基于霍尔传感器的电流测试设计

基于霍尔传感器的电流测试设计
基于霍尔传感器的电流测试设计

湖南科技大学课程设计

课程设计名称基于电流传感器的电流测试仪学生姓名:黄冰

学院:机电工程学院

专业及班级:09测控2班

学号:0903030228

指导教师:戴巨川

2013/1/15

摘要

电流检测有多种方法, 最通用的方法是采用阻性分流器、互感器或霍尔传感器。阻性分流器工作时与负载串联, 无法进行隔离测量; 互感器只适用于50 Hz 工频交流的测量; 霍尔检测技术综合了互感器和分流器技术的所有优点, 同时又克服了互感器和分流器的不足, 采用一只霍尔电流电压传感器/ 变送器模块检测元件, 既可以检测交流, 也可以检测直流,甚至可以检测瞬态峰值, 同时又能实现主电路回路和电子控制电路的隔离, 因而是替代互感器和分流器的新一代产品。电源作为电气、电子设备必不可少的能源供应部件,需求日益增加,而且对功能、稳定性等各项指标也提出了更高的要求。直流稳压电源一般由电源变压器、整流滤波电路及稳压电路所组成。变压器把交流电压变为所需要的低压电交流电。整流器把交流电变为直流电。经过滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,经过、变压、整流、滤波,稳压过程将220V交流电,变为稳定的直流电。

本次试验通过对直流可调电流源的设计实训,能够熟练应用分立元件完成小功率直流稳压电源的电路设计、参数运算和器件选择,使其满足试验所需要求。同时正确掌握直流稳压电源的制作与测试方法,为今后的实际工作打下良好的基础。【关键字】霍尔传感器稳压器直流稳压电源

Abstract

Current detection have many kinds of methods, the most common method is to use impedance shunt, transformer or hall sensor. Impedance shunt work with load series, unable to isolation measurement; Transformer is only in the Hz power frequency ac measurement; Hall detection technology integrated the transformer and shunt technology all advantages, at the same time, and overcome the transformer and the shortage of the shunt, using a hall current voltage sensor/transmitter module detecting element, which can detect communication, also can detect dc, even can detect transient peak, and at the same time can realize main circuit loop and electronic control circuit of isolation, it is alternative transformer and shunt of a new generation of products.

Power supply for electrical and electronic equipment indispensable energy supply parts, growing demand, but also to function, the stability of the indicators also put forward higher request. Dc regulated power supply is composed of power transformer, rectifier filter circuit and voltage regulator circuit composed. The ac voltage transformer to need low voltage electric alternating current (ac). Rectifier the alternating current (ac) into direct current. After filtering, voltage regulator and unstable dc voltage into a stable dc voltage output. This design mainly adopts dc voltage constitute integrated voltage regulator circuit, after, transformer, rectifier, filter, voltage 220 v alternating current (ac), the process will become stable dc,.

The test through the adjustable dc current source design practice, can skilled application of discrete element complete small power dc regulated power supply circuit design, parameter calculation and component selection, make it meet the test requirements needed. At the same time grasp dc regulated power supply production and test method for future actual work

lay a good foundation.

【Key words 】Hall sensor regulator Dc regulated power supply

目录

一、课程设计题目分析 (1)

1.1 课程设计题目介绍 (1)

1.2 课程设计要求及注意事项 (1)

二、整体设计方案 (3)

2.1、系统设计思路 (3)

2.2、设计方案的确定 (3)

三、硬件电路的设计 (5)

3.1、传感器电路 (5)

3.2、AD转换模块 (5)

3.3、按键模块 (6)

3.4、液晶显示模块 (7)

3.5、时间芯片模块 (8)

四、电源电路详细介绍 (9)

4.1、电源电路设计要求 (9)

4.2、直流稳压电源设计思路 (9)

(1)电网供电电压交流220V(有效值)为50HZ,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。 (9)

4.3、直流稳压电源的基本设计原理 (9)

4.4、电源电路元器件的选择 (11)

4.4.1、变压器的选择 (11)

4.4.2、二极管的选择 (12)

4.4.3、稳压芯片的选择 (13)

4.5、电源总体电路设计 (14)

五、心得体会 (16)

参考文献 (17)

一、课程设计题目分析

1.1 课程设计题目介绍

根据给定的电流传感器型号,设计硬件电路以及软件电路来显示电流传感器测得电流大小,并且能滤除一定的干扰,是测得的数据尽量精确。

电流传感器CTDS20A-***输入信号有直流、交流、双向直流和脉动直流几种形式,输出信号有0~5V, 0~20mA、4~20mA、0~10V多种形式任选。

因为本课程设计的电流传感器型号为CTDS20A-211,所以代表输入为交流,输出为0~5V(VZ),辅助电源电压为+12V。

第一个“*”为1、2、3、4分别代表输入为直流、交流、双向直流、脉动直流信号,第二个“*”为1、2、3、4、5、6分别代表输出为0~5V(VZ)、0~5V (VG)、0~20mA(IZ)、4~20mA(IY)、0~10V(VZ)、0~10V(VG),第三个“*”为1、2、3、4、5、6表示辅助电源电压,分别代表+12V、+15V、+24V、±12V、±15V、±24V。

1.2 课程设计要求及注意事项

主要技术参数输入范围: 0~0.5~300A 精度等级: 0.5级

工作温度: 0~50℃温漂特性: 500 ppm/℃

隔离耐压: 2500 V DC

负载能力: 电压输出≥ 2 kΩ电流输出≤ 300Ω

响应时间: ≤ 250 ms

静态功耗: 电压输出≤200mW 电流输出(4~20mA)≤250mW

输入过载能力:10倍标称值 (5秒)

