离子交换树脂从酸性废水中回收钼的研究

第39卷第4期

2015年8月

一一一一一一一一一一一一一

中一国一钼一业

CHINA MOLYBDENUM INDUSTRY

一一一一一一一一一一一一一一

Vol.39No.4Aug 2015

收稿日期:2014-12-04;修改稿返回日期:2015-03-15

作者简介:王一磊(1982 ),男,硕士,工程师,从事钼化工,钼冶炼

产品的研究与开发三

E-mail:25280675@https://www.360docs.net/doc/661491486.html,

离子交换树脂从酸性废水中回收钼的研究

王一磊,周新文,唐丽霞

(金堆城钼业股份有限公司技术中心,陕西西安710077)

摘一要:本文研究了离子交换树脂从酸性工业废水中回收钼的效果,对几种不同树脂进行对比实验,分析交换饱和量二回收率以及对阳离子杂质的去除效果,结果表明3种树脂都可以有效回收废水中的钼,Ls-36y 树脂性能最优,饱和量146.44mg /mL三关键词:离子交换树脂;钼;除杂

DOI :10.13384/j.cnki.cmi.1006-2602.2015.04.011中图分类号:O657.7+5一一

文献标识码:A一一

文章编号:1006-2602(2015)04-0048-02

STUDY ON RECYLING Mo FROM THE ACIDIC WASTE WATER BY ION EXCHANGE RESIN

WANG Lei,ZHOU Xin-wen ,TANG Li-xia

(Technical Center of Jinduicheng Molybdenum Group Co.,Ltd.,Xi an 710077,Shaanxi,China)

Abstract :The effect of recycling molybdenum from acidic industrial waste water by ion exchange resin was stud-ied,the comparative experiments using several kinds of different resins were carried on,the exchange saturation ca-pacity,the returns-ratio as well as to the positive ion impurity's elimination effect were analyzed.The research indi-cated that three kinds of resins all might recycle Mo from waste water,and Ls-36y resin performance was the most superior,saturation capacity is 146.44mg /mL三

Key words :ion exchange resin;molybdenum;impurity elimination

0一前一言

稀有金属钼被誉为 工业味精 [1],在工业生产

中进行回收再利用意义重大三目前回收钼的主要方法是浸出法,钼回收研究重点也集中于废液中钼的

回收,国内目前比较成熟的方法是:当废液的pH 值在0.5~1.5时,采用P204二P507等磷类萃取剂萃取钼[2];当溶液的pH 值3~4时,采用胺类萃取剂(N235或者N1923)进行萃取

[3]

,或者采用D380二

D314等弱碱性树脂进行提取钼[4-5]三但是废液pH

值在1.5~3时,废水酸性介于强酸和弱酸之间,此范围钼的回收方法鲜有报道,本文针对废液pH 值在1.5~3的废液采用3种不同的离子交换树脂对废液中的钼进行回收,同时测定计算交换量二回收率二除杂效果以及解析液的循环利用三

酸性废水回收钼的工艺循环如图1所示三钼酸铵工业生产中的氧化钼水洗之后会产生含钼的酸性滤液(通常称为酸性水洗废水),将酸性滤液中的钼

用离子交换树脂回收后,通过碱性溶液解析的方法得到含钼的解析液三最后将解析液注入氨浸液中生产制备钼酸铵,达到钼回收的效果

图1一酸性废水回收钼的工艺循环

1一实一验

1.1一实验原料酸性废水,去离子水,分析纯试剂盐酸二氨水二氢

氧化钠A100树脂,Ls-36y 树脂,S984树脂

1.2一实验废水

实验废水为酸性废水,pH 值在1.5~3之间,主

要化学元素指标见表1三

表1一含钼废水中主要离子含量一g /L

Mo

Cu

K

Na

Ca

Fe

Mg

10.460.250.300.030.430.380.17

1.3一实验方案

首先,采用离子交换树脂将酸性废水中的钼吸

某某矿山污水处理方案只是分享

一、污染概况 在煤炭生产掘进过程中岩层中会有地下水渗出,遭到粉尘污染。矿坑水的pH值为中性,水中主要污染物质是固体悬浮物。采煤产生的地下涌出水,每天产生约500t矿井排水,每年约产生20万t矿井排水。生产废水还有地面、车辆冲洗水,产生量不大,主要含悬浮物、石油类,基本直接外排。矿井排水主要含悬浮物,矿井水含有较多煤粒、岩粉等悬浮物,一般呈黑色,但其总硬度和矿化度并不高,经混凝、沉淀、过滤和消毒处理后也可达到饮用水标准。现有各种废水未经处理,直接排放,经坑口约300m长的山坡漫流后流入清江支流。 二、废水水质 1、矿井排水见表 根据类比2005年巴东县环境监测站对该矿井排水的现场监测结果表明,矿井排水中A S、Cr6+、Cd、Pb、Hg等第一类污染物质浓度较低,未超过GB8978-1996《污水综合排放》的限值,故本设计方案中将不考虑这一类污染物质的处理。 三、水量 煤矿正常涌水量为20~25m3/h,考虑到雨季涌水量较大,本工程设计规模为30m3/h。 四、排放标准

废水经处理后排放水达到《污水综合排放标准》GB8978-1996中采矿工业一级标准。见表 五、处理工艺 矿井排水是在煤炭生产掘进过程中岩层中会有地下水渗出遭到粉尘污染,矿坑水的PH值为中性,水中主要污染物是固体悬浮物。采煤矿产生的地下涌出水,每小时排出约30吨矿井废水,该废水主要含有较多煤矿粒,岩粉等悬浮物,一般是黑色,但其硬度和矿化度并不高,其超标的项目主要是悬浮物,色度及CODcr,该废水经混凝、沉淀、快滤等工艺处理后即可达到《给水综合排放标准》GB8978—1996的一级标准。本工艺选用的沉淀池为旋流反应斜板沉淀池,混凝剂聚合氯化铝,经过实验,这种混凝剂对悬浮物色度及CODcr的去除效率显著,沉淀池的污泥排入污泥干化场,干污泥定期清掏运至填埋场,滤池选用的是以陶粒为滤料的滤池,陶粒的粒径为φ3~φ8,比重1.1~1.2,质地坚硬,比表面积大,是普通石英砂的替代品,过滤效果良好,反冲洗方便。 具体处理工艺简述如下: 矿井排水自流进入旋流反应沉淀池,在聚合氯化铝的作用下,废水中的悬浮物,凝聚成较大的颗粒物,随重力下沉至池底,上清液自流至陶粒滤池,沉淀污泥定期排入污泥干化场,滤池出水达标排放。 工艺流程简图如下:

