Qi标准及无线充电解决方案介绍

Qi标准及无线充电解决方案介绍
Qi标准及无线充电解决方案介绍

Qi标准及无线充电解决方案介绍-最新模板

Qi标准及无线充电解决方案介绍

无线充电技术在消费类市场表现出巨大的市场潜力。在不使用连线的情况下给电子设备充电不但可为便携式设备用户提供一种便利的解决方案,而且还让广大人员能够寻找到更具创新性的问题解决方法。许多电池供电型便携式设备均能受益于这种技术,从手机到电动汽车不一而足。

电感耦合方法可以实现高效和通用的无线充电。为了便于使用并且让设计人员和消费者都受益,无线充电联盟(WPC) 制定出了一种标准,在供电设备(无线发射端,充电站)和用电设备(无线接收端,便携式设备)之间创建了互操作性。WPC 成立于2008 年,由亚洲、欧洲和美国的各行业公司组成,其中包括电子设备制造厂商和原始设备制造商(OEM)。WPC 标准定义了电感耦合(线圈结构)的类型,以及低功率无线设备所用的通信协议。在这种标准下工作的任何设备都可以与任何其他WPC 兼容设备配对。这种方法的一个重要的好处是其利用这些线圈来实现无线发送端和无线接收端之间的通信。

无线充电WPC 标准

WPC 标准下,无线传输的;低功率;就是说功耗仅为0~5W。达到这一标准范围的系统在两个平面线圈之间使用电感耦合来将电力从无线发送端传输给无线接收端。两个线圈之间的距离一般为5mm。输出电压调节由一个全局数字控制环路负责,这时无线接收端会与无线发送端通信,并要求或多或少的功率。该通信是一种通过反向散射调制从无线接收端到无线发送端的单向通信。在反向散射调制中,无线接收端线圈受到负载,从而改变无线发送端的电流消耗。我们对这些电流变化进行监控,并解调成两个设备协同工作所需的信息。

WPC 标准定义了系统的三个主要方面;;提供电力的无线发送端、使用电力的无线接收端以及这两种设备之间的通信协议。下面,我们将详细介绍这三个方面。

无线发送端

电力传输方向始终是从无线发送端到无线接收端。无线发送端的关键电路是用于向无线接收端传输电力的一次线圈、驱动一次线圈的控制单元以及解调一次线圈电压或者电流的通信电路。我们对无线发送端设计的灵活性进行了限制,旨在向无线接收端提供一致的电力和电压电平。

无线接收端将自己作为无线发送端的一个兼容设备,同时也提供配置信息。一旦发射器开始电力传输,无线接收端就向无线发送端发送一些误差数据包,从而要求或多或少的电力。一旦接收到一个;终止电力;消息,或者如果 1.25 秒以上都没有接收到数据包,则无线发送端停止供电。没有电力传输时,无线发送端则进入低功率待机模式。

WPC 规范允许使用固定和移动配置。单个固定线圈(称作类型A1)为卓芯微无线充电支持的解决。

无线发送端(其通常为一个平面用户将无线接收端放置在上面)连接至电源。符合WPC

标准的设备线圈起到了一个50% 占空比谐振半桥的作用,其输入为19VDC(;1 V)。如果无线接收端需要或多或少的功率,则线圈频率会发生变化,但会保持在110 到205kHz 之间,具体取决于功率需求。

无线接收端

无线接收端通常为一种便携式设备。无线接收端的关键电路是用于从无线发送端接收电力的次级线圈、用于将AC 转换为DC 的整流电路、用于将未稳压DC转换为经过稳压的DC 的电源调节电路以及用于将信号调制到次级线圈的通信电路。无线接收端负责其身份认证和电源要求的所有通信,因为无线发送端只是一个;收听者;。

尽管为了让其符合WPC 标准我们对无线发送端的设计进行了限制,但设计无线接收端时却可以有更多的自由。我们可以调节无线接收端的线圈尺寸,以满足设备的体积要求。利用5V、500mA 输出的70% 典型效率,我们对无线接收端的线圈电压进行全波整流。由于两个设备之间的通信是单向的,因此WPC 选择无线接收端作为;述说者;。电感电能传输通过耦合一次到次级线圈的磁场工作。非耦合磁力线围绕一次线圈旋转,且只要磁力线不耦合寄生负载其便不会出现损耗(例如:金属的涡流损耗等)。

通信协议

通信协议包括模拟和数字声脉冲(pinging);身份识别和配置以及电力传输。无线接收端放置在无线发送端上面时出现的典型启动顺序如下:

来自无线发送端的模拟ping 检测到对象的存在

来自无线发送端的数字ping 为模拟ping 的加长版,并让无线接收端有时间回复一个信号强度包。如果该信息强度包有效,则无线发送端会让线圈保持通电并进行下一步骤

身份识别和配置阶段期间,无线接收端会发送一些数据包,对其进行身份识别,并向无线发送端提供配置和设置信息

在电力传输阶段,无线接收端向无线发送端发送控制误差包,以增加或者减少电力。正常运行期间,每隔约250ms 便发送这些包,而在大信号变化期间会每隔32ms 发送一次。另外,在正常运行期间,无线发送端会每隔5 秒钟便发送一次电力包。