1. 电源电压必须符合标称值,否则会烧坏产品;

2. 当用万用表表笔测量电压或电流时,应把接线端子螺钉旋到底,否则有可能测不到电压或电流输出值;

3. 该产品的输出端应根据输出的类型接负载,电压输出时负载是并联,电流

输出时负载是串联;

4. 电流穿孔直径有四种可供用户选择,分别为Φ4,Φ6.5,Φ13和Φ20,电流母线穿线允许的情况下,应尽量选用小孔径,以免影响测量精度。

二、整体设计方案

2.1、系统设计思路

电流传感器检测到的信号是电流,通过电流传感器内部处理后,将测得的电流信号大小转换成对应的电压,所以输出来的是模拟信号,此时要用到模数转换,及AD转换才能将模拟信号转换成数字信号。转换成数字信号后,需要处理器处理数字信号,并且加以辨识通过驱动数字显示频来显示数字信号转换后的数字。最后整个系统需要各种电源,此时可以设计一个电源电路供应各种电压。

无论是霍尔元件型电流传感器还是伺服型直流电流传感器,最近使用逆变器的情况比较多,电压噪声较大,对于传感器的使用较困难。这时根据产品目录数据表中记载值难以判断,因此,需要通过实验进行验证。

自动化系统中大量使用大功率晶体管、整流器和可控硅,普遍采用交流变频调速及脉宽调制电路,使得电路中不再只是传统的50周的正弦波,出现了各种不同的波形。对于这类电路,采用传统的测量方法不能反应其真实波形,而且电流、电压检出元件也不适应中高频、高di/dt电流波形的传感和检测。

CTDS系列电流传感器,可以测量任意波形的电流和电压。输出端能真实地反映输入端电流或电压的波形参数。针对霍尔效应传感器普遍存在温度漂移大的缺点,采用补偿电路进行控制,有效地减少了温度对测量精度的影响,确保测量准确;具有精度高、安装方便、售价低的特点。

2.2、设计方案的确定

利用霍尔传感器采集被测回路中的电流,霍尔传感器输出的电压信号经过ad 转换后送入单片机进行数据处理,处理后的数据送入显示模块进行显示。本设计采用的霍尔传感器的精度为0.5%,ad转换器的精度为八位,单片机型号为AT89S52满足设计要求。

设计方案的框图如下:

LCD1602

显示模块霍尔传感器采

集电流信号

按键输入模块

AT89S52

AD转换模块

时间输入模块

图二

三、硬件电路的设计

3.1、传感器电路

本设计采用的传感器为霍尔传感器,基本的优点在于:响应时间快、低温漂、

精度高、体积小、频带宽、抗干扰能力强、过载能力强。主要参数如下:

输入电流大小为0~20A ;

电压输出为0~5V ;

转换精度为+0.5%;

工作环境温度为0~50℃;

负载能力 电压输出≥Ω2k ,电流输出≤Ω300;

静态功耗 电压输出200mW ≤,电流输出250mW ≤;

其接线图如图3-1所示:

图3-1 传感器接线图

其中5脚为12v 电源输入脚,6脚为电源地,7脚为VEE ,8脚为电压输出脚

(0~5v ),9脚为电流输出脚。

3.2、AD 转换模块

本设计采用的AD 转换芯片为ADC0809,ADC0809是带有8位A/D 转换器、8路

多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D 转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

0809的输入信号来自霍尔传感器,输出的八位数字量输入单片机的P1口,用P3口作转换控制信号引脚。电路图如图3-2所示

图3-2 ADC0809接线图

3.3、按键模块

通过四个按键来调整显示时间,分别为菜单键(k1)、增加键(k2)、减小键(k3)、确认键(k4)。电路图如图3-3所示:

图3-3 按键模块接线图

3.4、液晶显示模块

采用1602显示结果,LCD1602的引脚为16脚,与单片机的接线图如图3-4所示:

图3-4 显示模块接线图

3.5、时间芯片模块

时钟芯片用来记录某个时刻采集到的电流值,采集信号时的时间也显示到1602上。时钟芯片与单片机的接线图如图3-5所示:

图3-5 时间模块接线图

四、电源电路详细介绍

4.1、电源电路设计要求

(1)设计制作一个供本次实验设计可用的直流稳压电源。

(2)输入电压为220V时,电路有两个输出端,分别为12V和5V。

4.2、直流稳压电源设计思路

(1)电网供电电压交流220V(有效值)为50HZ,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。

(2)降压后的交流电压,通过整流电路变为单向直流电,但其幅度变化大(即脉动大)。

(3)脉动大的直流电压必须进过滤波电路变为平滑,脉动小的直流电,即将交流成分滤掉,保留其直流成分。

(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给电压表。

4.3、直流稳压电源的基本设计原理

直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压4个环节才能完成。过程框图如图4-1所示。

图4-1 直流稳压电源的原理框图和波形变换

(1)变压电路:降压变压器将电网220V交流电压变

换成符合需要的交流电压,并送给整流电路

(2)整流电路:利用单向导电原件,把正弦交

流电变换成脉动的直流电。

(3)滤波电路:可以将整流电路输出电路输出电压中的交流

成分大部分加以滤除,从而得到比较平滑的直流电压。

(4)稳压电路:稳压电路的功能是使输出的直流电压稳

定,不随交流电网电压和负载的变化而变化本次设计中采

用的是L7812和L7805,既可以稳定电压又可获得所需要

的输出电压。

4.4、电源电路元器件的选择

4.4.1、变压器的选择

(1)变压器(transformer)原理:

