功率场效应管高频建模方法

功率场效应管高频建模方法
功率场效应管高频建模方法

功率场效应管高频建模方法

摘要:开关器件在开通和关断暂态过程中产生的高电压和电流变化是电磁干扰(EMI)的主要来源。准确的EMI预测需要对功率器件开关瞬间的动态行为进行精确地描述。首先介绍了两种常见的功率场效应管的建模方法、子电路模型和集总电荷模型。然后提出利用Saber 建模工具Model Architect对功率场效应管进行建模。最后利用Saber 软件建立逆变器电路模型进行仿真对比,得到了功率场效应管的开关波形和电路的传导干扰波形。仿真的结果显示,用Saber中Model Architect建模工具所建的模型能够反映较为实际的情况,相对准确地预测电路中的电磁干扰。

关键词:功率场效应管;建模;极间电容;Model Architect

0 引言

随着电力电子不断向高频化、小型化方向发展,具有高频特性好、抗干扰能力强等特点的场效应管(MOSFET)已经成为电力电子领域中的实用器件。但高频化导致了器件所承受的电应力和开关损耗的增加,不可避免地会产生电磁干扰(EMI)[1]。为了预测和减小电磁干扰的影响,需要建立准确的电路传导EMI的高频模型来进行仿真,然而现有的电路仿真软件库中虽然有着丰富的场效应管的模型,但在高频工作状态下不够准确会导致仿真结果的误差,无法用于传导EMI仿真的现状。因此,研究和掌握功率场效应管的高频建模方法变得尤为重要。

1 常见的功率场效应管建模方法

由于结构和工艺的原因,功率MOSFET存在寄生的极间电容,包括栅漏电容Cgd、栅源电容Cgs和漏源电容Cds,而功率MOSFET中决定其开关波形的是这3个非线性极间电容[2]。因此,建立精确的功率MOSFET高频模型,关键在于正确描述这3个极间电容特性来模拟其开关波形。目前常见的功率MOSFET建模方法主要有子电路模型和集总电荷模型。

1.1 子电路模型

子电路模型以小信号LDMOS为基础,在外围增加反映功率VDMOS动态特性的非线性极间电容和反偏二极管来模拟功率MOSFET[3]。图1所示是saber中两种典型的功率MOSFET子电路模型mpvl和mpv2。图1(a)模型中的一个关键因素是可变电容器Cgdp,连接在栅极和漏极之间,用来描述处于耗尽状态的栅漏电容;Cgd则描述处于积累状态的栅漏电容;栅源电容用常电容Cgs来描述;反偏的二极管D用来描述漏源电容。图1(b)中的模型比图1(a)中的有所改进,模板中的关键因素是可变电容Cgd和Cgs,分别为栅漏和栅源间的非线性电容。和mpv1比主要的变化是增加了Cgs这个描述其积累状态的变量。非线性电容Cgd对应的是图1(a)中的Cgdp,描述的是处于耗尽状态的栅漏电容。

1.2 集总电荷模型

集总电荷的功率MOSFET模型是将功率MOSFET各区的载流子用集总电荷来表示,并分阶段描述功率MOSFET各工作状态下的集总电荷方程,从而得到能够同时反映功率MOSFET静动态特性的模型。当考虑到功率场效应管整个开关过程,包含了各工作状态的MOSFET集总电荷模型[4]。产生栅极电容的电荷qaB、qdB和qiB 集中在集总电荷节点1处。同时,电荷qiB 决定了电流Id的电导系数,还有饱和和非饱和区域的静态特性。漏源间的体二极管使用的是包含反向恢复的Lauritzen-Ma模型来建模。开关S1表示当漏极发生反型时体区和漏极表面的连接。开关S2表示场效应管从截止区过渡到饱和区。

比较这两种建模方法,集总电荷方法能获得连续的非线性极间电容模型和较好的精度,

但运算速度比子电路模型慢,计算效率和鲁棒性较差。子电路方法建模容易构造,运算速度和鲁棒性都较好,但现有的这些模型在器件工作在高频状态时对极间电容影响方面的研究不够[5]。鉴于以上分析考虑,采用Saber 软件自带的建模工具Model Architect对功率场效应管进行建模。

2 Model Architect功率场效应管建模方法

相比以上建模方法,Model Architect 利用器件技术手册提取相关特性曲线,采用自带模型原理进行拟合实现对器件的建模。功率场效应管模型,包括MOSFET一级模型结构、寄生电容、体二极管以及引线电感。主要包括I-V特性曲线、极间电容和体二极管的建模方法。

2.1 I-V特性曲线建模

I-V特性曲线可通过技术手册或实验测得,其中包括Id-Vgs曲线与固定Vgs下Id-Vds 曲线,前者展现了MOSFET随栅压升高而开通的过程,后者则展现了其3个特性区域的过程。将所得曲线经过绘制后可直接输入saber软件中进行曲线拟合,。