金属矿山酸性废水处理工艺

金属矿山酸性废水处理工艺 矿产资源是人类社会发展进步必不可少的自然资源。人类对金属矿山的大面积开采会破坏周围区域的生态环境,而AMD是全球矿山面临的最严重的环境问题。AMD是硫化矿物在空气、水和微生物的共同作用下发生溶蚀、氧化、水解等一系列物化反应而形成的低pH、高重金属离子浓度的一类难处理废水。而我国金属矿山大部分是原生硫化物矿床,极易形成AMD,例如江西德兴铜矿、武山铜矿、江苏梅山铁矿、浙江遂昌金矿、安徽南山矿、向山铁矿、湖南七宝山铜锌矿等。因此,如何高效、经济地治理AMD显得尤为重要。 1、AMD来源 AMD指在矿山开采活动中经过复杂的物理化学反应作用产生的呈酸性且SO42-和重金属含量超标的有害水体。矿山酸性废水有以下特点: ①呈酸性、金属离子浓度高,例如含Fe3+的矿山废水因水解生成的氢氧化铁呈红褐色,被称为“红龙之灾”; ②废水产生量大且水流持续时间长,常常矿山开采结束后,废水仍继续流出; ③水质、水量不稳定,波动较大。 AMD进入自然水体后使水体酸化,导致水生生物死亡;进入土壤后使土壤板结,毒化土壤,造成功能退化。在1947年,Colmer等首次提出细菌是AMD形成的重要原因。在后续的研究和实际治理过程也进一步的证实了这种论断。如黄铁矿,在有菌存在和无菌存在时,氧化速度相差较大。 黄铁矿氧化产酸过程如下: Fe3+被黄铁矿还原生成Fe2+,而Fe2+很快又被微生物或O2氧化成Fe3+再与黄铁矿反应,如此循环反应,形成了大量的AMD。 2、AMD的治理 AMD现已严重危害到生态环境乃至人类的生存安全,其治理技术也日新月异。目前,效果显著的治理技术主要有中和法、沉淀法、人工湿地、吸附法及生物法等。 2.1 中和法 面对大量的酸性废水,中和法成为了人类在治理AMD时的首要选择。中和法又称为氢氧化物沉淀法,中和法就是在废水中投加大量的碱性物质,如石灰乳、氢氧化钠、石灰石等,来提高废水酸碱度,从而沉淀废水中的金属离子。该方法因原理简单,成本低、效果明显,在实际矿山酸性废水的治理中得到了广泛的应用。如钱士湖等报道的HDS(高浓度泥浆)在安徽某公司酸性废水的实践运用。对实际运行效果进行了分析总结,表明HDS工艺在调节废水pH值和去除Al3+、SO42-离子效果显著。与传统的石灰中和法(LDS)相比,HDS延缓了设备和管道的结垢现象,克服了LDS法的很多缺点,高浓度泥浆法与低浓度泥浆法相比有以下优点:一是降低了石灰用量,减少了处理成本;二是出水水质稳定,符合排放标准。高浓度泥浆法相对于低浓度泥浆法突破性进展是底泥按比例回流,可用于废水处理。但始终无法根除设备和管道结垢、中和渣易造成二次污染的弊端。

离子交换法处理镍废水

离子交换法处理镍废水

————————————————————————————————作者:————————————————————————————————日期: ?

三废治理技术课程 离子交换法处理含镍废水工艺方案

离子交换法处理含镍废水工艺方案 一、概述 镀镍作为一种常用的表面处理技术,被广泛的应用于电子、汽车、机械等多种行业。含Ni2+的废水对人体健康和生态环境有着严重危害。含镍废水的常见处理方法有化学沉淀法、真空蒸发回收、电渗析、反渗透及离子交换树脂吸附等。化学沉淀法成本低,但产生的固废需要二次处理;真空蒸发法能耗大;电渗析、反渗透法需要较大的设备投资和能耗,而且存在膜易受污染的问题[1]。 离子交换技术因出水水质好,可回收有用物质,适用于处理浓度低而废水量大的镀镍废水等优点,曾得到广泛的应用。离子交换法应用于镀镍废水处理的主要功能有:(1)去除重金属镍离子,以应对日趋严格的排放标准;(2)回收废水中有价值的金属镍;(3)提高水的循环利用率,节约日益匮乏的水资源;(4)减少环境污染。 随着人们对镀镍废水资源化的兴趣越来越浓厚,离子交换技术作为电镀废水深度处理的有效方法再度引起重视。 二、原理 离子交换树脂是具有三维空间结构的不溶性高分子化合物,其功能基可与水中的离子起交换反应。镀镍废水中的Ni2+离子采用阳离子交换树脂吸附。所用树脂可以是强酸性阳树脂也可以是弱酸性阳树脂,本文以弱酸性阳树脂为例。采用弱酸性阳树脂交换时,通常将树脂转为Na型,因为H型交换速率极慢。含Ni2+ 废水流经Na型弱酸性阳树脂层时,发生如下交换反应: 2R-COONa+Ni2+→(R-COO) 2 Ni+2Na+ 水中的Ni2+被吸附在树脂上,而树脂上的Na+便进入水中。 当全部树脂层与Ni2+交换达到平衡时,用一定浓度的HCl或H 2SO 4 再生。 (R-COO)2Ni+H 2SO 4 →2R-COOH+NiSO 4 此时树脂为H型,需用NaOH转为Na型。