利用电磁感应原理将电能或电信号从一个电路传递到另一个电路的静止器件。电子电路中的变压器主要用于电压幅度变换和电路负载的阻抗匹配变换。它由绕在铁芯上的初级绕组(原组)和次级绕组(副组)组成。工作电压自毫伏级到千伏级;输出功率从毫瓦级到千瓦级;工作频率从几十赫一直到射频;波形除正弦波外,还有矩形波、脉冲波和各种复杂的波形。常用的变压器除一般的电源变压器外,还有音频变压器、阻抗匹配变压器、脉冲变压器、视频变压器、射频变压器等。

(2)选择要求

首先要根据我们生活用电的电源电压,即为220V;然后参照变压器铭牌标示的技术数据逐一选择,一般应从变压器容量、电压、电流及环境条件综合考虑,其中容量选择应根据用户用电设备的容量、性质和使用时间来确定所需的负荷量,以此来选择变压器容量。

在正常运行时,应使变压器承受的用电负荷为变压器额定容量的75~90左右。运行中如实测出变压器实际承受负荷50小于时,应更换小容量变压器,如大于变压器额定容量应立即更换大变压器。同时,在选择变压器根据线路电源决定变压器的初级线圈电压值,根据用电设备选择次级线圈的电压值,最好选为低压三相

四线制供电。对于电流的选择要注意负荷在电动机起动时能满足电动机的要求。

(3)选择结果

综上所述,我们选用220V转15V的变压器。

4.4.2、二极管的选择

(1)整流二极管特性

整流二极管是利用PN结的单向导电特性,把交流电变成脉动直流电。整流二极管流电流较大,多数采用面接触性料封装的二极管。整流二极管的外形如图1所示,另外,整流二极管的参数除前面介绍的几个外,还有最大整流电流,是指整流二极管长时间的工作所允许通过的最大电流值。它是整流二极管的主要参数,是选项用整流二极管的主要依据。

(2)整流二极管的选用

选用整流二极管时,主要应考虑其最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数。

普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的

整流二极管即可。例如,1N系列、2CZ

系列、RLR系列等。

开关稳压电源的整流电路及脉冲整

流电路中使用的整流二极管,应选用工

作频率较高、反向恢复时间较短的整流

二极管(例如RU系列、EU系列、V系列、

1SR系列等)或选择快恢复二极管。还有

一种肖特基整流二极管。

选择结果

综上所述,我们选用市面上经常使用的IN4007,在功率和电流负载,功耗等性

能方面都能满足需求。

4.4.3、稳压芯片的选择

稳压芯片在此电路中选择的是78系列。因为其他系列的的稳压芯片的额定功率

很大,并且所需电压很大。为了满足次课程设计的要求,电路的负载能力: 电压

输出≥ 2 kΩ电流输出≤ 300Ω以及电路的静态功耗: 电压输出≤200mW 电流

输出(4~20mA)≤250mW 。则由此算出,电路的功率不能高于1w。而稳压芯片中

78系列最稳定也最符合此条件,因此选择了7805,7812的稳压芯片。

(1)L7812特性介绍(采用TO-220封装方式)

压降:2V 输出数:1

针脚数:3 封装类型:TO-220

工作温度范围:-40°C to +125°C 封装类型:TO-220

工作温度最低:-40°C 器件标记:L7812ABV

工作温度最高:125°C 容差, 工作电压 +:2%

电压整流器类型:Precision 表面安装器件:通孔安装

电源电压最大:27V 电源电压最小:14.8V

精度, %:2% 芯片标号:7812 输入电压最小:14V 输出电压最大:12V

输出电流最大:1A 逻辑功能号:7812

电压:12V 输出电压:12V

输入电压最大:35V

(2)L7805特性介绍(采用TO-220封装方式)

压降:2V 输出数:1

针脚数:3 封装类型:TO-220

封装类型:TO-220 容差, 工作电压 +:4%

工作温度最低:0°C 工作温度最高:150°C

器件标号:7805 器件标记:L7805CV

电压整流器类型:正固定电源电压最大:20V

电源电压最小:8V 芯片标号:7805

表面安装器件:通孔安装输入电压最大:35V

输入电压最小:7V 输出电压最大:5V

输出电流最大:1.5A 电压:5V

输出电压:5V

(3)实际应用

在实际应用中,应在3端集成稳压电路上安装足够大的散热器(当然小功率7805IC内部电路图.的条件下不用)。当稳压器温度过高时,稳压性能将变差,甚至损坏。

制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。在lm78 ** 、lm79 ** 系列三端稳压器中最常应用的是TO-220 和TO-202 两种封装。

4.5、电源总体电路设计

综上所述,变压器型号的确定为220V转15v;二极管整流电路一般都接在电源变压器的二次输出端或者220V的交流市电,通常是用四个二极管组成的桥式整流电路由于整个系统所需的电流电压不大,所以我们选用IN4007,在功率和电流负载,功耗等性能方面都能满足需求;滤波电路我们采用的是电解电容滤波,滤

除电路中的干扰,因为滤波电容容量较大,因此,一般均采用电解电容;稳压芯

片在此电路中选择的是78系列,为了满足次课程设计的要求(电路的负载能力: 电压输出≥ 2 kΩ电流输出≤ 300Ω以及电路的静态功耗: 电压输出≤200mW 电流输出(4~20mA)≤250mW ),则可知稳压芯片中78系列最稳定也最符合此条件,因此选择了7805,7812的稳压芯片。

整体电源电路图如图4所示:

图四

H009 AHKC-BS系列20A-500A闭口式霍尔电流传感器参数说明书V1.0

H009AHKC-BS系列闭口式霍尔电流传感器V1.0 1.产品概述 AHKC-BS系列电流传感器的初、次级之间是绝缘的,可用于测量直流、交流和脉冲电流。 2.技术参数及外形尺寸 参数指标 额定输入电流±50~±500A 额定输出电压±5V/±4V 准确级 1.0 电源电压DC±15V(允许波动±20%) 零点失调电压±20mV 失调电压漂移≤±1.0mV/℃ 线性度≤0.2%FS 响应时间≤5us 频宽0~20kHz 绝缘电压 2.5kV/50Hz/1min 工作温度-40℃~85℃ 储存温度-40℃~85℃ 功耗≤0.5W