2.2 极间电容建模

MOSFET极间电容被结合起来反映对驱动源和负载的容抗。这些合成电容是:反馈电容Crss=Cgd、共源极输入电容Ciss=Cgd+Cgs及共源极输出电容Coss=Cgd+Cds。模型中,极间电容的模拟采取三段式分段线性化,电容通常会在某区间斜率较大而其余区间平缓。因此需要对数据寻找到两个斜率转折点,将曲线分成三段进行拟合。通过技术手册读取这两个转折点的数据后,即可输入Saber中进行建模,。

2.3 体二极管建模

Model Architect中的二极管模型是一种基于电荷控制的集总参数模型,能够反映二极管的反向恢复等特性,物理意义明确。并且拥有曲线拟合功能,可以对模型实测曲线进行拟合,适合于快速建模预测EMI情况的需求。二极管模型,Ls是引线电感、Rs是二极管导通电阻,D为二极管,Cj是功率二极管杂散电容,Qrr是利用电荷存储效应原理来描述功率二极管反向恢复的特性。

在Model Architect中,二极管的建模过程分为三部分:I-V特性建模、结电容建模以及反向恢复特性建模。利用Model Architect-Diode Tool 提取技术手册上正向I-V特性曲线来描述二极管的开关特性,提取电容特性曲线来描述Cj,提取反向恢复电流曲线来描述Qrr,。

3 功率场效应管模型特性验证

为了验证上述所提出的建模方法,分别用mpv2模型和Model Architect建的MOSFET模型搭建逆变器电路来进行仿真对比。电路原理图,电路的输入电压为50 V直流电,工作频率为1 MHz,得到的输出电压为±50 V的方波。在Saber中执行DC和瞬态分析,得到MOSFET 的开关波形。

比较结果可以看出,子电路模型mpv2在开关过程中波形较平稳,没有出现前后沿很陡的脉冲,表示该模型对高频情况考虑不足,造成了一定的误差。而利用Model Architect工具

建立的MOSFET模型的仿真波形可以明显的观察出Vds在关断时的冲击,较好地模拟出了功率场效应管的开关波形,能够更好的用于预估电路中的EMI。

由以上分析可知,MOSFET在高频工作模式下开关过程中电压和电流变化率很高,造成了开关波形的畸变,这也是电路中产生传导干扰的原因之一。通过 saber 时域仿真获得传导干扰噪声电压波形,对该电压波形进行FFT变换获得传导EMI的仿真结果,。

由两图对比可知,mpv2模型与实际器件的参数有一定偏差,不能准确地描述电路的实际性能,所得传导干扰频谱较为理想。采用Model Architect所建模型电路的噪声相比图11更为明显,能够相对准确地描述实际硬件电路的传导干扰。

4 结论

本文首先分析了两种常见的功率场效应管建模方法,提出了在高频工作状态下可使用Model Architect对MOSFET进行建模,并搭建了逆变器电路进行仿真。仿真结果表明Model Architect创建的功率场效应管模型能够与实际器件的特性相符,能够满足研究传导EMI快速建模精确仿真的要求。

功率场效应管原理

功率场效应晶体管(MOSFET)原理 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

场效应管功放

场效应管功放 场效应管功放以其温暖、甜润、松软而被发烧友推崇备至,然而,由于其输出电阻大、承受电流小而低频疲软、推力不足的毛病却挥之不去,如很多对管并联虽然改善了低频,但一方面造价成倍增长,二方面场效应管的配对在业内也是个难题。如金嗓子A-100每声道采用10对场效应管并联输出,虽然声音堪称完美,但其价格之高,也仅仅成为了一台概念机、形象机。 90年代末,一种新型的mos管诞生了,这就是被称为超大电流场效应管的UHC-mos,这种mos管的单管输出电流达30A以上,输出电阻约50毫欧以下。首先在天龙PMA-S1功放上使用,一经推出就好评如潮,发烧友称赞其高音的透明度高得惊人,低频强劲有力。而当时这种器件即便在日本本国也很难购买得到,而在国内就更加无法目睹其芳容了。天龙功放亦将其功放管的型号磨去、煞有其事的打上自己编制的型号,就更让人觉得高深莫测了。 然而,十几年过去了,当年高深莫测的UHC-mos而今已成了大路货,如2sk851、2sk2967等新的10多元一个、而拆机的才2、3元一个,已经沦落到白菜价的水平了,真的是此一时、彼一时啊。 为圆笔者一直的梦想,笔者踏破铁鞋,参阅众多电路,发现的确这种器件的成品电路不仅少,而且多有错漏,只得自己设计电路制作。为方便起见,用何庆华音乐传真E-10功放板改装而来。这是原电路 这是改的电路