为了终止电力传输,无线接收端会发送一条;终止充电;消息,或者 1.25 秒时长内都不进行通信。两种事件中的任何一个都会让无线发送端进入低功耗省电状态。

结论

WPC 标准是一整套让制造厂商相信其组件可以与其他为电感电力传输而设计的各种WPC 认证组件协调工作的指导原则,从而开发大量的解决方案。

来源:网络整理免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。《》

无线充电原理图文详解

无线充电原理图文详解 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、

韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。

用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。

无线充电技术三大主流标准简介

无线充电技术三大主流标准简介 虽然大部分人对无线充电技术并不感到陌生,但诺基亚Lumia 920发布以后,无线充电功能还是受到人们的普遍关注。作为主打卖点之一,无线充电让Lumia 920与目前主流的手机产品形成了差异化,个性鲜明。但实际上,诺基亚并不是最早在手机上使用无线充电技术的厂商,一年前飞利浦就曾推出过Qi无线充电标准的手机,但最终并未引起消费者关注。 实际上,目前的无线充电技术还不算成熟,不仅技术发展缓慢,标准也尚未统一。目前主流的无线充电标准有三种:Power Matters Alliance(PMA)标准、Qi标准、Alliance for Wireless Power(A4WP)标准。下面我们就针对这三种标准进行简单介绍。 1. Power Matters Alliance标准 Power Matters Alliance标准是由Duracell Powermat公司发起的,而该公司则是由宝洁与无线充电技术公司Powermat合资经营,拥有比较出色的综合实力。除此以外,Powermat还是Alliance for Wireless Power(A4WP)标准的支持成员之一。 目前已经有ATT、Google和星巴克三家公司加盟了PMA联盟(Power Matters Alliance缩写)。PMA联盟致力于为符合IEEE协会标准的手机和电子设备,打造无线供电标准,在无线充电领域中具有领导地位。 目前Duracell Powermat公司推出过一款WiCC充电卡采用的就是Power Matters Alliance 标准。WiCC比SD卡大一圈,内部嵌入了用于电磁感应式非接触充电的线圈和电极等组件,卡片的厚度较薄,插入现有智能手机电池旁边即可利用,利用该卡片可使很多便携终端轻松支持非接触充电。 WiCC充电卡 另外作为支持,星巴克计划在波士顿地区17家门店进行Duracell Powermat无线充电试点,这将为PMA在美国立足提供有力的支撑。星巴克首席数字官Adam Brotman表示:星巴克将在部分桌面上安置无线充电设备,看看顾客反应如何。如果顾客没有与iPhone或

无线充电技术三大主流标准

无线充电技术三大主流标准 摘要:无线充电技术三大主流标准 关键字:无线充电技术, 标准, PMA, Qi标准, A4WP 虽然大部分人对无线充电技术并不感到陌生,但诺基亚Lumia 920发布以后,无线充电功能还是受到人们的普遍关注。作为主打卖点之一,无线充电让Lumia 920与目前主流的手机产品形成了差异化,个性鲜明。但实际上,诺基亚并不是最早在手机上使用无线充电技术的厂商,一年前飞利浦就曾推出过Qi无线充电标准的手机,但最终并未引起消费者关注。 实际上,目前的无线充电技术还不算成熟,不仅技术发展缓慢,标准也尚未统一。目前主流的无线充电标准有三种:Power Matters Alliance(PMA)标准、Qi 标准、Alliance for Wireless Power(A4WP)标准。下面我们就针对这三种标准进行简单介绍。 Power Matters Alliance标准 Power Matters Alliance标准是由Duracell Powermat公司发起的,而该公司则是由宝洁与无线充电技术公司Powermat合资经营,拥有比较出色的综合实力。除此以外,Powermat还是Alliance for Wireless Power(A4WP)标准的支持成员之一。来源:大比特半导体器件网 目前已经有AT&T、Google和星巴克三家公司加盟了PMA联盟(Power Matters Alliance缩写)。PMA联盟致力于为符合IEEE协会标准的手机和电子设备,打造无线供电标准,在无线充电领域中具有领导地位。 目前Duracell Powermat公司推出过一款WiCC充电卡采用的就是Power Matters Alliance标准。WiCC比SD卡大一圈,内部嵌入了用于电磁感应式非接触充电的线圈和电极等组件,卡片的厚度较薄,插入现有智能手机电池旁边即可利用,利用该卡片可使很多便携终端轻松支持非接触充电。 WiCC充电卡 另外作为支持,星巴克计划在波士顿地区17家门店进行Duracell Powermat 无线充电试点,这将为PMA在美国立足提供有力的支撑。星巴克首席数字官Adam Brotman表示:“星巴克将在部分桌面上安置无线充电设备,看看顾客反应如何。”如果顾客没有与iPhone或Galaxy相匹配的充电外壳,星巴克将在试点期间进行小部分免费赠送,而柜台也有部分外壳出借。

QI无线充电标准中文版

系统的描述, 无线通信电源转换 低功率 第一部分:接口定义 版本1.0, 2010年7月 版权 该系统描述无线功率传输是出版的力量,无线通信联合体采用无线力量联盟与ConvenientPower有限公司密切合作,富尔顿创新公司、国家半导体公司,诺基亚公司,奥林匹斯成像公司、研究、限制、飞利浦、三洋电子公司。深圳桑菲消费通信有限公司。菲德州仪器有限公司,保留所有能量。复制在全部或部分地是被禁止的明示和优先的书面允许的无线能力联盟。 免责声明 本网站内所包含的信息是正确之日出版。然而,无线的力量,也ConvenientPower协会有限公司,富尔顿创新公司和国家诺基亚公司半导体公司、企业、科研、奥林匹斯成像议案有限公司、飞利浦、三洋电子公司。深圳桑菲消费通信有限公司。德州仪器有限公司,也将承担任何损失,包括间接的或间接的,从使用这个系统描述无线功率传输或依据。本文件的准确性。 分类 在这个文件中所包含的信息是机密。 注意 为进一步解释,这份文件的内容,或在任何可察觉不一致或模棱两可的解释,或为任何资讯相关的专利许可程序, 请联系:info@https://www.360docs.net/doc/663098189.html,。