3.安装方式 4.接线方式 +15V——电源+15V -15V——电源-15V(注意电源正极与负极不可接反) M ——信号输出端正极G ——电源地与信号输出端负极 注:具体接线按实物外壳上的端子编号为准。 5.注意事项 1、霍尔传感器在使用时,为了得到较好的动态特性和灵敏度,必须注意原边线圈和副边线圈之间的耦合,建议使用单根导线且导线完全填满霍尔传感器模块过线孔; 2、霍尔传感器在使用时,在额定输入电流值下才能得到最佳的测量精度,当被测电流远低于额定值时,若要获得最佳精度,原边可使用多匝,即:IpNp=额定安匝数。另外,原边馈线温度不应超过80℃; 3、霍尔电流传感器正常工作时的辅助电源不应超过标定值的±20%; 底板螺钉M4(垫片)安装+15V -15V M G +15V GND -15V 辅助电源信号输出 AO GND

4、霍尔电流传感器在安装使用过程中严禁从高处摔落(≥1m); 5、不能调节零点、满度调节电位器; 6、辅助电源需要自行配置; 7、电源正负极不能接反。 6.订货范例(0510-********) 例1:AHKC-BS霍尔电流传感器 辅助电源:DC±15V 输入:200A 输出:5V 精度:1级 7、霍尔电流传感器适用场合 霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集,广泛应用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制,具有响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强等优点。

霍尔电流传感器的应用场合

霍尔电流传感器的应用场合 1、继电保护与测量:在工业应用中,来自高压三相输电线路电流互感器的二次电流,如分别经三只霍尔电流传感器,按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,可送微机进行测量或处理。在这里使用霍尔电流传感器可以很方便地实现了无畸变、无延时的信号转换。 2、在直流自动控制调速系统中的应用:在直流自动控制调速系统中,用霍尔电流电压传感器可以直接代替电流互感器,不仅动态响应好,还可实现对转子电流的最佳控制以及对晶闸管进行过载保护。 3、在逆变器中的应用:在逆变器中,用霍尔电流传感器可进行接地故障检测、直接侧和交流侧的模拟量传感,以保证逆变器能安全工作。 4、在不间断电源中的应用:在该应用中,用霍尔电流传感器进行控制,保证逆变电源正常工作。使用霍尔电流传感器1发出信号并进行反馈,以控制晶闸管的触发角,霍尔电流传感器2发出的信号控制逆变器,霍尔电流传感器3控制浮充电源。由于其响应速度快,霍尔电流传感器特别适用于计算机中的不间断电源。 5、在电子点焊机中的应用:在电子点焊机电源中,霍尔电流传感器起测量和控制作用。它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出。用斩波器给直流迭加上一个交流,可更精确地控制电流。用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,又不致引入损耗。 6、用于电车斩波器的控制:电车中的调速是由调整电压实现的。而将霍尔电流传感器和其它元件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作。 7、在交流变频调速电机中的应用:用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势。用变频器控制电机实现调速,可节省10%以上的电能。在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间往往小于5μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 8、用于电能管理:霍尔电流传感器,可安装到配电线路上进行负载管理。霍尔电流传感器的输出和计算机连接起来,对用电情况进行监控,若发现过载,便及时使受控的线路断开,保证用电设备的安全。用这种装置,也可进行负载分配及电网的遥控、遥测和巡检等。

霍尔电流传感器说明书

'4 &, ????????????FS500EK1 Hall-effect Current Sensor Series ??????????????????????????????????ф????????????ǎ Open loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mi. ?????1,+15V 2,-15V 3,V out 4,0V(???) OFS,????GIN,???? Elucidation: 1:+15V 2:–15V 3: VOUT 4:0V(GND) OFS:Zero adjustment GIN:Gain adjustment ????/Remarks 1???????????????ǎ????????????????????????????????????ǎ2???????????????????????ǎ 3??????????????К???????????ǎ·Incorrect connection may lead to the damage of the sensor. ·VOUT is positive when the IP flows in the direction of the arrow. ???/Electrical characteristics ??Type ?????К?? Primary nominal input current ???????? Measuring range of primary current ????????Nominal output voltage ???? Supply voltage ???? Current consumption ???? Insulation voltage ???Linearity ??????Offset voltage ?????Residual voltage ??????Thermal drift of V0???? Response time ????(-3dB) Frequency bandwidth(-3dB) ?????? Ambient operating temperature ?????? Ambient storage temperature ???? Load resistance ?юStandard FS050EK1FS100EK1 FS200EK1 FS300EK1FS400EK1 FS500EK1 50 100 200 300 400 5000~±100 0~±200 0~±400 0~±600 0~±800 0~±1000 4±1%±12~±15(±5%) V C =±15V <25 ??????????2 .5KV ???/50Hz/1?? <1 T A =25℃ I PN ? I P =0 T A =-25?+85?  <±1 DC ?20-25?+85 .GI/FS-0105 -40?+100A A V V mA %FS mV mV mV/℃?V kHz ℃℃??????mm ?/Dimensions of drawing (mm) I PN I P V OUT V C I C V d ?L V 0V OM V OT Tr f T A T S R L 5 electronics