下面接着有 这是制作完成图。 调试,通电后先检查输出端直流电位在10mv以下。将可变电阻调到最大,再逐步调小,让发射极0.22欧电阻电压为5mV左右,这时每管电流约25ma即可。再检查中点电位在10mv以下即可开声。声音评价: 机器一开声就有一种让人振奋的感觉,高音透明度极高,音场开阔、堂音丰富。人声极为亲切感人,而低频结实有力,硬度十足。花费才20元不到,而声音却提高了几个档次,内心激动啊。 主观感觉,音乐味、细腻度比日立、东芝场效应管有过之而无不及,特别是透明度高,而低音的力度比东芝管结实的多,和三肯管比感觉霸气少了点,但量感大,硬度足,控制力好。一对管可比美3、4对并联的效果。 这种管子看上去其貌不扬,但声音的确有惊人的表现,我买的k851是拆机的,开启电压在3.2V左右,2.5元一个。4个才10元,加上几个电阻,总成本不到20元。却享受到高级机种才有的效果,比我自己制作的所有功放以及家里的5000千多元的nad、sony功放都要好。 拆机的管子没有做配对工作,由于静态电流只有20ma已经很好声,目前室温15度,散热器即便在很大音量基本感觉不到热量。只有简单的温度补偿,暂时没感觉到问题。夏天温度可能高些,准备把温补管和大管固定在一起,只要不把静态电流调的很大,应该没问题。 已经准备好了秘密武器,三肯专用温度补偿管,放大倍数1500倍。 天龙DENON PMA-2000的电路 G极电阻原则上是越小越好,但场管电路太小容易自激,我选120欧很稳定,100欧应该也可以此功放电压放大部分采用两级差分电路、末级则为准互补输出,最大限度保持了偶次谐波因此极具

常用场效应管参数大全

常用场效应管参数大全 型号材料管脚用途参数 3DJ6NJ 低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关400V2A40W 2SJ118 PMOS GDS 高速功放开关140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214 NMOS GSD 高频高速开关160V0.5A30W 2SK241 NMOS DSG 高频放大20V0.03A0.2W100MHz1.7dB 2SK304 NJ GSD 音频功放30V0.6-12mA0.15W 2SK385 NMOS GDS 高速开关400V10A120W100/140nS0.6 2SK386 NMOS GDS 高速开关450V10A120W100/140nS0.7 2SK413 NMOS GDS 高速功放开关140V8A100W0.5 (2SJ118) 2SK423 NMOS SDG 高速开关100V0.5A0.9W4.5 2SK428 NMOS GDS 高速开关60V10A50W45/65NS0.15 2SK447 NMOS SDG 高速低噪开关250V15A150W0.24可驱电机2SK511 NMOS SDG 高速功放开关250V0.3A8W5.0 2SK534 NMOS GDS 高速开关800V5A100W4.0 2SK539 NMOS GDS 开关900V5A150W2.5 2SK560 NMOS GDS 高速开关500V15A100W0.4 2SK623 NMOS GDS 高速开关250V20A120W0.15 2SK727 NMOS GDS 电源开关900V5A125W110/420nS2.5 2SK734 NMOS GDS 电源开关450V15A150W160/250nS0.52 2SK785 NMOS GDS 电源开关500V20A150W105/240nS0.4 2SK787 NMOS GDS 高速开关900V8A150W95/240nS1.6 2SK790 NMOS GDS 高速功放开关500V15A150W0.4 可驱电机

场效应管特性及单端甲类功放制作全过程

场效应管特性及单端甲类功放制作全过程 场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场效应管的独特而简单的作用原理赋予了场效应管许多优良的性能,它向使用者散发出诱人的光辉。 场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。 一、场效应管的特性 场效应管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点。它是一种压控器件,有与电子管相似的传输特性,因而在高保真音响设备和集成电路中得到了广泛的应用,其特点有以下一些。 高输入阻抗容易驱动,输入阻抗随频率的变化比较小。输入结电容小(反馈电容),输出端负载的变化对输入端影响小,驱动负载能力强,电源利用率高。 场效应管的噪声是非常低的,噪声系数可以做到1dB以下,现在大部分的场效应管的噪声系数为0.5dB左右,这是一般晶体管和电子管难以达到的。 场效应管具有更好的热稳定性和较大的动态范围。 场效应管的输出为输入的2次幂函数,失真度低于晶体管,比胆管略大一些。场效应管的失真多为偶次谐波失真,听感好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好表现。 普通晶体管在工作时,由于输入端(发射结)加的是正向偏压,因此输入电阻是很低的,场效应管的输入端(栅极与源极之间)工作时可以施加负偏压即反向偏压,也可以加正向偏压,因此增加了电路设计的变通性和多样性。通常在加反向偏压时,它的输入电阻更高,高达100MΩ以上,场效应管的这一特性弥补了普通晶体管及电子管在某些方面应用的不足。 场效应管的防辐射能力比普通晶体管提高10倍左右。 转换速率快,高频特性好。 场效应管的电压与电流特性曲线与五极电子管输出特性曲线十分相似。 场效应管的品种较多,大体上可分为结型场效应管和绝缘栅场效应管两类,且都有N型沟道(电流通道)和P型沟道两种,每种又有增强型和耗尽型共四类。 绝缘栅场效应管又称金属(M)氧化物(O)半导体(S)场效应管,简称MOS管。按其内部结构又可分为一般MOS管和VMOS管两种,每种又有N型沟道和P型沟道两种、增强型和耗尽型四类。 VMOS场效应管,其全称为V型槽MOS场效应管,是在一般MOS场效应管的基础上发展起来的新型高效功率开关器件。它不仅继承了MOS场效应管输入阻抗高(大于100MΩ)、驱动电流小(0.1uA左右),还具有耐压高(最高1200V)、工作电流大(1.5~100A)、输出功率高(1~250W)、跨导线性好、开关速度快等优良特性。目前已在高速开关、电压放大(电压放大倍数可达数千倍)、射频功放、开关电源和逆变器等电路中得到了广泛应用。由于它兼有电子管和晶体管的优点,用它制作的高保真音频功放,音质温暖甜润而又不失力度,备受