软水专用盐-离子交换树脂再生剂

替代原始工业盐的新产品,软水专用盐-离子交换树脂再生剂 软水设备、反渗透设备、纯净水设备、超纯水设备在使用一段时间后,其树脂会滤满水碱(钙、镁离子)达到饱和,需用盐水清洗,使树脂再生还原,恢复软水机软化硬水的能力。该产品是经过特殊加工而成,能有效地去除饱和树脂中的(钙、镁离子及其他水中一些水碱杂质),再生还原树脂,使您的水质更加干净、清澈,长期保持给水管道通畅、无水垢,使用后无任何残留物,无任何气味,在同等的条件下高于任何再生剂,适用于各种型号的软水机。 软水机用软水盐详细介绍: 高级水处理专用盐:现代工业生产和人民生活对水质的要越来越高。工业锅炉运行要使用软水;电力工业需要纯净水和超纯水;人民生活需要软水(发达国家90%的家庭使用和最经济的水处理技术是离子交换法。离子交换法水处理的基本原理为:含有钙、镁离子的硬水,在通过纳型树脂时,水中的钙、镁离子与纳离子树脂进行交换后,就必须对这种钙、镁离子呈饱和状态的树脂进行还原再生,以恢复其交换性能。离子交换和树脂再生的反应时可逆的,树脂的还原再生是通过加入高纯度氯化钠来实现的。为了满足市场的高纯度软化水用盐的需求,我们研制开发了一种高级水处理专用盐——氯化钠片剂,其价格为同类产品进口价的1/3。该专用盐为经过特殊加工而成的白色片状,不含添加剂,纯度高,各种杂质成分极低,方便各行业水处理使用。 中盐高品质软水盐的特点: 1、盐的纯度高达99.5% 2、坚硬物、赃物及沉淀物使最好的软水机结垢, 3、软水盐形状保持一致,不搭桥、不成坨,保证软水质量和效率: 4、软水盐去除“硬性”物质的能力比普通盐强5%: 5、添加了食品级高效重金属杂质离子清除剂、延长离子交换树脂使用年限;去除赃物及杂质的能力是普通盐的两倍,去除铁离子的能力是普通盐的6倍,高效能保护设备; 6、采用环保、方便包装,使用方便,包装经过特殊防潮处理,避免因为受潮导致再生剂失效 7、经过特殊配方配制,性能优于其它任何软水盐,它能双倍去除水中的杂质,其软水能力也比其他软水盐高出2倍,能使软水机的效率提高,维修减少,寿命延长。

橡胶助剂生产流程

1、M工艺流程简述 设计采用有机溶剂全封闭清洁生产提纯工艺,以苯胺、硫磺、二硫化碳、甲苯、氢氧化钠为主要原料。生产促进剂M得工艺由一主二辅三部分组成,即:化学合成及提纯、硫化氢转化与甲苯回收利用两个辅助工艺。 (二)硫化促进剂DM 1、概述 DM就是由M钠盐在酸性条件下由比。2氧化而得来得,再经脱水与烘干而制得DM成品。DM生产工艺氧化工段得主要化学反应方程式如下: 2[^^〉SNa+ H2O2+ H2SO4 2、工艺流程简述 硫酸、双氧水 产品名称原材料b称 规格年消耗量吨产品消耗量 DM (6000t/a) H钠盐100% 6120 1、02 硫酸^98% 9000 0、150 双氧水27、50% 1800 0、300 >分离 M钠盐—]氧化 3、原料消耗宗暫 干燥 in叫生岸工艺疯程及出适节籬图_ *包装溶剂法M工艺流程示意图

4、动力消耗定额 DM原材料消耗定额情况一览表 5、三废排放 DM生产采用绿色、环保工艺,母液循环套用,无固废与气 体。 (三)秋兰姆类、硫腺类橡胶促进剂工艺流程 溶剂法秋兰姆类生产工艺流程:(TIBTD、TETD) 料得厂家建立了业务合作关系。在此基础上,可以保证该项目得原料

原材料供应情况见下表: 年产30000吨橡胶助剂项目主要原材料供应明细表 单位:元 二、燃料动力供应 鹤壁市有丰富得煤炭资源。鹤煤集团公司作为以前得国家统配 煤矿,年产煤达600万吨以上。该项目一年耗煤量约30000吨,鹤壁煤 矿可以保证该项目得用煤。 三、电力供应 鹤壁市万鹤发电有限公司(装机容量2*20万千瓦),同力发电有限公司(装机容量2*40万千瓦),兴鹤发电有限公司(装机容量2*60万千瓦),鹤壁市有充足得电力供应可以保证该项目得生产经营。 四、项目物料消耗 单位:吨

离子交换树脂的再生

第13卷第5期环境监测管理与技术2001年10月 4一氨基安替比林溶液提纯两法 顾爱东 (启东市环境监理站,江苏启东226200) 中图分类号:0652.4文献标识码:C文章编号:1006—2009(2001)05—0038一lA 《水和废水监测分析方法(第3版)》介绍了4一氨基安替比林固体试剂的提纯方法,操作时间较长。今采用对4一氨基安替比林溶液进行提纯,同样达到提纯效果,且操作简便易行。 方法一:称取2.3g4一氨基安替比林,加无酚水100mL,使其完全溶解,倒入250mL分液漏斗中,加入氯仿1.5mL,剧烈振荡3min,静置分层,弃其下层萃取溶剂。重复萃取1次即可。 方法二:称取2.5g4一氨基安替比林,用无酚水100mL使其溶解,加lg活性炭,搅拌混匀,静置数分钟,将上清液过滤即得。 用提纯后4一氨基安替比林溶液按萃取光度法测定挥发酚的步骤作空白试验,空白值的吸光值均能控制在0.060以下,校准曲线的斜率、截距、相 关系数和测定标准样品的准确度与精密度均符合要求,试剂在冰箱内保存,至少可稳定10d,结果见表1。 表1两种提纯方法不同时间 空白吸光值测定结果(咒=3) 收稿日期:2000—09—09;修订日期:2001一05—15 作者简介:顾爱东(1971~),男,江苏启东人,工程师,学士,从事环境监测监理工作。 ..●●_....●●●t...●●●...._●●....●●‘t..--●●....●●●?. 离子交换树脂的再生 朱家骥 (赣榆县环境监测站,江苏赣榆222100) 中图分类号:o652.3文献标识码:C文章编号:1006—2009(2001)05—0038一lB 离子交换树脂的再生,一般是各个树脂柱分别进行,各个柱子逐一再生,操作起来较麻烦费事。今结合新树脂的处理原理,采取如下方法再生,用蒸馏水作为原水制得的去离子水,其电导率可稳定在0.6肛s/cm以下。 (1)强酸性阳离子交换树脂。先用1.6nlol/L~3.2mol几盐酸浸泡半天,将树脂移到布上,放在水盆里,不断搅拌,反复用蒸馏水浸洗直至中性(pH6.5~7.5),将树脂连水一起装入柱中。 一38一 (2)强碱性阴离子交换树脂。树脂用40g几~60g几氢氧化钠溶液浸泡半天,以下步骤同(1)。 (3)将交换柱按顺序连接起来,平放,小心摇匀,赶尽气泡,用蒸馏水作为原水,经交换的出水的电导率在1弘s/cm以下即可。 收稿目期:2000—12—30;修订日期:2001—06—30 作者简介:朱家骥(1972一),男,江苏赣榆人,助理工程师,学士,从事环境监测工作。 本栏目责任编辑李延嗣  万方数据