霍尔电流传感器的电路设计

一种霍尔电流传感器的电路设计 设计了一种零磁通型霍尔电流传感器,可广泛应用于交流变频驱动、焊接电源、开关电源、不间断电源等领域。该零磁通型霍尔电流传感器通过砷化镓霍尔元件检测由通电电流产生的磁场,继而有效地检测被测电流。 由于霍尔元件产生的霍尔电势很微弱,而且还存在较大的失调电压,因此对霍尔电压的放大和对不等位电势的补偿是该设计的两个主要需要解决的问题,而且霍尔元件中载流子浓度等随温度变化而变化,因此还需用温度补偿电路对其温度补偿。 1 系统设计框架 系统分为4个部分:1)霍尔元件的供电电路,由电压基准(电流基准)芯片为霍尔片提供工作电流; 2)霍尔元件及磁芯,将感应片感应的磁场(该磁场由通电电流产生)转化为霍尔电压;3)放大电路,将微弱的霍尔电压进行放大;4)反馈部分,利用了磁平衡原理:一次侧电流所产生的磁场,通过二次线圈电流进行补偿,使磁芯始终处于零磁通工作状态。其系统总流程图如图1所示。 2 系统硬件电路设计 系统由±5 V的稳压源供电。用一片电压基准芯片REF3012为砷化镓系列的霍尔元件HW300B提供基准电压。HW300B是一款可采用电压模式供电和电流模式供电的霍尔元件,HW300B放在开有气隙的集磁环的气隙里,并用胶水加以固定(霍尔元件和集磁环相对位置如果发生变化,会影响产生的霍尔电势的大小)。霍尔元件的输出接至仪器放大器AD620,作为放大器的差模出入端和共模输入端。放大器的增益可通过调节1、8引脚之间的10 kΩ的电位器改变。放大器的输出接反馈线圈,该反馈线圈绕在集磁环上,其绕线方向能使通过它的电流产生的磁场与集磁环收集到的磁场方向相反。反馈线圈末端放1个75 kΩ的精阻接地,可以通过测量精阻两端的电压,计算反馈线圈中的电流,进而推算穿过集磁环中心的被测电流的大小。其具体电路图如图2所示。 2.1 REF3012 以SOT23-3封装的REF3012是一个高精度、低功耗、低电压差电压参考系列芯片。REF3012小尺寸和低功耗(最大50μA)非常适用于便携式和电池供电。它不需要负载电容,但对任何容性负载很稳定。因磁敏型霍尔元件很容易受温度的影响,可以采用恒流源供电以减小其温度系数。在该系统设计中,REF3012的输入引脚1接+5 V电源,并接10μF的旁路电容至地,该旁路电容对电源进行滤波,提高电源稳定性。而其输出引脚2接到HW300B的引脚1,并且也接1O μF的旁路电容至地,GND(地)引脚3接地。由于系统设计要求REF3012为HW300B提供2.5 V的基准电压,根据REF3012的数据资料可知,当输入电压为5 V 时,输出电压为2.5 V,所以REF3012引脚1接+5 V电压。 2.2 霍尔元件 本设计采用砷化镓系列的HW300B型霍尔元件,输出霍尔电压范围122~204mV,输入、输出阻抗为240~550 Ω,补偿电压为-7~7 mV,温度系数为-1.8%/℃。其输入可采用电压模式供电,也可采用电流模式供电。这里采用电压模式供电,即就是HW300B的引脚1、3为控制输入端,而引脚2、4为霍尔电压输出端。 霍尔元件是将磁场转换为电信号的线性磁敏元件,霍尔输出电压 式中,S为乘积灵敏度,mV/(mT·mA);Ic为工作电流,mA;B为磁感应强度,mT。 本设计中,将霍尔元件放进开有气隙的集磁环的气隙里,并将霍尔元件和集磁环固定,这样可以感应出更大、更稳定的霍尔电势。式(1)中,当S与Ic一定,则Vh与B有直接线性关系。通电导体周围必然产生磁场,根据安培定律,电流与磁场的关系式∮BdI=μ0I0得:

霍尔传感器用法

一、霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控 制电流I C ,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V H 。 如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C Bsin Θ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔 器件输出的电压讯号U 0可以间接反映出被测电流I 1 的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成 霍尔直接检测(无放大)电流传感器。

3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。 从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电 压U 0即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁 通Φ 1 。采用这种方法制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串 联一个限流电阻R 1,然后并联连接在被测电压U 1 上,得到与被测电压U 1 成比 例的电流I 1 ,如图1-4所示。