彩显常用大功率三极管场效应管参数表

彩显常用大功率三极管、场效应管参数表 彩显常用大功率三极管、场效应管参数表 型号功率(W)反压(V)电流(A)功能 BU208A 50 1500 5 电源开关管 BU508A751500 8 电源开关管 BU2508AF 45 1500 8 行管 *BU2508DF 125 1500 8 行管 *BU2508D 125 1500 8 行管 BU2520AF 45 1500 10 行管 BU2520AX 45 1500 10 行管 *BU2520DF 125 1500 10 行管 BU2522AF 45 1500 10 行管 *BU2522DF 80 1500 10 行管 *BU2525DF 45 800 12 行管 BUH515 60 1500 8 行管 BUH515D 60 1500 8 行管 C1520 10 250 0.2 视放 C1566 1.2 250 0.1 视放 C1573 0.6 250 0.07 视放 C1875 50 1500 3.5 电源开关管 C3153 100 900 6 电源开关管 C3026 50 1700 5 行管 C3457 50 1100 3 电源开关管 C3459 90 1100 4.5 电源开关管 C3460 100 1100 6 电源开关管 C3461 140 1100 8 行管 *C3683 50 1500 5 行管 C3686 50 1400 8 行管 C3687 150 1500 8 行管 C3481 120 1500 5 电源开关管 C3688 150 1500 10 行管 *C3842 120 1500 6 行管 *C3883 50 1500 5 行管 C3885 50 1400 7 行管 C3886 50 1400 8 行管 C3887 80 1400 7 行管 C3888 80 1400 80 行管 C3889 80 1400 80 行管 *C3891 50 1400 6 行管

常用场效应管型号参数管脚识别及检测表

. 常用场效应管型号参数管脚识别及检测表 场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进 行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以 判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

1 / 19 . (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效 应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏 极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测 得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极 之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S, 黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时 表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针

场效应管和mos管的区别

功率场效应晶体管MOSFET 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET (Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。 按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET),本文主要以VDMOS 器件为例进行讨论。 功率MOSFET为多元集成结构,如国际整流器公司(International Rectifier)的HEXFET 采用了六边形单元;西门子公司(Siemens)的SIPMOSFET采用了正方形单元;摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列。 2.2功率MOSFET的工作原理 截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1 反偏,漏源极之间无电流流过。 导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子—电子吸引到栅极下面的P区表面 当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。 2.3功率MOSFET的基本特性

常用场效应管参数大全 (2)

型号材料管脚用途参数 IRFP9140 PMOS GDS 开关 100V19A150W100/70nS0.2 IRFP9150 PMOS GDS 开关 100V25A150W160/70nS0.2 IRFP9240 PMOS GDS 开关 200V12A150W68/57nS0.5 IRFPF40 NMOS GDS 开关 900V4.7A150W2.5 IRFPG42 NMOS GDS 开关 1000V3.9A150W4.2 IRFPZ44 NMOS GDS 开关 1000V3.9A150W4.2 ******* IRFU020 NMOS GDS 开关 50V15A42W83/39nS0.1 IXGH20N60ANMOS GDS 600V20A150W IXGFH26N50NMOS GDS 500V26A300W0.3 IXGH30N60ANMOS GDS 600V30A200W IXGH60N60ANMOS GDS 600V60A250W IXTP2P50 PMOS GDS 开关 500V2A75W5.5 代J117 J177 PMOS SDG 开关 M75N06 NMOS GDS 音频开关 60V75A120W MTH8N100 NMOS GDS 开关 1000V8A180W175/180nS1.8 MTH10N80 NMOS GDS 开关 800V10A150W MTM30N50 NMOS 开关 (铁)500V30A250W MTM55N10 NMOS GDS 开关 (铁)100V55A250W350/400nS0.04 MTP27N10 NMOS GDS 开关 100V27A125W0.05 MTP2955 PMOS GDS 开关 60V12A75W75/50nS0.3 MTP3055 NMOS GDS 开关 60V12A75W75/50nS0.3

