第一节 鸽巢原理教学内容

第一节 鸽巢原理教学内容
第一节 鸽巢原理教学内容

鸽巢原理及其他

第一节鸽巢原理

关于鸽巢原理的阐释,粗略地说就是如果有许多鸽子飞进不够多的鸽巢内,那么至少要有一个鸽巢被两个或多个鸽子占据。

一、鸽巢原理的简单形式

1、定理1:如果要把n+1个物体放进n个盒子,那么至少有一个盒子包含两个或更多的物体。

证明:用反证法进行证明。如果这n个盒子中的每一个都至多含有一个物体,那么物体的总数最多是n,这与有n+1个物体矛盾。所以某个盒子至少有两个物体。

2、定理1的说明:无论是鸽巢原理还是它的证明,都不能具体找出含有两个或更多物体的盒子。它只是证明这样的盒子存在,即如果人们检査每一个盒子.那么他们会发现有的盒子里面放有多个物体。另外,当只有n个(或更少)物体时,是无法保证鸽巢原理的结论的。这是因为可以在n个盒子的每一个里面放进一个物体。所以鸽巢原理成立的条件是至少为n+1个物体。

3、鸽巢原理的两个简单应用

应用1:在13个人中存在两个人,他们的生日在同一个月份里。

应用2:设有n对己婚大妇。至少要从这2n个人中选出多少人才能保证能够选出一对夫妇?

为了在这种情形下应用鸽巢原理,考虑n个房间,其中一个房间对应一对夫妇。如果选择n十1个人并把他们中的每一个人放到他们夫妻所对应的那个房间中去,那么就有一个房间含有两个人;也就是说,已经选择了一对已婚夫妇。选择n个人使他们当中一对夫妻也没有的两种方法是选择所有的丈夫和选择所有的妻子,因此,n+1是保

证能有一对夫妇被选中的最小的人数。

4、从应用2得出的两个推论

推论1:如果将n个物体放入n个盒子并且没有一个盒子是空的,那么每个盒子恰好有一个物体。

说明:以应用2为例,选择n个人,如果其中有一对夫妻,那么必然有一个房间是空的,为了保证没有空房间,则必须从每对夫妻中选一个人,即恰好从每对夫妻中选一个人。

推论2:如果将n个物体放入n个盒子并且没有盒子被放入多于一个的物体,那么每个盒子里恰好有一个物体。

说明:以应用2为例,选择n个人,每个房间只能是夫妻中的一个人,2n个人,恰好每个从每对夫妻当中选择一个人。

5、例题

例1:给定m个整数a1,a2,……,a m,存在满足0≤k≤l≤m的整数k和l,使得a k+1+ a k+2+ ……+ a l能够被m整除。

分析:题目通俗化,即给定m个整数的序列,其中连续几个的和能被m整除。所以考虑序列中连续和的情况。如果其中任何一个能被m整除,那么结论就成立了。对此,只能先假设连续和不能被整除,即有余数。

解:找出鸽子:m个正整数连续和,即a1,a1+a2,a1+a2+a3,……,a l+a2+a3+……+ a m共m个和

构造鸽巢:连续和不能被整除,那么余数必然为1,2,……,m-1共m-1个。如果余数为0或m,则已经整除结论成立,所以只能是m-1个。

鸽巢原理:m个和,m-1个余数,那么必然有两个余数是相同的。因此存在整数k和l,0≤k≤l≤m,使得a l+a2+a3+……+ a k及

a l+a2+a3+……+ a l除以m有相同的余数,不妨设

a l+a2+a3+……+ a k=cm+r……………①

a l+a2+a3+……+ a l=dm+r……………②,其中c,d,r为正整数。

②-①可得

a k+1+ a k+2+ ……+ a l=(d-c)m

从而可得a k+1+ a k+2+ ……+ a l能够被m整除。

特例如下

设m=7,且整数为2, 4, 6, 3, 5, 5, 6。计算上面的和得到2, 6, 12,15, 20, 25, 31,这些整数被7除时余数分别为2, 6, 5,1,6, 4, 3。有两个等于 6的余数,这意味着结论:6 + 3 + 5 = 14可被7 整除。

例2:一位国际象棋大师有11周的时间备战一场锦标赛,他决定每天至少下一盘棋,但为了不使自己过于疲劳他还决定每周不能下超过12盘棋。证明存在连续若干天,期间这位大师恰好下了 21盘棋。分析:问题通俗化即连续若干个正整数的和恰好为21。实际问题转化为数学模型,即构造一个用来表示若干天下棋总盘数的数列。然后用鸽巢原理证明。