霍尔电流传感器及其应用

霍尔电流传感器及其应用 在现代社会中,信息化的需求越来越庞大,传感器在信息采集中发挥了重要作用。他们可以把各种物理信息,按照一定的规则,为可测量的电信号。我们所测量的电信号,以及相关物理信息的关系的变化的基础上,我们可以得到所测量的物理的变化或大小。 根据该传感器的工作原理,我们可以划分成多种类型的传感器,如光电传感器,电荷传感器,电位型传感器,半导体传感器,电传感器,磁传感器,谐振式传感器,电动化学式传感器等等。 霍尔传感器是利用霍尔元件的霍尔效应原理,(可以音乐会的物理信息),如电流,磁场,位移,压力等,为电动势输出。它属于电位型传感器。当前,这种传感器主要是霍尔集成电路,核心单元是基于霍尔效应。这是由通过集成电路技术。因此,它不仅仅是一种集成电路,而是一种磁传感器。 本文根据实际应用,主要是霍尔电流传感器。 1 霍尔效应 在金属或半导体晶片放置在磁场中,并且如果有一个通过它的电流,会产生电动势,(在垂直方向上的电场和磁场,调用此种物理现象霍尔效应。) 在磁场中产生的洛伦兹力的作用下,通电的半导体芯片的载体,分别偏移积累到芯片的两侧,从而形成一个电场,称霍尔电场。霍尔电场产生的电场力,是相反的洛伦兹力,阻碍了继续堆积,直到(大厅)电场力和洛伦兹力。此时,芯片的两侧,将设置一个稳定的电压,这是霍尔电压。 2 霍尔电流传感器 随着城市人口和城市建设规模的扩大,以及各种电气设备的增加,功耗也越来越大。城市的供电设备经常超载,而电源环境越来越差,“测试”的权利越来越严重。因此电源问题越来越多的显现出来。现在,小功率电源设备已经越来越多的与新技术相结合。例如,开关电源,硬切换,软切换,参数稳压器,线性反馈稳压器,磁放大器技术,数控压力调节,PWM,,SPWM,电磁兼容等实际需求直接推动电源技术的发展和进步。为了检验并显示当前自动,自动保护功能和更先进的智能控制,过电流,过电压的危害。如发生时,电源技术与传感检测,传感采样,传感保护已成为一种趋势。传感器检测电流或电压,所谓的霍尔电流传感器应运而生,(并迅速成为最喜爱的设计师在我国的电源). 2.1 霍尔电流传感器的性能特性 霍尔电流传感器具有优越的性能,并且它是一种先进的电检测元件,它可以隔离主回路和电子控制电路。它有变压器和分流器的所有优点,并且在同一时间,克服了他们的缺点(变压器可以只施加的电源频率的测量,50赫兹,分流器是无法做隔离测量),使用同一个霍尔电流传感器模块检测元素,不仅可以测量AC,也可以检测直流,甚至可以检测瞬时峰值。它具有以下性能特点。 (1)测量任意波形的电流,如DC,AC乃至瞬态峰值参数测量的; (2)精度高。在工作区中的一般霍尔电流传感器模块的精度高于1%,并且是适用于任何波形测量精度; (3)线性度优于0.5%; (4)良好的动态性能。一般的电流传感器模块的动态响应时间小于7us,跟踪速度di|dt 是上述50A|us; (5)工作频段宽。它可以工作在频率范围从0到20KHZ非常好; (6)过载能力强。测量范围宽(0-10000A); (7)高可靠性。平均无故障工作是超过5*10000小时; (8)体积小,重量轻,易于安装系统,不会带来任何损失。

DIT系列高精度数字电流传感器使用说明书

DIT系列 高精度数字电流传感器 使用说明书 V1.5 成立于2017年的航智精密,坐落于最具创新精神的深圳。凭借强大的研发团队,秉承以技术创新为动力,以市场结果为导向的理念,航智精密立足高精度直流传感器领域,打破国外企业该领域市场垄断的现状,力争发展成为国际领先的直流系统领域精密电子的领军企业。 基于技术集成与创新,航智精密研发了业界第一款高精度数字电流传感器及高精度、低成本、全量程为主要特点的模拟电流传感器。该产品在降低行业成本、提高行业效率和增强用户体验体验上具备行业领先定位,并在创新创业赛事中屡获佳绩,赢得社会各界广泛关注和支持。 航天品质,匠心制造。让高精度直流传感器进入普及时代,这是航智精密人孜孜以求的梦想。作为一家有强烈责任感、使命感的企业,航智精密正在以服务型的品牌营销及定制化的产品理念发力市场,并成功通过资本融资助力运营质量,为建设一个不断创新的分享型企业而奋斗!

目录 1前言 (3) 1.1装箱内容确认 (3) 1.2附件 (3) 2概述 (5) 2.1产品概要 (5) 2.2核心技术 (5) 2.3性能特点 (5) 2.4应用领域 (5) 3产品选型及技术参数 (6) 3.1产品选型表 (6) 3.2技术参数(RG-量程值) (7) 4接口说明 (8) 4.1DB9接线端子定义(DB9公头) (8) 4.2凤凰端子定义 (8) 4.3运行指示灯 (8) 5尺寸说明 (9) 5.1DIT1、DIT5、DIT60、DIT200、DIT300、DIT400型号 (9) 5.2DIT600、DIT1000型号 (10) 附录1 通信协议 (11)

霍尔电流传感器的应用

霍尔电流传感器的应用 霍尔电流传感器广泛应用在变频调速装置、逆变装置、UPS电源、通信电源、电焊机、电力机车、变电站、数控机床、电解电镀、微机监测、电网监测等需要隔离检测电流的设施中以及新兴的太阳能、风能和地铁轨道信号、汽车电子等领域。 1、继电保护与测量: 在工业应用中,来自高压三相输电线路电流互感器的二次电流,如分别经三只霍尔电流传感器,按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,可送微机进行测量或处理。在这里使用霍尔电流传感器可以很方便地实现了无畸变、无延时的信号转换。 2、在直流自动控制调速系统中的应用: 在直流自动控制调速系统中,用霍尔电流电压传感器可以直接代替电流互感器,不仅动态响应好,还可实现对转子电流的最佳控制以及对晶闸管进行过载保护。 3、在逆变器中的应用: 在逆变器中,用霍尔电流传感器可进行接地故障检测、直接测和交流测的模拟量传感,以保证逆变器能安全工作。 4、在不间断电源中的应用: 在该应用中,用霍尔电流传感器进行控制,保证逆变电源正常工作。使用①霍尔电流传感器发出信号并进行反馈,以控制晶闸管的触发角,②霍尔电流传感器发出的信号控制逆变器,③

霍尔电流传感器控制浮充电源。由于其响应速度快,霍尔电流传感器特别适用于计算机中的不间断电源。 5、在电子点焊机中的应用: 在电子点焊机电源中,霍尔电流传感器起测量和控制作用。它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出。用斩波器给直流迭加上一个交流,可更精确地控制电流。用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,又不致引入损耗。 6、用于电车斩波器的控制: 电车中的调速是由调整电压实现的。而将霍尔电流传感器和其它元件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作。 7、在交流变频调速电机中的应用: 用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势。用变频器控制电机实现调速,可节省10%以上的电能。在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间往往小于5μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 8、用于电能管理: 霍尔电流传感器可安装到配电线路上进行负载管理。霍尔电流传感器的输出和计算机连接起来,对用电情况进行监控,若发