功率场效应管的原理、特点及参数

功率场效应管的原理、特点及参数 功率场效应管的原理、特点及参数 功率场效应管又叫功率场控晶体管。 一.功率场效应管原理:半导体结构分析略。本讲义附加了相关资料,供感 兴趣的同事可以查阅。实际上,功率场效应管也分结型、绝缘栅型。但通常指 后者中的MOS 管,即MOSFET(Metal Oxide Semiconductor Field Effect Transistor)。它又分为N 沟道、P 沟道两种。器件符号如下: N 沟道P 沟道图1-3:MOSFET 的图形符号MOS 器件的电极分别为栅极G、漏极D、源极S。和普通MOS 管一样,它也有:耗尽型:栅极电压为零时,即存在导电沟道。无论VGS 正负都起控制作用。增强型:需要正偏置栅极电 压,才生成导电沟道。达到饱和前,VGS 正偏越大,IDS 越大。一般使用的功 率MOSFET 多数是N 沟道增强型。而且不同于一般小功率MOS 管的横向导电 结构,使用了垂直导电结构,从而提高了耐压、电流能力,因此又叫VMOSFET。 二.功率场效应管的特点:这种器件的特点是输入绝缘电阻大(1 万兆欧以上),栅极电流基本为零。驱动功率小,速度高,安全工作区宽。但高压时, 导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。适合低压 100V 以下,是比较理想的器件。目前的研制水平在1000V/65A 左右(参考)。 其速度可以达到几百KHz,使用谐振技术可以达到兆级。 三.功率场效应管的参数与器件特性:无载流子注入,速度取决于器件的电 容充放电时间,与工作温度关系不大,故热稳定性好。(1)转移特性:ID 随UGS 变化的曲线,成为转移特性。从下图可以看到,随着UGS 的上升,跨导 将越来越高。

常用大功率场效应管

2009-11-16 14:24 IRF系列POWER MOSFET 功率场效应管型号参数查询及代换 带有"-"号的参数为P沟道场效应管,带有/的参数的为P沟道,N沟道双管封装在一起的场效应管,没注明的均为N沟道场效应管. 型号Drain-to-Source V oltage漏极到源极电压Static Drain-Source On-State Resistance静态漏源 通态电阻Continuous Drain Current漏极连续电流(TC=25℃) PD Total Power Dissipation 总功率耗散(TC=25℃)Package 封装Toshiba Replacement 替换东芝型号V ender 供应商 型号耐压(V)内阻(mΩ)电流(A)功率(W)封装厂商 IRF48 60 - 50 190 TO-220AB - IR IRF024 60 - 17 60 TO-204AA - IR IRF034 60 - 30 90 TO-204AE - IR IRF035 60 - 25 90 TO-204AE - IR IRF044 60 - 30 150 TO-204AE - IR IRF045 60 - 30 150 TO-204AE - IR IRF054 60 - 30 180 TO-204AA - IR IRF120 100 - 8.0 40 TO-3 - IR IRF121 60 - 8.0 40 TO-3 - IR IRF122 100 - 7.0 40 TO-3 - IR IRF123 60 - 7.0 40 TO-3 - IR IRF130 100 - 14 75 TO-3 - IR IRF131 60 - 14 75 TO-3 - IR IRF132 100 - 12 75 TO-3 - IR IRF133 60 - 12 75 TO-3 - IR IRF140 100 - 27 125 TO-204AE - IR IRF141 60 - 27 125 TO-204AE - IR IRF142 100 - 24 125 TO-204AE - IR IRF143 60 - 24 125 TO-204AE - IR IRF150 100 - 40 150 TO-204AE - IR IRF151 60 - 40 150 TO-204AE - IR IRF152 100 - 33 150 TO-204AE - IR IRF153 60 - 33 150 TO-204AE - IR IRF220 200 - 5.0 40 TO-3 - IR IRF221 150 - 5.0 40 TO-3 - IR IRF222 200 - 4.0 4.0 TO-3 - IR IRF223 150 - 4.0 40 TO-3 - IR IRF224 250 - 3.8 40 TO-204AA - IR IRF225 250 - 3.3 40 TO-204AA - IR IRF230 200 - 9.0 75 TO-3 - IR IRF231 150 - 9.0 75 TO-3 - IR IRF232 200 - 8.0 75 TO-3 - IR