1 综述 1.1范围, 我的系统体积的无线功率传输由描述下列文件: 第一部分:接口定义。 第二部分:性能要求。 第三部份:测试的依从。 本文档定义了的交互界面和供电功率发射机接收器。 1.2主要特征 无触点电力传输的方法,从一个基站移动设备,它是基于近场磁感应线圈之间。转移的功率,大约5 W采用适当的二次卷(典型的外部大约40毫米)的尺寸。操作频率范围:110-205 HZ之间。支持两种方法在移动设备上放置在基站的表面。帮助用户指引正确位置的移动设备在表面形成一层。通过基站,提供一个或几个固定位置的表面。任意位置可以免费定位的移动设备上表面形成一层可提供电力基站位置,通过任何表面。一个简单的通信协议使移动设备能够充分的控制能力转让。可观的设计系统的灵活性为整合成一个移动的装置。非常低的备用电源(执行),可依赖安装。 1.3一致性和参考 本文档中所有的规定,除非特别指出,以及其他推荐或随意或信息。为了避免任何疑惑,“应当”表示一个强制性的行为的指定的成分,如下。它是一种违反这一系统的无线通信电源转换描述指定的成分不具有行为所定义的。此外,“应该”表示推荐的行为的特定组件,如下。它不是一种违反这一系统的描述如果指定的无线功率传输组件都有理由偏离的定义行为。最后,这个词“可能”表示一个可选的行为的特定组件,如下。它是到指定的成分是否具有明确的行为(从)或无偏差不是。此外,在这个文件中提供的规格,还应当符合产品的实现在系统提供的规格说明如下。而且,相关的部分下面列出适用的国际标准。如果多个修改任何系统的存在描述或国际标准,适用于下面列出的是那个被修改在最近出版的发布日期的单据。 [2]部分描述无线功率传输系统,,第二部分,性能要求。 [3]系统部分描述无线功率传输、体积我,第三部分,遵守测试。 [PRMC]电力接收器制造商代码,无线力量联盟。 (SI)国际单位制(SI)、国际des Poids等措施。 1.4定义, 活跃的部分的一个基站接口表面分别的移动设备通过一个足够高的磁通穿透当电台提供电力的移动设备。基站一个装置,能提供近场电感功率按照本无线通信电源转换系统描述。一个基站进行标识增加一

无线充电技术介绍

无线充电技术介绍 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放臵在充电座上即可为电池充电。今后NTT DoCoMo将在电影院、餐厅、酒店、机场休息室等公共场所设臵充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯〃奥斯特(Hans Oersted)

发现了这种电磁效应。 用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔〃法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。 无线充电使用的充电座和终端分别内臵了线圈,使二者靠近便开始从充电座向

QI无线充电标准V1.0版

QI无线充电标准 V1.0 1概述 1.1围 系统描述无线电能传输第1卷包含以下文档: ●第一部分:接口定义 ●第二部分:性能要求 ●第三部分:兼容性测试 该文件定义了一个电能发射器和一个电能接收器之间的接口。 1.2主要特性 ●一种基于线圈之间的近场电磁感应原理,将电能从发射器传输到移动设备(接收器)的 非接触式电能传输方法。 ●通过一个适当的次级线圈(典型尺寸是大约40mm)来传输约5瓦特的电能。 ●工作频率在110~205KHz之间。 ●支持两种将移动设备放置于发射器表面的方法: ?辅助定位方法帮助用户适当地将移动设备放在通过表面上一个或几个固定的位置 来传输电能的发射器的表面。 ?无需定位方法允许移动设备任意放在支持表面任何位置传输能量的发射器表面。 ●一个简单的允许移动设备完全控制电能传送的通信协议。 ●相当大的可集成在移动设备上的设计灵活性。 ●极低的待机功耗(实现需要)。 1.3一致性与参考 本文档中的所有规定都是强制性的,除非特别指明是推荐的、可选的或加强说明的。为避免产生疑问,单词“应”表示指定部分为强制行为,也就是说,如果指定的部分没有所定义的行为,则这就违反了无线电能传输标准。此外,单词“应该”表示指定部分为推荐行为,也就是说,如果指定的组件有正当理由偏离所定义的行为,则这不是违反了无线电能传输标准的。最后,单词“可以”表示指定组件的可选行为,也就是说,是否具有所定义的行为(没有偏离)是取决于指定组件。

除本文件所提出的规外,产品的实现也应符合下面所列出的系统说明所提出的规。此外,下列国际标准的相关部分也应遵守。如果任何系统描述或以下所列出的国际标准存在多个修订版本,以最新版本为准。 [第2部] 无线电能传输系统描述,第I卷,第2部分,性能要求。 [第3 部] 无线电能传输系统描述,第I卷,第3部分,兼容性测试。 [PRMC] 电源接收器制造商代码,无线充电联盟。 [SI] 国际计量制。 1.4定义 有效区域:当发射器向移动设备供电时,发射器和接收器各自表面的一部分有足够高的磁场通过的区域。 发射器:在系统描述无线电能传输规特别说明的能产生近场感应电能的特殊设备。 发射器带有标识,以直观地告知用户本发射器符合系统描述无线电能传输 规。 通信和控制单元: 电能发射器和电能接收器上用于控制电能传输的功能单元。(资料)实施 的角度来看,通信和控制单元可以分布在发射器和移动设备的多个子系统 中。 控制点:接收器输出端的电压和电流的联合,其他参数要视一个特定的接收器实施而定。 检测单元:用来检测发射器表面接收器的存在的发射器功能模块。 数字码:用来检测和识别电能接收器的电能信号。 免定位:无需用户将移动设备的有效区域与发射器的有效区域对齐的将移动设备放置在发射器接口表面的方法。 制导定位:为用户提供反馈以将移动设备的有效区域与发射器有效区域对齐的将移动设备放置到发射器接口表面的方法。 接口表面:发射器或者接收器上靠初级线圈或者次级线圈最近的表面。 移动设备:无线电能传输标准所规定的能利用近场感应电能的移动设备。在执行此标准的移动设备的表面应有可见的’LOGO来告知用户这个设备执行的是本标 准。

无线充电技术(四种主要方式)原理与应用实例图文详解

无线充电已经在电动牙刷、电动剃须刀、无绳电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域及电动汽车和列车领域。未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA 等电器放在桌上就能够立即供 电。 以下是四种主要无线充电方式: 无线充电方式 充电 效率 使用频率范围 传输距离 电场耦合方式 电磁感应方式 92% 22KHz 数mm-数cm 磁共振方式 95% 13.56MHz 数cm-数m 无线电波方式 38% 2.45GHz 数m- 1.电磁感应方式

无线供电驱动一枚60W电灯泡,效率高达75%。 电磁感应无线充电产品示意图

电磁感应方式,送电线圈与受电线圈的中心必须完全吻合。稍有错位的话,传输效率就会急剧下降。下图靠移动送电线圈对准位置来提高效率。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”, 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。

在伦 敦利用其最新研发的感应式电能传输技术成功实现为电动汽车无线充电。在展示过程中,该公司将电能接收垫安装于雪铁龙电动汽车车身下侧,这样电池就可以通过无线充电系统进行无线充电。