各种类型离子交换树脂常用再生剂及其用量(打印)模板

各种类型离子交换树脂常用再生剂及其用量 离子交换树脂性能降解原因 树脂在长期使用中,性能会逐渐下降,表现为出水(即产品)质量降低。影响树脂性能降解的因素很复杂,如树脂体积减少,交换能力下降,球粒裂纹增多,破碎流失等,造成上述现象的原因不外是:(1)胀缩内应力不均。在使用中树脂内部由于溶胀及收缩变化的不均匀,局部结构中应力不平衡,造成断链裂解。 (2)氧化破坏。体系中的氧化剂,包括酸、碱、溶剂等对树脂骨架及功能基的破坏。 (3)杂质污染。水中杂质堵塞了树脂的内部孔道,阻挡交换吸附。

离子交换树脂如何进行预处理 (1)阳离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。而后用4~5%的HCl和NaOH在交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的HCl溶液进行,用量加倍效果更好。放尽酸液,用清水淋洗至中性即可待用。 (2)阴离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗),洗至出水清澈无混浊、无杂质为止。而后用4 ~5%的NaOH和HCl在交换柱中依次交替浸泡2 ~4小时,在碱酸之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的NaOH溶液进行,用量加倍效果更好。放尽碱液,用清水淋洗至中性即可待用。 (3)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。 (4)预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。 (5)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

治理酸性矿山废水的方法

治理酸性矿山废水的方法 1 引言 煤矿或各种有色金属矿在开采与废矿石堆放过程中,常使与矿层伴生的硫铁矿暴露于空气中与地下水或地表水中,通过系列化学与生物氧化过程,使得近中性的地下水转变为低pH、高Fe、SO2-4,且多种重(类)金属离子(Cd、Pb、Cu、Zn、As等)并存的酸性矿山废水(acid mine drainage,AMD).此类废水若不经有效处理而任意排放,将严重污染地表水及土地资源,威胁农作物、水生生物与人体健康. 石灰中和法是世界上最常用的AMD治理方法.然而,大多数AMD体系中含有较大量的 Fe2+,由于Fe(OH)2 离子浓度积(1.6×10-14,18 ℃)远大于Fe(OH)3的离子浓度积(1.1×10-36,18 ℃),所以为了在近中性条件下使得Fe离子完全沉淀,在工程应用中,常常在化学中和前段完成Fe2+氧化过程.以AMD为介质,利用氧化亚铁硫杆菌(A. ferrooxidans)生物氧化Fe2+进而合成次生铁矿物(施氏矿物、黄铁矾类物质)不仅可以有效去除AMD中存在一定量的Fe与SO2-4,且此类次生铁矿物在合成过程中亦可通过吸附与共沉淀方式大幅度去除体系中的Cu、Cd、Hg、Pb、As等有毒有害元素.另需要强调的是对于石灰中和法得到的Fe(OH)3絮状凝胶而言,施氏矿物与黄铁矾类物质沉降性能良好,易于沉淀,可以极大降低后续固液分离成本.因此,前期氧化亚铁硫杆菌(A. ferrooxidans)生物氧化Fe2+产生次生铁矿物与后期化学中和相结合的工艺在AMD的治理领域表现出一定的应用潜力. 由于煤矿及其它有色金属矿中常有含镁矿物(白云石富镁碳酸盐矿物、蛇纹石与绿泥石等富镁硅酸盐矿物等)的存在,使得产生的AMD中含有一定量的Mg2+.研究证实,A. ferrooxidans菌体及其胞外多聚物可以作为次生铁矿物合成的晶种.而Mg2+可以在微生物胞外多聚物之间形成架桥使得微生物菌体团聚.那么,这一团聚过程是否会使得矿物较易在反应器壁粘附,进而影响次生铁矿物合成体系总Fe沉淀率及矿物的形貌?另外,高的转速对应高的剪切力.那么,高转速是否会减缓矿物在反应器壁的粘附行为?为了探究此类科研问题,本研究分别在不同培养转速条件下,考察了Mg2+浓度不同对A.ferrooxidans催化合成次生铁矿物体系Fe2+氧化率、总Fe沉淀率、次生铁矿物反应器壁粘附状况及矿物形貌的影响.以期为生物合成次生铁矿物工艺的优化及其在酸性矿山废水治理领域的成功应用提供一些必要的参数. 2 材料与方法 2.1 嗜酸性氧化亚铁硫杆菌(A. ferrooxidans)接种液的制备 在150 mL改进型9K液态培养基(FeSO4 · 7H2O 44.24 g、(NH4)2SO4 3.0 g、KCl 0.10 g、K2HPO4 0.50 g、Ca(NO3)2 · 4H2O 0.01 g、MgSO4 · 7H2O 0.50 g,去离子水1 L)中接种A. ferrooxidans LX5(CGMCC No.0727),体系用H2SO4调节pH至2.5后,置于180 r · min-1往复式振荡器(ZD-85A恒温振荡器)中在28 ℃培养2~3 d至体系Fe2+完全氧化.培养液经定性滤纸过滤以除去沉淀,过滤所得的液体即为嗜酸性氧化亚铁硫杆菌菌液.将所得菌液15 mL接种于135 mL改进型9K液态培养基中重复上述过程.所获菌液即为本研究后续次生铁矿物合成所需的微生物接种菌液,菌密度约为107 cells · mL-1.