霍尔电流传感器工作原理

霍尔电流传感器工作原理 1、直放式(开环)电流传感器(CS系列) 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列)

霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

霍尔位置传感器原理和应用

霍尔位置传感器原理和应用 一.霍尔位置传感器的特点: 霍尔位置传感器是一种检测物体位置的磁场传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔位置传感器以霍尔效应原理为其工作基础。 霍尔位置传感器具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔位置传感器开关型输出的具有无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。采取了各种补偿和保护措施的霍尔位置传感器的工作温度范围可达到-55℃~150℃。 按照霍尔位置传感器的功能可将它们分为:霍尔线性型传感器和霍尔开关型传感器。前者输出模拟量,后者输出数字量。 霍尔位置传感器通过它对磁场变化的测量,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制,因而有着广泛的用途。 二.霍尔位置传感器的原理: 2.1霍尔效应和霍尔元件

在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压,这个半导体薄片称为霍尔元件。霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP等等。 2.2 霍尔集成电路 霍尔集成电路是将一个霍尔元件和电压放大电路、信号处理电路集成在同一个硅芯片上,生产出单片霍尔集成电路,它又分为霍尔线性电路和霍尔开关电路。

霍尔电流传感器的种类及工作原理

霍尔电流传感器的种类及工作原理 1.简介 霍尔电流传感器可以分为很多种,如果按照原理可以分为开环霍尔电流传感器(Open Loop Hall Effect)和闭环霍尔电流传感器(Close Loop Hall Effect)。基于开环原理的电流传感器结构简单,可靠性好,过载能力强,体积较小,但也有很多缺点,如温度影响大,精度低,反应时间不够快,频带宽度窄等。而闭环霍尔电流传感器等特点是精度高,响应快,频带宽,但同时也有缺点,即过载能力差,体积较大,工艺比较复杂,同时价格也偏高。 1原理图如下: 开环原理霍尔电流传感器示意图 闭环原理霍尔电流传感器示意图 2 霍尔电流传感器的工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。 1图片来自PAS 网站

2.1 电流传感 器的输出信号 2当原边导线经过电 流传感器时,原边电流IP 会产生磁力线,原边磁力 线集中在磁芯气隙周围, 内置在磁芯气隙中的霍尔 电片可产生和原边磁力线 成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS*NS= IP*NP。其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS —副边圈匝数;NP / NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2.2 电流传感器供电电压V A V A指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低。另外,传感器的供电电压V A又分为正极供电电压V A+和负极 供电电压V A-。要注意单相供电的传感器,其供电电压V Amin是双相供电电压V Amin 的2倍,所以其测量范围要高于双相供电的传感器。 2.3 测量范围Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围 一般高于标准额定值I 。 2.4霍尔电流传感器工作原理 霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。它有两种工作方式,即磁平衡式和直式。霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。 直放式电流传感器(开环式):当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。 磁平衡式电流传感器(闭环式):磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP。(其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数;NP/NS—匝数比,一般取NP=1。)磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip 2董高峰《浅析霍尔电流传感器的应用》

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

轨道交通专用霍尔电流传感器-产品知识

霍尔电流传感器 霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集,广泛应用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制,具有响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强等优点。 1开环霍尔电流传感器 1.1.1型号说明 1.1.2技术指标

1.1.3开口式开环霍尔电流传感器1.1.3.1规格尺寸(mm) 1.1.3.2规格参数对照表

注:额定电流未标注表示输入电流交直流均可测量,订货时请注明。 1.2闭口式霍尔电流传感器 1.2.1规格尺寸

1.2.2规格参数对照表 注:额定电流未标注表示输入电流交直流均可测量,订货时请注明。 1.2.3接线方式 1.2.3.1霍尔开口/闭口式开环电流传感器 接线端子定义 1.2.3.2霍尔(真有效值)电流传感器 接线端子定义 2闭环霍尔电流传感器 闭环霍尔电流传感器又叫霍尔磁平衡式电流传感器,它是在上述原理的基础,加上了磁平衡原理,即集磁环将原边电流所产生的磁场聚集后,作用于霍尔元件,使其有电压信号输出,经放大输入到功率放大器,输出补偿电流流经次级补偿线圈。级次线圈产生的磁场与原边电流产生的磁场相反,因而补偿了原边

磁场,使霍尔输出逐渐减小,当原次级磁场相等时,补偿电流不再增大,这就是磁平衡原理。这种线路主要由磁电转换部分、放大电路部分及驱动补偿线路部分等组成。 2.1型号说明 2.2规格尺寸 2.2.1AHBC-LTA外形尺寸 2.2.2AHBC-LT1005外形尺寸 2.2.3规格参数对照表 注:输入电流交直流均可测量,订货时请注明。

简单易懂的霍尔电流传感器使用原理及相关霍尔型号

1、开环(直放式)霍尔电流传感器 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件(如HG-302C)进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。开环霍尔电流传感器的优点是结构简单,可靠性好,过载能力强,体积较小,开环式霍尔电流传感器一般线性度角差,且原边信号在上升和下降过程中副边输出会有不同。开环式霍尔电流传感器精度通常劣于1%。?一般开环电流传感器采用的霍尔是 HG-106A,HG-106C,HG-166A,HG-302A,HG-302C,HG-362A,SS495A,SS495A1。 2、闭环(磁平衡式)霍尔电流传感器 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件(如HW-300B,HW-302B)处于检测零磁通的工作状态。 当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件(HW-300B,HW-302B)就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不