电动牙刷无线充电示意图 一种无线充电器发送和接收原理图

2. 磁共振方式 磁共振方式的原理与声音的共振原理相同。排列好振动频率相同的音叉,一个发声的话,其他的也会共振发声。同样,排列在磁场中的相同振动频率的线圈,也可从一个向另一个供电。 相比电磁感应方式,利用共振可延长传输距离。磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。 应用: 三菱汽车展示供电距离为20cm,供电效率达90%以上。线圈之间最大允许错位为20cm。如果后轮靠在车挡上停车,基本能停在容许范围内。 索尼公司发布的一款样机:无电源线的电视机利用磁场共振实现无线供电的电视机。 还有将供电线圈埋入道路中,在红灯停车时和行驶中为电动汽车充电的构想,以及利用植入轨道中的线圈为行驶中的磁悬浮列车供电的设想。 磁共振方式由能量发送装置,和能量接收装置组成,当两个装置调整到相同频率,或者说在一个特定的频率上共振,它们就可以交换彼此的能量。

QI无线充电标准V1.0版

QI无线充电标准 1概述 1.1范围 系统描述无线电能传输第1卷包含以下文档: 第一部分:接口定义 第二部分:性能要求 第三部分:兼容性测试 该文件定义了一个电能发射器和一个电能接收器之间的接口。 主要特性 一种基于线圈之间的近场电磁感应原理,将电能从发射器传输到移动设备(接收器)的非接触式电能传输方法。 通过一个适当的次级线圈(典型尺寸是大约40mm)来传输约5瓦特的电能。 工作频率在110~205KHz之间。 支持两种将移动设备放置于发射器表面的方法: 辅助定位方法帮助用户适当地将移动设备放在通过表面上一个或几个固定的位置 来传输电能的发射器的表面。 无需定位方法允许移动设备任意放在支持表面任何位置传输能量的发射器表面。 一个简单的允许移动设备完全控制电能传送的通信协议。 相当大的可集成在移动设备上的设计灵活性。 极低的待机功耗(实现需要)。

一致性与参考 本文档中的所有规定都是强制性的,除非特别指明是推荐的、可选的或加强说明的。为避免产生疑问,单词“应”表示指定部分为强制行为,也就是说,如果指定的部分没有所定义的行为,则这就违反了无线电能传输标准。此外,单词“应该”表示指定部分为推荐行为,也就是说,如果指定的组件有正当理由偏离所定义的行为,则这不是违反了无线电能传输标准的。最后,单词“可以”表示指定组件的可选行为,也就是说,是否具有所定义的行为(没有偏离)是取决于指定组件。 除本文件所提出的规范外,产品的实现也应符合下面所列出的系统说明所提出的规范。此外,下列国际标准的相关部分也应遵守。如果任何系统描述或以下所列出的国际标准存在多个修订版本,以最新版本为准。 [第2部] 无线电能传输系统描述,第I卷,第2部分,性能要求。 [第3 部] 无线电能传输系统描述,第I卷,第3部分,兼容性测试。 [PRMC] 电源接收器制造商代码,无线充电联盟。 [SI] 国际计量制。 定义 有效区域:当发射器向移动设备供电时,发射器和接收器各自表面的一部分有足够高的磁场通过的区域。 发射器:在系统描述无线电能传输规范特别说明的能产生近场感应电能的特殊设备。发射器带有标识,以直观地告知用户本发射器符合系统描述无线电能 传输规范。 通信和控制单元:

无线充电标准QI中文版(D)

表3-9是初级线圈组相关的参数,完成的PCB厚度是1.3 mm. +10% -

System Description Wireless Power Transfer Basic Power Transmitter Designs Version 1.0 3.3.2.1.2 3.3.2.1.3 3.3.2.2 3.3.2.3 屏蔽罩界面/感应面电子细节描述功率发射器B2 使用的屏蔽罩和功率发射器B1使用的功率发射器使用的相同。参考小节3.3.1.1.2 从初级线圈组到基站界面/感应面的距离是 d Z =2 mm,(从初级线圈组顶面)。同样参考小节3.3.1.1.3图3-11。 另外基站的界面/感应面至少超出初级线圈组的外边缘5mm. B2功率发射器设计的电路草图和功率发射器B1 的相同,参考小节3.3.1.2图3-12. 功率发射器B2 用一个半桥逆变器驱动 初级线圈组。另外功率发射器B2 用多路器选择有效区的位置。多路器配置初级线圈组,像这样 1,2或者3套初级线圈被并联到驱动电路。被连接在一起的初级线圈构成了一个初级子感应区。还有另外一个限制 是多路器必须选择的每一个初级线圈要和其它每个选择的初级线圈叠加;参考例图 3-14(c) 工作频率范围 f op =105--112kHz,每套在第2层 第7层(并联) 的初级线圈组和屏蔽罩的电感为 ---- 11.7uH , 在第3层和第六层(并联)为11.8 uH , 在第4层和第5层(并联)为12.3 uH 。电容和电感在阻抗匹配电路中的(图3-12)分别为 C m1=256 nF , C m23=147 nF , L m =3.8 uH.电容 C_1和C_2在半桥逆变 器为68uF.开关S是打开的当初级子感应区只有一个初级线圈组成时,否则开关就是关闭的。(电容两端)通过电容的电压能达到36Vpk-pk。 功率发射器B2 用输入电压到半桥逆变器 从而控制功率大小的传输。因为这个目的,输入电压的范围是0----20v,低输入电压结果就是低功率传输。在功率传输时为了得到足够准确的校正,B2 功率发射器必须能控制输入电压的精度在35mV或者更好。 当功率发射器B2 第一次应用(申请)一个功率信号(数字ping;参考 小节5.2.1),它必须用初始电压12V 控制功率传输必须用PID 算法,在小节5.2.3.1定义。算法定义引入控制变量 V 表示到半桥逆变器的输入 电压,为了保证足够准确的控制,功率发射器B2 必须确定进入初级子感应区的电流的幅值 (通过每个它的3个组成部分的初级线圈 电流的总合)精确到5mA 或者更好,另外关于PID算法,B2 发射器必须限制进入初级子感应区的电流 最大3.5A RMS 在初级子感应区 由2个或3个初级线圈构成时,当初级子感应区由一个初级线圈构成时 最大电流为1.75A RMS。为了这个目的,功率传输器 或可以限制到半桥逆变器的输入电压的值低于20V。最后,小节3.3.1.2表3-8提供了用在PID算法的一些参数。 +1 - +1-+5%-+5%-+5%-+1-(i)可测量性功率发射器B2 提供了和功率发射器B1相同的可测量性选择。参考小节3.3.1.3.