钼酸铵分光光度法测定水中的总磷 - 副本

钼酸铵分光光度法测定水中的总磷 周静静 (金华职业技术学院,金华321000) 摘要:采用钼酸铵分光光度法测定水中的总磷含量,经过消解前加入氢氧化钠和改用聚四氟乙烯消化管等方面的改进,碱性过硫酸钾氧化-钼酸铵分光度法的实际操作更简便,更适用于各类水样的监测.它具有较低的检出限(0.004 mg/L),较高的精密度(RSD= 1.1%)和较好的准确度(测定标样溶液相对误差1.6%,加标回收率为97.2%-102.1%). 关键词:紫外分光光度法;水样;总磷 总磷是水体中所含活性磷酸盐和非活性磷酸盐、无机磷和有机磷化合物的总称,是衡量、评价水体富营养化的重要指标。由于城市污水、工业废水和养殖废水的日益增加,江河湖海水域总磷的污染日趋严重。目前只测定环境水样中的活性磷酸盐已经远远不能反映磷化合物的污染情况,因而,测定水样的总磷已是重要而紧迫的任务。目前测定水中总磷大都使用标准方法-过硫酸钾氧化-钼酸铵分光光度法。 1 方法原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 2 实验部分 2.1主要试剂 本标准所用试剂除另有说明外,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水。 ⒈硫酸(H2SO4),密度为1.84g/mL; ⒉硝酸(HNO3),密度为1.4g/mL; ⒊高氯酸(HClO4),优级纯,密度为1.68g/mL; ⒋硫酸(H2SO4),1:1;

⒌硫酸,约c(1/2H2SO4)=1mo1/L:将27mL硫酸( 密度为1.84g/mL)加入到973mL水中; ⒍氢氧化钠(NaOH),1mo1/L溶液:将40g氢氧化钠溶于水并稀释至1000mL; ⒎氢氧化钠(NaOH),6mo1/L溶液;将240g氢氧化钠溶于水并稀释至1000mL; ⒏过硫酸钾,50g/L溶液:将5g过硫酸钾(K2S2O8)溶解干水,并稀释至100mL; ⒐抗坏血酸,100g/L溶液:溶解10g抗坏血酸(C6H8O6)于水中,并稀释至100mL; 此溶液贮于棕色的试剂瓶中,在冷处可稳定几周。如不变色可长时间使用。 ⒑钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100mL水中。溶解0.35g酒石酸锑钾[KSbC4H4O7· 1 H2O]于100mL水中。在不断搅拌下把钼酸铵溶液徐徐加到300mL硫酸(c(1/2H2SO4)=1mo1/L)中,加酒石酸锑钾溶液并且混合均匀。 此溶液贮存于棕色试剂瓶中,在冷处可保存二个月。 ⒒浊度-色度补偿液:混合两个体积硫酸(c(1/2H2SO4)=1mo1/L)和一个体积抗坏血酸溶液。使用当天配制。 ⒓磷标准贮备溶液:称取0.2197±0.001g于110℃干燥2h在干燥器中放冷的磷酸二氢钾(KH2PO4),用水溶解后转移至1000mL容量瓶中,加入大约800mL水、加5mL硫酸(1:1)用水稀释至标线并混匀。1.00mL此标准溶液含50.0μg磷。 本溶液在玻璃瓶中可贮存至少六个月。 ⒔磷标准使用溶液:将10.0mL的磷标准溶液转移至250mL容量瓶中,用水稀释至标线并混匀。1.00mL此标准溶液含2.0μg磷。 使用当天配制。 ⒕酚酞,10g/L溶液:0.5g酚酞溶于50mL95%乙醇中。 主要仪器 ⒈医用手提式蒸汽消毒器或一般压力锅(1.1~1.4kg/cm2); ⒉50mL具塞(磨口)刻度管 ⒊分光光度计

离子交换树脂的再生

离子交换树脂的再生 一、常规的再生处理 离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用化学药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能。在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80%。如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降。 树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件。 树脂的再生特性与它的类型和结构有密切关系。强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值。此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间。 再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐。例如: 钠型强酸性阳树脂可用10%NaCl溶液再生,用药量为其交换容量的2倍(用NaCl量为117g/ l树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2%的稀硫酸再生。 氯型强碱性树脂,主要以NaCl溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH的碱盐液再生,常规用量为每升树脂用150~200g NaCl,及3~4g NaOH。OH型强碱阴树脂则用4%NaOH溶液再生。 树脂再生时的化学反应是树脂原先的交换吸附的逆反应。按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平。

矿类废水处理

矿山废水处理概况 1.1 矿山废水概念 随着社会经济的迅速的发展,人类对矿产资源的需求量日益增长, 在矿产资源的开采和加工过程中所产生的工业废水的排放量也随之增加。据统据计, 我国各类矿山废水的排放量约占全国工业废水总排放量的10%左右。 矿山废水:在矿山范围内,从采掘生产地点、选矿厂、尾矿坝、排土场以及生活区等地点排出的废水,统称为矿山废水。 1.2 我国矿产行业产能 我国是世界上矿产资源比较丰富、矿种比较配套、齐全的少数几个国家之一。到目前为止,通过几十年来的矿产勘察工作,已发现163种矿产,探明储量的矿产有149种,其中能源矿产7种,金属矿产54种、非金属矿产86种,以及地下水和矿泉水。已发现的矿产、矿点有20多万处,经详查工作的近两万处。 20世纪90年代以来,我国步入了工业化矿产资源消费的高速增长期。2004年我国重要矿产资源消费:石油3.07亿吨、煤炭18.6亿吨、钢材3.1亿吨、铜312万吨、铝619万吨、十种有色金属总量超过1300万吨、水泥9.7亿吨、钾肥(折K2O)512万吨,分别是1990年石油消费量的2.6倍,煤炭消费量的1.7倍、钢材消费量的5.8倍、铜消费量的4.4倍、铝消费量的7.2倍、十种有色金属总量消费量的5.5倍、水泥消费量的4倍和钾肥消费量的2.5倍。 借鉴先期工业化国家的规律,预计到2020年我国煤炭需求量大约为25—26亿吨,钢铁需求量在经历2012-2015年3.5-3.8亿吨的高峰期之后,回落到3亿吨,铜大约为640万—690万吨,铝大约需要1200-1400万吨,,水泥需要12—14亿吨。到2020年基本实现工业化时,我国人均矿产资源消费量仅仅相当于美国和日本工业化高峰期人均消费量的三分之一到四分之一,客观地说这些消费预测数据是我国基本实现工业化的资源底线。 1.3 福建省内冶金行业最新布局 根据福建省实际情况,对重点矿区、大中型矿产地划定矿产资源整合开采规划区块56个;对地质勘查工作程度已经符合开采设计要求的区域,新划定开采规划区块109个,并在规划期内逐步投放市场。 整合开采规划区块,必须严格按照整合实施方案和程序重新办理采矿许可证。对于尚未达到开采规划区块划定条件的地区,在探明资源储量且符合开采设计要求的,应按照开采规划区块划定的原则要求,合理划定开采规划区块,指导采矿权设置。