一种大功率场效应管隔离驱动电路

一种大功率场效应管隔离驱动电路 余洋云南交通技术学院 摘要:本文介绍了一种高性能的的大功率场效应管隔离驱动电路,并就其技术原理、性能、特点以及运用做了详细的阐述。 关键词:场效应管,隔离,驱动电路 A high power MOSFET isolated driver circuit Yu Yang yunnan traffic institute of technology abstract:This article describes one model of china-made high-power MOSFET Isolation drive Circuit and detailed introduction of its performance,features and application. Keywords: MOSFET, Isolation, drive Circuit 1 概述 大功率场效应管因工作频率高,驱动损耗小等优点在高频大功率电子设备中成为不可替代的功率半导体器件,尤其是在高频大功率开关电源以及高频感应加热设备中,大功率场效应管几乎是了唯一可以选择的功率器件。由于主回路工作电压高,驱动功率大,且开关频率高,为了减少功率变换电路对控制电路(尤其是以DSP等数字处理器为核心的控制系统)干扰,实际运用中需要把功率电路和控制电路隔离,因此就需要具有隔离驱动功能的大功率场效应管驱动电路。目前市场上的场效应驱动器很多,但大多以IR公司的小功率的专用IC为主,这类IC 的缺点在于本能实现控制电路与功率电路的隔离驱动,且驱动能力小。本文向大家介绍的大功率场效应管隔离驱动电路具有驱动功率大、工作频率高、电路简单等特点,可应用于250A/1000V以内容量的大功率场效应管隔离驱动。 电路采用了变压器调制解调隔离驱动技术,信号延迟时间短,抗干扰能力强;采用了干扰脉冲抑制技术,脉冲宽度小于调制电路RS触发器1/2时钟周期宽度的干扰脉冲都将被忽略;内部集成隔离的DC/DC变换电路,只需外供15V电源即可稳定工作。

采用2个MOS场效应管构成的功率放大器

本电路采用2个MOS 场效应管构成功率放大器,为甲乙类(AB 类)功率放大器,上面采用N 沟道增强型MOS 场效应管IRF130,下面采用P 沟道增强型MOS 场效应管IRF9130,IRF130和IRF9130是IR 公司生产的配对N 沟道和P 沟道器件,性能几乎是对称的。 为了克服交越失真,必须使输入信号避开场效应管的截止区,可 以给场效应管加入很小的静态偏置电流,使输入信号叠加在很小的静态偏置电流上,这样可以避开场效应管的截止区,使输出信号不失真。 增强型MOS 场效应管有个开启电压V T ,V GS 必须要大于V T ,该 场效应管才能进入放大区。IRF130和IRF9130的V GS 最小值为2V ,设计时使2个场效应管栅极之间的电压在2V*2=4V ,或者为了减小直流电源的消耗,取比4V 稍小一点,也是可以的。 只要保持电压的分压比,电阻上的电流是不必考虑的,因为场效 应管的栅级输入阻抗是非常高的,栅级几乎不消耗电流,因此,分压 GND_0VOFF = 0v

电阻的阻值取常用的即可。 从单个场效应管看,这是源级跟随器,所以电压放大倍数为1。 功率放大器对输入电压范围是没有限制的,取决于场效应管的参数,IRF130和IRF9130的绝对最大V GS=±20V,就是说,输入电压范围±15V是没有问题的。 功率放大器根据输入电压,放大接近1倍,得到输出电压,由输出电压,根据负载,得到输出电流。 如果电源电压是±24V,减去2个场效应管的正常工作时的V DS,输出电压范围应该大于±22V,具体做一下实验,也是简单的事。 甲乙类放大器电路的主要特点如下所述: (a).这种放大器同乙类放大器电路一样,也是用两只场效应管分别放大输入信号的正、负半周,但给两只场效应管加入了很小的静态偏置电流,以使场效应管刚刚进入放大区。 (b).由于给场效应管所加的静态直流偏置电流很小,所以在没有输入信号时放大器对直流电源的消耗比较小(比起甲类放大器要小得多),这样具有乙类放大器的省电优点,同时因加入的偏置电流克服了场效应管的截止区,对信号不存在失真,又具有甲类放大器没有非线性失真的优点。所以,甲乙类放大器具有甲类和乙类放大器的优点,同时克服了这两种放大器的缺点。正是由于甲乙类放大器无交越失真,又具有输出功率大和省电的优点,所以被得到广泛的应用。 当这种放大电路中的场效应管静态直流偏置电流太小或没有时,就成了乙类放大器,将产生交越失真。

常用场效应管参数大全(1)

型号材料管脚用途参数 3DJ6NJ 低频放大 20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关 600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关 400V2A40W 2SJ118 PMOS GDS 高速功放开关 140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关 60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关 60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关 60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励 60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励 60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励 60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励 60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励 60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频 50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频 50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关 50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大 50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大 30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大 18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大 20V0.5-8mA0.25W100MHz3dB