智能无线充电系统电路设计详解

半导体器件应用网 https://www.360docs.net/doc/663098189.html,/news/200515_p1.html 智能无线充电系统电路设计详解【大比特导读】智能无线充电器利用电磁感应原理,是非接触充电系统,不 再通过导线(充电线)传输电能,而是无线传输方式充电。没有充电所用的物理接 口,与一般充电器相比,避免了插线或拔电池的麻烦。 在电子科技技术高速发展的今天,全球范围内的手机用户数量已经达到了33亿,再加 上MP3、MP4等其他周边电子产品,平均不到2人就拥有一个需要充电的便携式电子产品。 目前普遍使用的都是数据线插接式充电,这种充电方式数据线接口用久了通常会有触不良等 现象,而且单个充电器适应面不广,因不同的类型电子产品需要使用不同的充电器,充电时 还要寻找合适的插口和理顺接线,真可谓费时费力;各种便携式电子产品的充电是一件令人 头痛的麻烦事。为了改良上面的现象,研发智能无线充电器是很有必要的。 智能无线充电器利用电磁感应原理,是非接触充电系统,不再通过导线(充电线)传输电 能,而是无线传输方式充电。没有充电所用的物理接口,与一般充电器相比,避免了插线或 拔电池的麻烦,具有一般充电器的工作原理;作品采用一(充电器)对多(感应负载)充电、智 能充电的设计思想;无线充电器对负载充电时,指示灯将由绿灯转换为七彩灯,手机也正确 显示充电状态并智能完成充过程(实验产品为手机)。本充电器可以同时对多个负载充电,可 以自动感应是否有负载充电,达到自动充电,充满电后10秒自动断电,达到智能化;从而大 大方便了用户。智能无线充电器使用十分方便、一个充电器就可以满足一个家庭的需要,具 有较高的推广应用价值、成本低廉(与一般充电器价格相差不多)等优点,现在世界上许多大 公司(如Sony,Intel,apple,飞利普等)也正在火热研究中;智能无线充电必将是取代物理 直插的发展方向,将肯定受到人们的欢迎和重视。 NE555D脉冲发生器模块 如图1,根据 T =(R1+Rp)C1,f = 1/T,调节Rp使NE555D输出一个36.7KHZ的脉冲频 率。

无线充电器技术及原理简介

无线充电器技术原理简介 无线充电技术利用了电磁波感应原理,及相关的交流感应技术,在发送和接收端用相应的线圈来发送和接收产生感应的交流信号来进行充电的的一项技术,用户只需要将充电设备放在一个“平板”上即可进行充电,这样的充电方式过去曾经出现在手表和剃须刀上,但是当时无法针对大容量锂离子电池进行有效充电。无线充电器技术原理构图如图2所示 最初由英国一家公司发明了一种新型无线充电器,它看上去就像一块塑料鼠标垫,这个“鼠标垫”里装有密集的小型线圈阵列,可产生磁场,将能量传输给装有专用接收线圈的电子设备,进行充电。接收线圈由磁性合金绕以电线制成,大小和形状都与口香糖相似,可以很方便地贴在电子设备上。将手机等放在垫上就能充电,并能同时给多个设备充电。 无线充电技术此前已经出现,但这项新发明更为方便实用。手机等设备只要贴上接收线圈,放置在“鼠标垫”上的任一位置都可充电,不像以前的一些技术那样需要精确定位。几个设备同时放在垫子上,可以同时进行充电。充电器产生的磁场很弱,能够给设备充电但不会影响附近的信用卡、录像带等利用磁性记录数据的物品。 电磁感应无线输电技术(无线充电技术) 电磁感应无线输电技术已经在诸如电动牙刷等小功率产品上获得了应用,但更大功率的传输目前还不现实。Intel日前则在会场上演示了无线公供电驱动一枚60W电灯泡。该项研究是由Intel西雅图实验室的Joshua R. Smith领导的,部分技术基于麻省理工学院物理学家Marin Soljacic的研究。可以在一米距离内无线给60W灯泡提供电力,效率高达75%。Intel 首席技术官Justin Rattner表示,未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA等电器放在桌上就能够立即供电。

Qi标准及无线充电解决方案介绍

Qi标准及无线充电解决方案介绍 Qi标准及无线充电解决方案介绍 无线充电技术在消费类市场表现出巨大的市场潜力。在不使用连线的情况下给电子设备充电不但可为便携式设备用户提供一种便利的解决方案,而且还让广大设计人员能够寻找到更具创新性的问题解决方法。许多电池供电型便携式设备均能受益于这种技术,从手机到电动汽车不一而足。 电感耦合方法可以实现高效和通用的无线充电。为了便于使用并且让设计人员和消费者都受益,无线充电联盟(WPC) 制定出了一种标准,在供电设备(无线发射端,充电站)和用电设备(无线接收端,便携式设备)之间创建了互操作性。WPC 成立于2008 年,由亚洲、欧洲和美国的各行业公司组成,其中包括电子设备制造厂商和原始设备制造商(OEM)。WPC 标准定义了电感耦合(线圈结构)的类型,以及低功率无线设备所用的通信协议。在这种标准下工作的任何设备都可以与任何其他WPC 兼容设备配对。这种方法的一个重要的好处是其利用这些线圈来实现无线发送端和无线接收端之间的通信。 无线充电WPC 标准 WPC 标准下,无线传输的;;低功率;;就是说功耗仅为0~5W。达到这一标准范围的系统在两个平面线圈之间使用电感耦合来将电力