FHZHJSZ0039 水质 总磷的测定 钼酸铵分光光度法....

FHZHJSZ0039 水质总磷的测定钼酸铵分光光度法 F-HZ-HJ-SZ-0039 水质钼酸铵分光光度法 1 范围 本方法用过硫酸钾为氧化剂用钼酸铵分光光度测定总磷 颗粒的 本方法适用于地面水 取25mL试料测定上限为0.6mg/L ééáò?éè?2a?¨ ?ò???áò????è?á???ùo?á×è?2????ˉ?a?yá×?á???yá×?á??ó??a?á?§·′ó|á¢?′±??1?μ?a?á?1?- 3 试剂 本方法所用试剂除另有说明外 3.1 硫酸  3.2 硝酸  3.3 高氯酸密度为1.68g/mL H2SO 4 1+1 ??c=1mol/L 3.1 3.6 氢氧化钠将40g氢氧化钠溶于水并稀释至1000mL NaOH6mol/L 3.8 过硫酸钾并稀释至100mL 100g/L溶液并稀释至100mL ?úà?′|?é?è?¨???ü 3.10 钼酸盐溶液NH 4] 于100mL水中 在不断搅拌下把钼酸铵溶液徐徐加到 300mL 硫酸中此溶液贮于棕色试剂瓶中 3.11 浊度 混合两个体积硫酸 和一个体积抗坏血酸溶液 3.12 磷标准贮备溶液0.001g于110在干燥器中放冷的磷酸二氢钾加入大约800mL水 3.4 1.00mL此标准溶液含50.0ìg磷 3.13 磷标准使用溶液 3.12ó?????êí?á±ê??2¢?ì?èê1ó?μ±ìì???? 10g/L溶液 4 仪器 实验室常用仪器设备和下列仪器 1.1~1.4kg/cm 2 4.2 50mL具塞(磨口)刻度管 1

4.3 分光光度计 注 5 试样制备 5.1 采取500mL水样后加入1mL硫酸(3.1)调节样品的pH值或不加任何试剂于冷处保存 含磷量较少的水样因磷酸盐易吸附在塑料瓶壁上 取时应仔细摇匀 如样品含磷浓度较高 6 操作步骤 6.1 空白试样 按(6.2)的规定进行空白试验并加入与测定时相同体积的试剂 将具塞刻度管的盖塞紧后 放在大烧杯中置于高压蒸气消毒器(4.1)中加热相应温度为120±£3?30min后停止加热 取出放冷 注当用过硫酸钾消解时 6.2.1.2 硝酸一高氯酸消解 5.1?óêyá£2£á§?é 3.2冷后加5mL 硝酸放冷 3.3加热至高氯酸冒白烟 使消解液在锥形瓶内壁保持回流状态放冷 加1滴酚酞指示剂 3.6或3.7 ?ùμ??óáò?áèüòo使微红刚好退去移至具塞刻度管中 注用硝酸高氯酸和有机物的混合物经加热易发生危险 然后再加入硝酸 用滤纸过滤于具塞刻度管中一并移到具塞刻度管中 水样中的有机物用过硫酸钾氧化不能完全破坏时 6.2.2 发色 分别向各份消解液中加入1mL 抗坏酸溶液混合 3.10 消解后用水稀释至标线 注如试样中含有浊度或色度时 砷大于2mg/L干扰测定硫化物大于2mg/L干扰测定铬大于50mg/L干扰测定, 用亚硫酸钠去除 使用光程为30mm比色皿以水做参比扣除空白试验的吸光度后 6.2.4 注水浴上显色15min即可 4.20.50 3.0010.00 2

