测试点(音箱辐射距离处)要求的声压级dB; LS:音箱灵敏度dB,由音箱参数给出; r:音箱到测试点的距离m,也称音箱辐射距离 W:单只音箱所需的推动功率 我们就可以以此为根据,进行合理的确定功放输出的电功率大小。这里要注意的是:公式一般确定的是,主声道功放的输出功率。舞台返送音箱可以按主声道功率的30%-50%确定,超低音功放的输出功率可以按主声道功率的100%-150%确定,辅助音箱的功放功率可以按主声道功率的50%-100%确定。绝不可以采用毛估估,凭想象来确定。如果以这种方法来确定,其后果要么浪费(功率选得过大),要么达不到效果,极易造成功放的损坏(功率选得小),除非你非常有经验。 对于一台功放,很多人往往不能判断其质量优劣。仅凭厂商提供的指标往往大同小异给人一头雾水,凭价格呢,在有的情况下也并不是价高就一定来好货。今天笔者就来谈谈如何从实际使用时的情况来判断功放的好坏,当然用仪器对指标测试另当别论。 拿到一台功放,我们可以简单地从以下几方面来判断: 1.外观、包装 一台功放外包装,首先要看包装盒是否正气,印刷是否精美,信息是否完整(规格、产地、通过的认证等,)然后看包装的防震填充材料是否是环保型的。那些包装完好、合理、环保的,可认为是好功放。 2.功放的外观

功放电路性能指标及测试方法

1. 功放电路性能指标及测试方法 功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、效率、频率响应、输入灵敏度、信噪比等项目指标为主。配备必要的仪器仪表主要有:音频信号发生器、音频毫伏表、示波器、失真度测量仪等。 (1)输出功率是指功放输送给负载的功率,以瓦(W )为基本单位。功放在放大倍数和负载一定的情况下,输出功率的大小由输入信号的大小决定,包括最大输出功率和额定输出功率两种。 额定输出功率:指在一定的谐波失真指标内,功放输出的最大功率。应该注意,功放的负载和谐波失真指标不同,额定输出功率也随之不同。通常规定的谐波失真指标有1%和10%。由于输出功率的大小与输入信号有关,通常测量时给功放输入频率为1KHz 的正弦信号,测出等阻负载电阻上的电压有效值o U ,此时功放的输出功率o P 可表示为 : 2o o =L U P R (4-1-4) 式中L R 为等效负载的阻抗。这样得到的输出功率,实际上为平均功率OAV P 。当输入信号幅度逐渐增大时,功放开始过载,波形削顶,谐波失真加大。谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。 最大输出功率:在上述情况下不考虑失真的大小,给功放输入足够大的信号,功放所能输出的最大功率称为最大输出功率。额定输出功率和最大输出功率是我国早期功放产品说明书上常用的两种功率。通常最大输出功率是额定功率的2倍。 2 L Uom Pom R (4-1-5) 其中,Uom 为放大器的最大输出电压有效值。 功放电路功率测量线路如图4-1-4所示,示波器用于监视波形失真之用,MV 表示音频毫伏表,L R 是负载电阻,O U 、I U 分别表示输出和输入信号电压。

相关文档
最新文档