从无线发送端传输给无线接收端。两个线圈之间的距离一般为5mm。输出电压调节由一个全局数字控制环路负责,这时无线接收端会与无线发送端通信,并要求或多或少的功率。该通信是一种通过反向散射调制从无线接收端到无线发送端的单向通信。在反向散射调制中,无线接收端线圈受到负载,从而改变无线发送端的电流消耗。我们对这些电流变化进行监控,并解调成两个设备协同工作所需的信息。 WPC 标准定义了系统的三个主要方面;;;;提供电力的无线发送端、使用电力的无线接收端以及这两种设备之间的通信协议。下面,我们将详细介绍这三个方面。 无线发送端 电力传输方向始终是从无线发送端到无线接收端。无线发送端的关键电路是用于向无线接收端传输电力的一次线圈、驱动一次线圈的控制单元以及解调一次线圈电压或者电流的通信电路。我们对无线发送端设计的灵活性进行了限制,旨在向无线接收端提供一致的电力和电压电平。 无线接收端将自己作为无线发送端的一个兼容设备,同时也提供配置信息。一旦发射器开始电力传输,无线接收端就向无线发送端发送一些误差数据包,从而要求或多或少的电力。一旦接收到一个;;终

笔记本实用无线充电器设计

实用无线充电器设计[附电路图] ?基本功能是通过线圈将电能以无线方式传输给电池。只需把电池和接收设备放在充电平台上即可对其进行充电。实验证明.虽然该系统还不能充电于无形之中.但已能做到将多个校电器放置于同一充电平台上同时充电。免去接线的烦恼。 1 无线充电器原理与结构 无线充电系统主要采用电磁感应原理,通过线圈进行能量耦合实现能量的传递。如图1所示,系统工作时输入端将交流市电经全桥整流电路变换成直流电,或用24V直流电端直接为系统供电。经过电源管理模块后输出的直流电通过2M 有源晶振逆变转换成高频交流电供给初级绕组。通过2个电感线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电。

?2.2 发射电路模块 如图3,主振电路采用2 MHz有源晶振作为振荡器。有源晶振输出的方波,经过二阶低通滤波器滤除高次谐波,得到稳定的正弦波输出,经三极管13003及其外围电路组成的丙类放大电路后输出至线圈与电容组成的并联谐振回路辐射出去.为接收部分提供能量。 ?2.2 接收电路模块 测得与电容组成的并联谐振回路的空芯耦合线圈的线径为O.5 mm,直径为7 cm,电感为47 uH,载波频率为2 MHz。 根据并联谐振公式得匹配电容C约为140 pF。因而.发射部分采用2MHz有源晶振产生与谐振频率接近的能源载波频率。

2.3 充电电路 ?笔记本电脑无线电源的制作 ?笔记本电脑无线电源面临的问题 笔记本电脑的有线电源通常为20V/3A左右。对于一般常见的开关电源来说,加上一些损耗,这个电源的贮备功率要求在70W以上,这是一个瓶颈值。在这个有线电源的功率接近极限值的情况下,要用无线电源来实现与有线电源相同的供电和充电功能,无疑是一个极大的技术挑战,将面临以下多方面的技术问题: 1.功率问题 2.效率问题

无线充电器原理图

灵感来源:…… 目的:…… 无线充电麦克风的电路原理 简单实用的无线传能充电器,通过线圈将电能以无线方式传输给电池。只需把电池和接收设备放在充电平台上即可对其进行充电。 1 无线充电器原理与结构 无线充电器系统主要采用电磁感应原理,通过线圈进行能量耦合实现能量的传递。如图1所示,系统工作时输入端将交流市电经全桥整流电路变换成直流电,经过无线充电器电源管理模块后输出的直流电通过2M有源晶振逆变转换成高频交流电供给初级绕组。通过2个电感线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电。 2 无线充电器发射电路模块 如图3,无线充电器主振电路采用2 MHz有源晶振作为振荡器。有源晶振输出的方波,经过二阶低通滤波器滤除高次谐波,得到稳定的正弦波输出,经三极管13003及其外围电路组成的丙类放大电路后输出至线圈与电容组成的并联谐振回路辐射出去.为接收部分提供能量。 测得与电容组成的并联谐振回路的空芯耦合线圈的线径为O.5 mm,直径为7 cm,电感为47 uH,载波频率为2 MHz。根据并联谐振公式得匹配电容C约为140 pF。因而.无线充电器发射部分采用2MHz有源晶振产生与谐振频率接近的能源载波频率。

目前所需做的工作 1 电路的识别,各分块电路的整体把握 2 关键概念和公式的理解与应用 3 整个装置的设置,这是难点也是难点,但是做好1,2就应该没问题 4 成品的制作,这个先不着急,有时间就做

5 任务的分配,123是需要整个小组都要参与的,而前期的准备要分人尽快完成 6 现在你就请老师看一下,这个基本电路是否可行,行我们就继续研究。要想自己设计出电路,难度比较大,我们可以利用别人的电路,来运用到我们的发明上来,我们做一个资源的整合。 附录:废电池的坏处 废电池的坏处主要有:废电池里边含有汞、镉等等重金属,它们释放到大自然里会对环境造成很严重的危险。 废电池的危害:废弃在自然界电池中的汞会慢慢从电池中溢出来,进入土壤或水源,再通过农作物进入人体,损伤人的肾脏。在微生物的作用下,无机汞可以转化成甲基汞,聚集在鱼类的身体里,人食用了这种鱼后,甲基汞会进入人的大脑细胞,使人的神经系统受到严重破坏,重者会发疯致死。著名的日本水俣病就是甲基汞所致。镉渗出污染土地和水体,最终进入人体使人的肝和肾受损,也会引起骨质松软,重者造成骨骼变形。汽车废电池中含有酸和重金属铅泄漏到自然界可引起土壤和水源污染,最终对人造成危害。 废电池污染及其处理已经成为目前社会最为关注的环保焦点之一。国家环保总局科技标准司有关人士认为,随着我国电池的种类、生产量和使用量的不断扩大,废旧电池的数量和种类也在不断增加。废旧电池含有汞、铅、镉、镍等重金属及酸、碱等电解质溶液,对人体及生态环境有不同程度的危害。据了解,其中对人体健康和生态环境危害较大、列入危险废物控制名录的废电池主要有:含汞电池,主要是氧化汞电池;铅酸蓄电池;含镉电池,主要是镍镉电池。 湖南省动力化学电源工程技术研究中心杨毅夫博士告诉笔者,尽管我国一些大型电池生产企业已经开始生产无汞电池,但是大量中小企业生产的仍然是含汞电池,因其价格便宜,应用面广,销售量相当大。铅酸蓄电池主要应用在汽车、电动自行车、通讯备用电源和应急电源等方面。而镍镉电池则普遍用于手机、电动工具、电动玩具等方面,是一种可充电电池。 有关资料显示,一节一号电池烂在地里,能使1平方米的土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。在对自然环境威胁最大的几种物质中,电池里就包含了汞、铅、镉等多种,若将废旧电池