场效应管单端甲类功放设计及制作

场效应管单端甲类功放设计及制作 音频功率放大器简介 音频放大器按所用放大器件可分为电子管放大器、晶体管放大器、集成电路放大器、场效应管放大器以及由上述所用器件两种或两种以上组成的混合放大器,各类放大器电路及所用元器件也是五花八门、千变万化,由此对音源的重放音质又各具特色,很难说哪一种放大器能以偏概全、技压群芳成为万能放大器。 电子管放大器由于空间电荷的传输时滞作用,重放音色温暖柔和,尤其是弦乐人声,表现为醇美剔透,耐人寻味。晶体管以及集成电路放大器具有犀利的分析力、宽阔的频响和强劲的动态,具有朝气蓬勃、催人奋进的感召力。场效应管放大器以及混合器件放大器,力图综合电子管和晶体管音频特性,开创异彩,让乐声更传神,让音色更完美。 近些年来,随着电子电脑技术的不断发展,各种电子合成器、各种音频效果器和胆音效果器软件以及虚拟扬声器技术层出不穷。这使得音频放大器硬件的发展和普及远远赶不上软件的速度,在精确度上硬件往往也赶不上软件,如电脑模拟3D效果逼真度大大超过真实3D 效果,不受听音室的空间以及声源合成的限制,同时也节省投入硬件的开支。 绿色音响、双料发烧——电脑音响很有可能会成为未来音响的主流,硬件不行软件来,实行软硬兼施,功能强悍,集中体现了高效、便捷、神奇以及经济的特点。如在电脑中设置虚拟光驱,每次播放乐曲时,就不必启动物理光驱,这样不仅减少等待曲目时间及物理光驱的磨损,更重要的是消除了物理光驱的噪声,实现高保真放音。再如,胆管功放放音柔和耐听,而制作成本不薄,并且取得靓音的要件比较多,而通过胆音效果器软件,可为我们在电脑中造就一个“软胆”,就可以模拟出胆机的音色。目前电脑多媒体音响正处于进阶时期,并与电视也架起了沟通的桥梁,其前景是十分灿烂诱人的!电脑以及音响发烧友,是一个不惜时间和精力,积极探索追求音质的特殊层面,将继续担起一份爱乐责任,生活中多一首甜美的歌声,就少一幕苦涩的纷争。无论是普通音响,还是电脑多媒体音响,功率放大器依然是音频能量扩大推动扬声器出声不可或缺的终端,各类放大器均能较好地实现这一功能。不过现代人们对音响(技术因素为主,如频率响应、失真度、信噪比等)和音乐(艺术魅力为主,如声底是否醇厚、堂音是否丰富、听感是否顺耳等)的苛求愈来愈高,不少“金耳朵”能够听出歌手的齿音、口角以及身临其境、直逼现场的感觉,因此对音频放大器重放音色也寄予更大的要求,努力以特色音响塑造迷人的音乐氛围。 各类音频放大器具有各自的优点及属性,也各有其不足之处,而场效应管放大器主流兼具晶体管和电子管两者的优势,同时还具备两者所没有的优势。在电路程式上,大量实践证明,单端甲类功放是以效率换音质的典范,具有无与伦比的音乐魅力。 放大器的分类及单端甲类放大器性能

单端场效应管甲类功率放大器制作

由于甲类功放在信号放大过程中,不存在交越失真,音乐味浓郁.深受音响发烧友推崇而制约甲类功放普及的一个重要因素是几乎所有的单端甲类机器都需要输出变压器;另外甲类机器功耗较大.机器的稳定性也受到影响。 一般家用的甲类功放,具有的6 W 的功率输出.足以满足音乐欣赏的要求.前提是听音面积不能太大.另外音箱要有较好的灵敏度,从降低制作成本、减小功耗、提高可靠性的角度考虑.需要选择一种结构简单,功耗相对较低的线路。 PASS ZEN 系列放大器具有结构简单,音质好等突出优点。PASS ZEN1放大器比PASS ZEN4,A5等放大器输出功率小得多.电路非常简洁,且静态功耗也小得多.由于PASS ZEN1采用电容作耦合输出,可避免直流输出对扬声器造成的损坏,所以制作时可省去扬声器保护电路;不必担心电容输出放大器的低频下潜问题,从实际测试和听音情况看,声音在20-20000Hz范围内比较平坦,同时由于采用V MOS放大管,音色酷似电子管放大器。 PASS ZEN1放大器原理图如图1所示,从电路上可以看出ZEN1是一级恒流源负载的放大电路,利用IRFP9240作为恒流管,工作在甲类放大状态。由于原理图中所标注型号MOS管较难购买到,实际制作时本机选用代用管。其中MSA92用A1013代替,IRFP9240用IRFP9640代替,IRFP140用IRFP640代替,当然也可选取类似VMOS管做替代实验,但由于脚位及开启电压差别过大,不应用K系列与J系列场效应管。 下面就制作过程中的几个关键问题做介绍。 (1)电源电路 由于PASS ZEN1放大器工作在单端甲类状态,双通道工作时,静态电流约为4 A,如采用单只变压器供电,变压器容量与次级线径均要较大,否则采用每声道独立供电是个不错的选择。本机采用1只500W 环牛为双声道供电;由于静态电流较大,整流桥的容量、品质一定要有保证,双声道供电应选用50A整流