霍尔电流传感器电源消耗电流计算方案

霍尔电流传感器电源消耗电流计算方案 霍尔电流传感器由于具有精度高、线性好、频带宽、响应快、过载能力强和无插入损耗等诸多优点,因而被广泛应用于变频器、逆变器、电源、电焊机、变电站、电解电镀、数控机床、微机监测系统、电网监控系统和需要隔离检测的大电流、电压等各个领域中。霍尔传感器需用到直流电源供电才可正常工作,在做产品设计时需要考虑其功率消耗,本文基于传统的霍尔电流传感器,精确计算其电流消耗,并利用LTspice软件进行仿真,所推导的理论计算公式可为产品设计提供参考。 霍尔电流传感器工作原理 从工作原理上,霍尔电流传感器可以分为霍尔开环电流传感器和霍尔闭环电流传感器。 ●霍尔开环电流传感器 图1 霍尔开环电压传感器的工作原理 霍尔传感器的磁芯使用软磁材料,原边电流产生磁场通过磁芯聚磁,在磁芯切开一个均匀的切口,磁芯气隙处磁感应强度与原边电流成正比,霍尔元件两端感应到的霍尔电压的大小与原边电流及流过霍尔元件电流的乘积成正比,霍尔电压经过放大后作为传感器的输出。其输出关系式满足: VOUT=K*IP*IHall 其中K为固定的常数,其大小通常与磁芯的尺寸,材料性质,气隙开口的宽度,以及处理电路的放大倍数有关。 ●霍尔闭环电流传感器的工作原理: 闭环电流传感器在开环的基础上增加了反馈线圈,霍尔元件两端感应到的霍尔电流经过放大后控制后端的三极管电路产生补偿电流,补偿电路流过缠绕在磁芯上的线圈,产生的磁场与原边电流产生的磁场方向相反,当磁芯气隙处的磁场强度补偿为0时,传感器的输出满足IS=IP/KN,其中KN为补偿线圈的匝数。

图2 霍尔闭环电压传感器的工作原理 传感器的功耗计算 ●开环电流传感器的功耗计算 对于开环电流传感器,因为其输出信号为电压,所以其功耗相对较为稳定。通常霍尔电流传感器的电流设计为采用正负电源供电,其额定输出电压一般为几伏,一般不超过10伏。输出端对负载的要求一般为大于10KΩ,所以流过负载的电流一般小于1个mA。通常开环传感器的电流消耗小于15mA。电流消耗主要是霍尔元件消耗的电流,流入霍尔元件两端的电流通常要求小于20mA,LEM 的产品霍尔电流通常在10mA左右。另外在调压支路还有几mA的电流消耗。这样开环传感器的电流消耗可以维持在十几mA的水平内,通常说明书上标的都是不超过15mA。 ●闭环电流传感器的功耗计算 闭环传感器输出信号为电流,其功耗相对于开环传感器多很多,下面以LF 205-S为例来分析闭环电流传感器的电流消耗。 图3为LF 205-S的原理示意 图4为LF205-S原理图

电压电流传感器使用指南

一、传感器的结构和安装问题 科海模块传感器通过产品,型号标明了测量额定值﹑输出类型﹑安装方式﹑外形结构﹑标准型还是非标准型。 在产品出厂时,产品的序列号会在产品的底部标示出来,以便产品具有可追逆性。 科海模块传感器品种种类繁多,从结构上分主要有以下几种: (1)线路板插针焊接式安装:既在线路板上做上线条,将传感器焊接在线路板上,如同一个元件一样。其优点是体积 小﹑重量轻﹑节省空间﹑易于安装。 (2)螺钉紧固型安装:即将传感器用螺钉拧在机箱底部或某个固定位置上,对外连接是各种不同的端子引线连接。其优点是牢固﹑方便﹑易于拆卸。 (3)导轨型安装:既在传感器的底部有标准的35mm宽的燕尾槽,可以卡式安装。其优点是方便,具有通用性,适合于 野外做业安装。 从原边接入上分有 (1)接触式测量:既测量量须接入到传感器中,传感器是串入到原边电路中的。电压传感器,部分小电流传感器及5A 变送器均为接触式测量。 (2)非接触式测量:既所要测量的量无须断路,原边电路穿过传感器既可。电流传感器均为非接触式测量。

为了适于各种复杂环境下的使用,科海模块还有屏蔽型的传感器防强电磁干扰,军品级传感器适于温度变化范围较宽的环境使用。 二、传感器应用计算 为了在使用范围内更好地用好传感器,用户应了解一些传感器的简单计算方法。 1、电流传感器 磁平衡式电流传感器,输出量为电流。当取电压为输出量时,若取5V输出无须计算,传感器足以具备5V的输出能力。若高于5V输出,最大能输出多少电压,要看工作电源电压和内阻值。以KT100A/P电流传感器为例 工作电压V=15V 内阻R内=25Ω内部管压降Vce =0.7V 则最大输出电压能力U0max=V-Vce-Io×R内=15V-0.7V-1 00mA×25Ω=11.8V 由此可以计算出最大输出电流能力,也就是传感器所测电流的最高值 既:Iomax(R内+RL)=V-Vce 若负载电阻RL=50Ω 则Iomax=(V-Vce)/(R内+ RL)=(15V-0.7V)/(25Ω+ 50Ω)=190 mA 为便于计算将传感器内阻R内列于表下: 电流传感器副边内阻表

霍尔电流传感器工作原理

1、直放式(开环)电流传感器(CS系列) 当原边电流IP流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压VS精确的反映原边电流IP。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,

这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列) 霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

相关文档
最新文档