利用Qi标准实现5W以下手持设备的无线充电

利用Qi标准实现5W以下手持设备的无线充电 随着便携式设备电源使用要求的增长,广大消费者需要一些易用的充电解决方案。这些解决方案可以在各种环境下使用,例如:家庭、办公室、汽车、机场、学校等等。无线充电联盟(WPC)已经制定出了业界首个互操作标准(Qi),让所有兼容发送器(compliant transmitter)能为来自不同厂商、不同电源要求的兼容接收机(compliant receivers)供电。技术进步让便携式设备产品一代比一代智能。提高易用度以及设备功能的增多都对电源提出了新的需求。消费者发现为设备充电的次数越来越频繁,需要一些更加方便有效的方法来为解决充电问题。无线充电技术提供了一种解决方案,让便携式设备通过一个发送器垫来充电,无需任何电气连接。如今,人们开发出多种形式的无线充电技术,但是最为成功的商业应用却是基于电感的电力传输,例如:电动牙刷等。这种技术更易于适应各种商业应用,实现互操作。 互操作性是指任何发送器都能够为任一移动设备供电,而与电源要求、外形尺寸和厂商无关。现有感应无线充电解决方案,要求消费者购买指定的充电垫,另外还需购买便携式设备的附件。市场调查表明,消费者感兴趣的解决方案是一种比现有有线充电方法更加方便的互操作解决方案。 WPC基于感应电力传输制定了Qi互操作标准,解决了5W以下手持设备的无线充电问题。该联盟致力于通过建立一种全球互操作的基础架构,让无线充电成为一种无处不在的普及技术。 WPC标准 图1显示了一个WPC型感应无线充电系统的结构图。发送器由AC/DC电源转换、驱动器、发射线圈、电压与电流检测以及控制器组成。接收机由接收线圈、整流、电压调节(即稳压调节),及一个控制器组成。该系统的负载可以为任何电池供电型设备,例如:一部手机。 图1:WPC感应无线充电系统的结构图。 电力传输 电力通过一个耦合磁场从发送器传输至接收机,而该磁场是在交流电流经发送器线圈时形成的。如果接收机线圈较为接近(X、Y或者Z尺寸间隙小于5mm),大部分发送器场力线会耦合至接收机线圈。这些耦合场力线在次级线圈中形成交流电,对其整流可产生直流电压,从而为手机或者其他便携式设备提供电源。 通信协议 该标准利用反向散射调制实现接收机到发送器之间的通信。通过接收机调节与线圈并联的负载(可以为电阻式或者电容式)来实现,其反过来又通过耦合磁场调制初级电流。发送器通过检测初级线圈电流,对通信信号进行解调。该通信信道允许向发送器发送消息,目的是控制几种系统级功能: 1、识别:接收机一定能够让发送器将自己识别为一部WPC兼容设备,这种特性提高了安全性,因为一个WPC兼容发送器无法为一个非兼容接收机供电。 2、电源要求:接收机可以要求发送器增加或者降低输出功率(最大5W)。由于接收机可以让其接收到的功率适合于其当前负载需求,因此系统可以更加智能高效。

无线充电——你不知道的知识

无线充电——你不知道的知识 1.无线充电系统 1.1无线充电系统整体结构与功能 图1 无线充电系统结构 ——图片来源于《应用于便携式电子设备的小功率无线充电系统的研究与开发》 整流滤波:将220V/50Hz的交流电转换为高压直流电; DC-DC:将高压直流电降压,输出低压直流电; 高频逆变:低压直流电经过高频逆变电路转换成低压高频交流电(频率约为100 - 200 kHz),以便于发射端线圈产生强大的感应磁场; 整流滤波:由于电磁感应的原理,接收端在强大的感应磁场中产生低压高频感应电流,该电流经过AC-DC电路后变成直流电,此时就可以直接供给负载使用(功率为5 W电压一般为5 V,10 W电压9 V,15 W电压12 V,小米9最新20W电压为15 V,无线充电电流一般不超过1.5 A)。 1.2 无线充电系统调控过程 图2 无线充电系统调控过程 检测阶段:发射端检测到放置物体的位置后,发射一个小的测量信号来监控物体的放置和移动,判断是否进入下一阶段,这个信号不会唤醒接收端; 判断阶段:发射端将发射功率信号,并检测可能来自接收端的响应,从而判断响应是接收端还是未知的对象。如果发射端接收到正确的信号,将继续进入识别和配置阶段,保持功率信号输出; 识别和配置阶段:接收端会将所需要的能量信号传递回发射端。发射端需要将收到的信号解