场效应管功放

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 场效应管功放 场效应管功放以其温暖、甜润、松软而被发烧友推崇备至,然而,由于其输出电阻大、承受电流小而低频疲软、推力不足的毛病却挥之不去,如很多对管并联虽然改善了低频,但一方面造价成倍增长,二方面场效应管的配对在业内也是个难题。如金嗓子A-100每声道采用10对场效应管并联输出,虽然声音堪称完美,但其价格之高,也仅仅成为了一台概念机、形象机。 90年代末,一种新型的mos管诞生了,这就是被称为超大电流场效应管的 UHC-mos,这种mos管的单管输出电流达30A以上,输出电阻约50毫欧以下。首先在天龙PMA-S1功放上使用,一经推出就好评如潮,发烧友称赞其高音的透明度高得惊人,低频强劲有力。而当时这种器件即便在日本本国也很难购买得到,而在国内就更加无法目睹其芳容了。天龙功放亦将其功放管的型号磨去、煞有其事的打上自己编制的型号,就更让人觉得高深莫测了。 然而,十几年过去了,当年高深莫测的UHC-mos而今已成了大路货,如2sk851、2sk2967等新的10多元一个、而拆机的才2、3元一个,已经沦落到白菜价的水平了,真的是此一时、彼一时啊。 为圆笔者一直的梦想,笔者踏破铁鞋,参阅众多电路,发现的确这种器件的成品电路不仅少,而且多有错漏,只得自己设计电路制作。为方便起见,用何庆华音乐传真E-10功放板改装而来。 这是原电路 这是改的电路 文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.

下面接着有 这是制作完成图。以下。将可变电阻调到最大,再逐步调小,让发射极10mv 调试,通电后先检查输出端直流电位在以下即可开声。再检查中点电位在 10mv25ma欧电阻电压为5mV左右,这时每管电流约即可。0.22 声音评价:人声极为亲切感人,堂音丰富。高音透明度极高,音场开阔、机器一开声就有一种让人振奋的感觉,元不到,而声音却提高了几个档次,内心激动啊。而低频结实有力,硬度十足。花费才20主观感觉,音乐味、细腻度比日立、东芝场效应管有过之而无不及,特别是透明度高,而低音的力度比东芝管结实的多,和三肯管比感觉霸气少了点,但量感大,硬度足,控制力好。一对管可比美4对并联的效果。3、左是拆机的,开启电压在3.2V这种管子看上去其貌不扬,但声音的确有惊人的表现,我买的k851却享受到高级机种才有的效果,元。加上几个电阻,总成本不到204右,2.5元一个。个才10元,功放都要好。、sony比我自己制作的所有功放以及家里的5000千多元的nad度,散热器即便已经很好声,目前室温15拆机的管子没有做配对工作,由于静态电流只有20ma准在很大音量基本感觉不到热量。只有简单的温度补偿,暂时没感觉到问题。夏天温度可能高些,备把温补管和大管固定在一起,只要不把静态电流调的很大,应该没问题。倍。已经准备好了秘密武器,三肯专用温度补偿管,放大倍数1500 DENON PMA-2000的电路天龙100欧很稳定,欧应该也可以120G极电阻原则上是越小越好,但场管电路太小容易自激,我选最大限度保持了偶次谐波因此极具末级则为准互补输出,此功放电压放大部分采用两级差分电路、 文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 胆味。声音如散发出幽幽兰香,从容不迫、气定神闲,初看之若杨柳迎风,细味之则如棉裹铁,幼细处如珠落银盘,大动态举重若轻。无论小型书架箱还是大型款落地箱都手到擒来,是难得的相当全面的功放。 K851有很多不知道引脚定义

常用场效应管参数.doc

常用场效应管参数

常用全系列场效应管MOS 管型号参数封装资料(2008-05-17 13:21:38) 转载 标签:分类:电气知识 mos(和谐社会) 场效应管 开关管 型号 参数 封装 it 场效应管分类型号简介封装DISCRETE MOS FET2N7000 60V,0.115A TO-92 DISCRETE MOS FET2N7002 60V,0.2A SOT-23 DISCRETE MOS FET IRF510A 100V,5.6A TO-220 DISCRETE MOS FET IRF520A 100V,9.2A TO-220 DISCRETE MOS FET IRF530A100V,14A TO-220

MOS FET IRF540A 100V,28A TO-220 DISCRETE MOS FET IRF610A 200V,3.3A TO-220 DISCRETE MOS FET IRF620A 200V,5A TO-220 DISCRETE MOS FET IRF630A 200V,9A TO-220 DISCRETE MOS FET IRF634A 250V,8.1A TO-220 DISCRETE MOS FET IRF640A 200V,18A TO-220 DISCRETE MOS FET IRF644A 250V,14A TO-220 DISCRETE MOS FET IRF650A 200V,28A TO-220 DISCRETE MOS FET IRF654A 250V,21A TO-220 DISCRETE MOS FET IRF720A 400V,3.3A TO-220 DISCRETE MOS FET IRF730A 400V,5.5A TO-220

相关文档
最新文档