火电厂离子交换树脂再生废水处理及减排

火电厂离子交换树脂再生废水处理及减排 作者:喻军, 张占平, 高文峰, YU Jun, ZHANG Zhan-ping, GAO Wen-feng 作者单位:阳城国际发电有限责任公司,山西,晋城,048102 刊名: 电力环境保护 英文刊名:ELECTRIC POWER ENVIRONMENTAL PROTECTION 年,卷(期):2008,24(6) 被引用次数:2次 参考文献(18条) 1.胡志光;齐萌火电厂节水技术综述[期刊论文]-电力环境保护 2007(03) 2.DL/T 5046-1995.火力发电厂废水治理设计技术规程 3.田秀军;李进;李志军火力发电厂废水处理的现状与展望[期刊论文]-环境污染治理技术与设备 2005(03) 4.GB 8978-1996.污水综合排放标准 5.马浩化学中和池废水pH值的控制 1999(02) 6.中国化工防治污染技术协会化工废水处理技术 2000 7.禹贯省再生废水中和方法改进 2000(04) 8.刘希波火电厂水务管理 1997 9.王广珠;汪德良;崔焕芳离子交换树脂使用及诊断技术 2004 10.薛明强;吴康;张振江离子交换树脂最适再生条件探索 1999(02) 11.张晋;叶春松;范圣平离子交换树脂逆流再生工艺优化研究[期刊论文]-中国电力 2003(12) 12.姚继贤工业锅炉水处理及水质分析 1993 13.郭锦龙凝结水精处理氨化运行技术探讨[期刊论文]-中国电力 2002(04) 14.DL/T 5068-2006.火力发电厂化学设计技术规程 15.喻军一级除盐浮床的节水措施[期刊论文]-工业用水与废水 2006(01) 16.赵菲火电厂离子交换树脂电再生的实验研究[学位论文] 2002 17.成志强;霍新混床在电厂除盐水处理中的设计探讨[期刊论文]-电力环境保护 2007(01) 18.赵洁;谢秋野;朱京兴火力发电厂水资源综合利用对策[期刊论文]-电力环境保护 2007(01) 本文读者也读过(10条) 1.汤蕴蕾上海地区电厂树脂再生废水处理的探讨[期刊论文]-华东电力2001,29(12) 2.彭爽.孟庆伟再生废水处理问题的探讨[会议论文]-1999 3.仝贵婵.叶裕才.云桂春水处理用离子交换树脂的毒性检验[期刊论文]-中国给水排水2001,17(2) 4.金龙.王罗春.陈梅.JIN Long.WANG Luo-chun.CHEN Mei Fenton试剂处理电厂难降解离子交换树脂再生废水[期刊论文]-苏州科技学院学报(工程技术版)2008,21(1) 5.钱友华.秦永忠一级除盐系统再生酸碱用量调整与探讨[期刊论文]-湖北电力2003,27(3) 6.朱法华.肖萍.徐志清燃煤电厂废水处理与回用及零排放技术研究[会议论文]-2004 7.赵红军锅补阴阳床周期制水量相差大的运行调整[期刊论文]-科技资讯2007(29) 8.李爱阳水处理中离子交换树脂再生时酸碱耗的降低[期刊论文]-化工生产与技术2003,10(2) 9.叶华.蔡冠萍.Ye Hua.Cai Guanping反渗透后续化学除盐系统方案探讨[期刊论文]-净水技术2006,25(2) 10.安徽三星化工有限责任公司利用新型反渗透脱盐技术降低酸碱消耗[期刊论文]-安徽化工2008,34(z1) 引证文献(2条)

矿山废水处理方案

矿业废水水处理技术方案 武汉环境工程有限公司 2014-5-6

目录 第一章概述 (5) 1.1工程背景 (5) 1.2设计单位 (5) 1.3设计原则 (5) 1.4排放标准 (5) 1.5设计依据 (5) 1.6设计及施工范围 (6) 第二章设计规模与标准 (6) 2.1设计规模 (6) 2.2设计进水水质 (6) 2.3设计排放标准 (7) 第三章污水处理方法的比较和选择 (7) 3.1该类污水特点和对处理的要求 (7) 3.2工艺方案的选择 (7) 3.3工艺流程及说明 (8) 3.4工艺原理及优势 (9) 3.5主要污染物预期处理效果 (10) 第四章工艺技术方案 (10) 4.1各单元设计描述及主要关键技术参数 (10) 4.2电气设计 (11)

4.3结构、建筑设计 (14) 4.4消防、安全卫生及应急措施 (14) 4.5工程进度计划 (15) 第五章主要构筑物、设备一览表 (16) 5.1主要构筑物一览表 (16) 5.2主要设备一览表 (16) 第六章质量保证、保修和售后服务 (17) 6.1质量保证 (17) 6.2保修范围 (18) 6.3保修期限 (18) 6.4质量回访 (19) 6.5回访人员组成及处理措施 (19) 6.6维修程序 (19) 6.7人员培训 (20) 第七章工程投资估算 (20) 7.1估算依据 (20) 7.2工程总投资估算表 (20) 第八章运行成本及经济效益分析 (23) 8.1分析依据 (23) 8.2电费 (23) 8.3吨水处理费用 (24)

第九章附件................................................................. 错误!未定义书签。 9.1平面布臵图 (24) 9.2工艺流程图 (24)

钼酸铵废水中钼的吸附树脂选择及影响因素分析

钼酸铵废水中钼的吸附树脂选择及影响因素分析 以钼酸铵废水为研究对象,从多种离子交换树脂中选择吸附效果较好的树脂,并在不同pH值、温度、接触时间条件下,分析吸附影响因素对吸附的影响,从而得到较好的树脂吸附参数,并应用于生产实践。 标签:钼;废水;树脂;影响因素 钼作为一种宝贵的稀有金属,因其优越的耐高温、耐腐蚀等性能被广泛的应用于多个领域,随着社会的发展和科技的进步,对钼产品的需求量日益提高。国内钼酸铵生产通常采用湿法冶金进行生产,生产过程会产生大量的废水,其量大约为4m3废水/吨产品,钼含量通常为0.5-2.0g/l,含有较多的钼金属。对于钼酸铵废水中钼的回收利用常采用化学沉淀法、萃取法、离子交换树脂吸附法等。在回收利用过程中对杂质的含量要求较高,因此,符合工业生产要求的离子交换树脂吸附法成为应用最为广泛的钼回收办法。在离子交换树脂吸附应用过程中,开发和应用的树脂种类较多,有阳离子交换树脂,阴离子交换树脂,鳌合型树脂等,这些树脂均能吸附废水中的钼,并能达到较好的回收效果。 本文以钼酸铵生产废水为研究对象,收集多种离子交换树脂,进行钼酸铵废水钼吸附回收试验,并进行生产应用。 1试验部分 1.1试剂与设备 玻璃离子交换柱(Ф16mm×300mm)、量筒、烧杯; 硝酸(分析纯)、氨水(分析纯)、氢氧化钠(试剂); 离子交换树脂:D314、LS-9000、LS-9000C、SH-819、354树脂(树脂粒度20-50目,使用前经纯水、硝酸、氨水或碱液转型预处理); 含钼废水:钼酸铵生產废水; 全差式分光光度计。 1.2试验方法 1.2.1实验原理 在酸性条件下,钼以多钼酸根形式存在于废水中,主要有:Mo2O72-、Mo4O132-、Mo7O246-、Mo8O264-,在离子交换过程中,多钼酸根被树脂吸附。