码,根据接收端所需要的能量调节输出功率,当无法解码时默认传输功率为5 W; 功率发射阶段:“识别与配置”阶段完成后,发射端启动功率传输模式。接收端控制电路向发射端发送误差包,将整流电压调整到线性稳压器效率最大化所需的水平,并将实际接收到的功率包发送给发射端进行外目标检测(FOD,Foreign Object Detection,异物检测),可保证安全、高效的功率传输; 结束阶段:充电结束后接收端发出EPT(End Power Transfer,结束功率传输)信号,当接收端受到EPT信号时终止功率传输。 1.3 无线充电Qi标准为什么选用100~205 kHz? Qi标准基于电磁感应的充电技术,频率是100 - 205 kHz,无线充电传输的是能量而不是信号,因为100-205 kHz是对人体无害的低频非电离频率,采用这个频率将大大减小对人体的伤害。另一方面,此频率和绝大多数无线设备不在一个频道上,不会影响其它无线设备。 1.4 无线充电线圈测试要求100 kHz/1V中,1 V是什么意思? 测试频率100 kHz,1 V为激励电压。供电电压:为测试设备提供能量,使之处于一种稳定的工作状态,常见的供电电压为220 V;激励电压:作为信号输入用的,它使电路具有一定的响应(输出),从而得到响应(输出)与激励(输入)之间具有特定的函数关系。无线充电线圈常见的LCR测试仪是Agilent E4980A,采用自动平衡电桥法的原理,在220 V的供电电压下正常工作,由信号源产生一个频率为100 kHz,电压为1V的信号,通过无线充电系统后得到输出信号,对比分析计算电感、Q值和交流电阻。 2.无线充电线圈 无线充电常见发射端线圈有丝包线线圈和多股绞线线圈,接收端常见线圈有FPC(Flexible Printed Circuit柔性电路板)线圈和多股绕线线圈, 2.1 丝包线线圈和多股绞线线圈 图3 丝包线线圈图4 多股绞线线圈

几种无线充电解决方案特点及原理图

几种无线充电解决方案特点及原理图 无线充电技术发展至今在电子领域已经被深入研究应用,虽然还未曾大范围普及,但在消费电子领域的发展已经取得不错的成绩。手机厂商也纷纷在自家旗舰机上加入这一革新性的先进充电技术,如三星S6、索尼Xperia Z3+、谷歌Nexus 6、诺基亚Lumia 930等手机均采用了无线充电技术。那么,未来无线充电技术发展会如何呢?现如今都有哪些常见的无线充电解决方案,下面让我们一起来了解下: 一、无线充电联盟(WPC):电磁感应方式,2008年12月成立。 目前WPC在商业推广中的QI标准目前已有172家会员公司:德州仪器(TI)、飞利浦、飞思卡尔(Freescale)、东芝(Toshiba) 、微软、松下、三星、索尼、高通(最后加入)等等。 无线充电联盟(WPC)共同制定的无线充电标准Qi采用的是电磁感应方式。但这技术还有比较多的缺陷,比如最大输出功率只有5W,所以充电速度上会非常有局限。 从市场规模上,Qi无疑是目前最为普及的,值得关注的是,Qi的最新标准可实现7至45毫米的无线充电距离,算是一个小小的突破。 QI标注采用的电磁感应技术的优缺点: 优点:原理简单,制作容易

缺点:传输距离严重受限 实例如下: 1、德州仪器(TI):最早量产无线充电方案公司 第一种:WPC主要会员之一的德州仪器(TI),已推出业界首款无线电源传输控制芯片套片。该套片包含一片bq500110单通道发射控制芯片,一片bq51013单通道接收控制芯片。TI是最早量产无线充电方案公司。 第二种: 1、15V 输入发射端: (1)功能描述: 第二代数字无线电源控制发射端 用于便携式设备如手机等的充电 输入 5V 直流电,输出 10V 交流电 可寻找将被供电的 WPC 兼容器件 接收来自被供电器件数据包通信并管理电源传送 (2)重要特征: 动态电源限制 (DPL)

Qi标准及无线充电解决方案介绍

无线充电技术在消费类市场表现出巨大的市场潜力。在不使用连线的情况下给电子设备充电不但可为便携式设备用户提供一种便利的解决方案,而且还让广大设计人员能够寻找到更具创新性的问题解决方法。许多电池供电型便携式设备均能受益于这种技术,从手机到电动汽车不一而足。 电感耦合方法可以实现高效和通用的无线充电。为了便于使用并且让设计人员和消费者都受益,无线充电联盟 ( C) 制定出了一种标准,在供电设备(无线发射端,充电站)和用电设备(无线接收端,便携式设备)之间创建了互操作性。 C 成立于 8 年,由亚洲、欧洲和美国的各行业公司组成,其中包括电子设备制造厂商和原始设备制造商 ( )。 C 标准定义了电感耦合(线圈结构)的类型,以及低功率无线设备所用的通信协议。在这种标准下工作的任何设备都可以与任何其他 C 兼容设备配对。这种方法的一个重要的好处是其利用这些线圈来实现无线发送端和无线接收端之间的通信。 无线充电 C 标准 C 标准下,无线传输的“低功率”就是说功耗仅为 0~5 。达到这一标准范围的系统在两个平面线圈之间使用电感耦合来将电力从无线发送端传输给无线接收端。两个线圈之间的距离一般为 5 。输出电压调节由一个全局数字控制环路负责,这时无线接收端会与无线发送端通信,并要求或多或少的功率。该通信是一种通过反向散射调制从无线接收端到无线发送端的单向通信。在反向散射调制中,无线接收端线圈受到负载,从而改变无线发送端的电流消耗。我们对这些电流变化进行监控,并解调成两个设备协同工作所需的信息。 C 标准定义了系统的三个主要方面——提供电力的无线发送端、使用电力的无线接收端以及这两种设备之间的通信协议。下面,我们将详细介绍这三个方面。 无线发送端 电力传输方向始终是从无线发送端到无线接收端。无线发送端的关键电路是用于向无线接收端传输电力的一次线圈、驱动一次线圈的控制单元以及解调一次线圈电压或者电流的通信电路。我们对无线发送端设计的灵活性进行了限制,旨在向无线接收端提供一致的电力和电压电平。 无线接收端将自己作为无线发送端的一个兼容设备,同时也提供配置信息。一旦发射器开始电力传输,无线接收端就向无线发送端发送一些误差数据包,从而要求或多或少的电力。一旦接收到一个“终止电力”消息,或者如果 1.25 秒以上都没有接收到数据包,则无线发送端停止供电。没有电力传输时,无线发送端则进入低功率待机模式。 C 规范允许使用固定和移动配置。单个固定线圈(称作类型 A1)为卓芯微无线充电支持的解决方案。 无线发送端(其通常为一个平面用户将无线接收端放置在上面)连接至电源。符合 C 标准的设备线圈起到了一个 50% 占空比谐振半桥的作用,其输入为19 DC(±1 )。如果无线接收端需要或多或少的功率,则线圈频率会发生变化,但会保持在 110 到 205 之间,具体取决于功率需求。

相关文档
最新文档