探析离子交换树脂在废水处理中的应用解读

探析离子交换树脂在废水处理中的应用 离子交换树脂是一种在交联聚合物结构中含有离子交换基团的功能高分子材料。离子交换树脂不溶于酸、碱溶液及各种有机溶剂,结构上属于既不溶解、也不熔融的多孔性固体高分子物质。 1.离子交换树脂在废水处理中的应用研究 1.1.处理含汞废水 含汞废水是危害最大的工业废水之一,离子交换树脂法适用于处理浓度低而排放量大、含有毒金属的废水。配合硫化钠明矾化学凝聚沉淀法作为二级处理,对低浓度含汞废水可达到排放标准。浙江省洞山县铜山制药厂原先采用硫化钠 明矾化学凝聚沉淀法处理红汞生产中产生的含汞废水。由于含汞废水成分复杂,存在多种形态的汞化合物(有机汞、无机汞)、金属汞以及其他有机物和离子,对酸化pH值和硫化钠量不易控制,会使硫化汞形成整合物溶解,处理后废水中汞浓度仍达0.05~0.5mg/L,很难达到排放标准。为了探索技术上先进、经济上合理的治理途径,叶一芳等通过多次实验,并选用了离子交换树脂法。经过近两年来的运行表明:(1)用树脂交换法除汞作为化学法的二级处理系统,能保证达到排放标准,且能实现封闭循环、连续稳定的运行,排放的废水可作为冷却水加以回用;(2)提高了生产能力,单位产品的成本降低,节约了治理费用;(3)应用树脂交换法还能对废水起到脱色作用,处理的水清晰透明。失效后的树脂不再回收,作为汞废渣回收汞,防止了二次污染。因此,应用离子交换法处理低浓度含汞废水,有明显的社会效益和经济效益。 1.2.处理含铜废水 工业排放废水如有色冶炼、电镀、化工、印染等行业的废水中常含有铜。利用离子交换树脂可以有效地除去废水中的Cu2+,以达到高度净化,并有利于资源的再生。张剑波等选用多种大孔强酸型离子交换树脂用于吸附浓集含有机物废水中的铜离子。通过测定各种树脂对铜离子的去除率、不同铜离子浓度和溶液pH值对去除率的影响,以及各树脂再生性能的比较,表明"争光"树脂、"强酸 1号"树脂与PK208树脂有最为突出的性能,效果明显优于其它几种树脂;其离子交换性能稳定,有良好的再生性。同时,对Cu2+的吸附去除能力完全可达到要求,净化后的水中Cu2+浓度低于0.1mg/L,可用于含铜废水的净化处理。 1.3.处理含钼废水 上世纪60年代末期就有关于采用离子交换法从工业废水中回收钼的报导。迄今为止,离子交换法仍然是治理含钼废水的最主要方法。张建国在研究低价钼酸聚合物的201×7强碱阴离子交换树脂上的吸附机理后指出:低价钼酸聚合物与树脂的交换速度较钼酸盐慢得多。究其原因,认为低价钼酸聚合物主要以六聚

树脂再生原理

树脂进行离子交换反应的性能和再生问题 一、交换能力氢型阳离子交换树脂在水中可解离出氢离子(H+),当遇到金属离子或其它阳离子,就发生互相交换作用,但交换后的树脂,就不再是氢型树脂了。例如,当水中的阳离子如钙离子、镁离子的浓度相当大时,磺酸型的阳离子交换树脂中的氢离子,可和钙、镁离子进行交换,而形成「钙型」或「镁型」的阳离子交换树脂,如下式: 2R-SO3H + Ca2+ → (R-SO3)2Ca + 2H+ (钙型强酸性阳离子交换树脂) 2R- SO3H + Mg2+ → (R-SO3)2Mg + 2H+(镁型强酸性阳离子交换树脂)氢型阳离子交换树脂的交换能力与被交换的阳离子的价数有密切关系。在常温下,低浓度水溶液中,交换能力随离子价数增加而增加,即价数越高的阳离子被交换的倾向越大。此外,若价数相同,离子半径越大的阳离子被交换的倾向也越大。如果以自来水中经常出现阳离子列为参考对象,则氢型阳离子交换树脂的交换能力顺序可表示如下:强酸性:Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+>H+ 弱酸性:H+>Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+ 由上述交换能力顺序可知:强酸性与弱酸性阳离子交换树脂的母体,对阳离子交换能力顺序完全相同,唯一的差异是:两者对H+的交换能力不同,强酸性对氢离子的亲和力最弱,弱酸性对氢离子的亲和力最强,这个特性可能会深深影响它们在水草缸的作用与功能。虽然氢型弱酸性阳离子交换树脂对氢离子的亲合力最强,但氢离子(H+)与氢氧离子(OH-)结合成水(H2O)的亲合力更强,所以在碱性水质中,弱酸性阳离子交换树脂中的H+会快速被OH-所消耗,OH-主要来自KH硬度(HCO3-)的水解反应: HCO3- + H2O ←→ H2CO3 + OH- H+所遗留之「活性位置」再改由其它阳离子如Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+……等依序取代,一直持续到HCO3-完全被消除为止(KH=0)。因此弱酸性阳离子交换树脂的主要作用区间是在于pH=5 ~ 14的水质。由于HCO3-为暂时硬度的阴离子,因此当HCO3-完全被消除后,它的「当量阳离子」,如如钙、镁等离子也同时完全被取代,故能消除所有暂时硬度的「当量阳离子」。氢型强酸性阳离子交换树脂对氢离子(H+)的亲合力最弱,使它在任何pH之下,它都具有交换能力,因此可以完全除去GH硬 度(暂时硬度及永久硬度)。 二、交换容量离子交换树脂进行离子的交换反应的性能,主要由「交换容量」表现出来。所谓交换容量是指每克干树脂所能交换离子的毫克当量数,以m mol/g为单位。当离子为一价时(如K+),其毫克当量数即为其毫克分子数,对于二价(如Ca2+)或更多价离子(如 Fe3+),其毫克当量数即为其毫克分子数乘以其离子价数。交换容量又分为「总交换容量」、「操作交换容量」和「再生容量」等三种表示方法。「总交换容量」表示每克干树脂所能进行离子交换反应的化学基总量,属于理论性计量。「操作交换容量」表示每克干树脂在某一定条件下的离子交换能力,属于操作性计量,它与树脂种类、总交换容量,以及具体操作条件(如接触时间、温度)等因素有关,可用于显示操作效率。「再生容量」表示每克干树脂在一定的再生剂量条件下,所取得的再生树脂之交换容量,可用于显示树脂再生效率。由于树脂的结构不同(主要是活性基数目不同),强酸性与弱酸性阳离子交换树

相关文档
最新文档