证明:找出鸽子:设a1是在第一天所下的盘数,a2是在第一天和第二天所下的总盘数,a3是在第一天、第二天和第三天所下的总盘数,11周总共77天,以此类推,a77表示77天下的总盘数。因为每天至少要下一盘棋,故a1≥1,,因为在任意一周最多下12盘棋,所以

a77<12x11=132,则有序列1≤a l<a2<a3<……<a77 =132,为一个严格递增序列。根据若+干个正整数的和为21这一提示,构造数序列a l+21<a2+21<a3+21<……<a77+21,此序列也是严格递增序列,由此可得a l,a2,a3,……,a77,a l+21,a2+21,a3+21,……,

a77+21共77+77=154个数。

构造鸽巢:由1≤a l<a2<a3<……<a77=132,则有,1+21≤a l+21 <a2+21<a3+21<……<a77+21=132+21=153。由此可得a l,a2,a3,……,a77,a l+21,a2+21,a3+21,……,a77+21是从1到153的正整数。

鸽巢原理:a l,a2,a3,……,a77,a l+21,a2+21,a3+21,……,a77+21共154个数,而这些数是从1到153的正整数,从而可知其中必然存在两个数是相等的。而a l,a2,a3,……,a77严格递增,各不相等。a l+21,a2+21,a3+21,……,a77+21也严格递增且各不相等,那么必然有如下相等的情况

存在一个正整数i和一个正整数j,使得a i=a j+21。a i为大师在前i 天所下的盘数之和,a j为大师在前j天所下的盘数之和,a i-a j=21

即为大师从第j+1天,第j+2天到第i天,下了21盘棋。

例3:从整数1, 2,…,200中选出101个整数。证明:在所选的这些整数之间存在两个这样的整数,其中一个可被另一个整除。

证明之前,先介绍一种正整数的表示方法。正整数有奇数有偶数,而任何一个偶数,都可以通过提取因数2,变为奇数与若干个2乘积的形式,例如8=1x2x2x2,24=3x2x2x2,写成一般形式即奇数x2n(其中n=1,2,3……),而这个奇数绝不会超过这个偶数的一半。下面来证明例3。

证明:找出鸽子:1到200中任意选出的101个整数。

构造鸽巢:用奇数x2n的形式,把1到200的整数全部列出,

1,1x21,1x22, (1x27)

3,3x21,3x22, (3x26)

5,5x21,5x22, (5x25)

………………………………………………

99,99x21

…………………………………………

199

这样,就把1到200的全部整数列出,共100行。

鸽巢原理:101个整数放到100行内,必然有两个整数在同一行,这两个数表示为p=ax2m,q=ax2n,其中,a为奇数,1≤a<199,m、n 为正整数,不妨设n>m

q/p=(ax2n)/(q=ax2m)= 2n-m。

二、鸽巢原理的加强形式

1、定理2:如果要把多于mxn(比如mxn+1)个物体放进n个盒子,那么至少有一个盒子包含m+1个或m+1个以上的物体。

例4:空间有六个点,其中任何三点都不共线,任何四点都不共面,在每两点之间连接直线段后涂色,将每一条这样的线段图成红色或蓝色,求证:不论如何涂色,一定存在一个三角形,它的三边有相同的颜色。

证明:找出鸽子:从一点出发,连接的空间直线段有5条,即2x2+1条。构造鸽巢:红色和蓝色。鸽巢原理:根据定理2,则至少有三条线段的颜色是相同的。如图:三条实线段颜色相同,虚线连接三条线

段的端点。三条虚线段颜色不同时,则与

实现三条实线段构成颜色三边颜色相同

的三角形。三条虚线段颜色相同,但与三

条实线段颜色不同时,由虚线段构成的三

角形就已经符合结论了。

2、定理3:设q l,q2,q3,……,q n是正整数,如果将

q l+q2+……+q n-n+1个物体体放进n个盒子内,那么或者第一个盒子至少包含q l个物体,或者第二个盒子至少包含q2个物体,……,或者第n个盒子至少包含q n个物体。

证明:q l+q2+……+q n-n+1=(q l-1)+(q2-1)+……+(q n-1)+1根据鸽巢原理,可得第i个盒子至少包含q i个物体,i=1,2,……

反正法:设第i个盒子含有少于q i个物体物体,那么物体的总数为(q l-1)+(q2-1)+……+(q n-1)=q l+q2+……+q n-n,比物体总数少1个,与题设矛盾,故结论成立。

说明:上述结论中,当物体总数为q l+q2+……+q n-n时,则有第i 个盒子不含有q i或者更多个物体,i=1,2,……,只需将q i-1个物体分配到第i个盒子即可实现。

例5:—个果篮装有苹杲、香蕉和橘子。为了保证篮子中或者至少有8个苹果,或者至少有6个香蕉,或者至少有9个橘子,则放人篮子中的水果的最小件数是多少?

解:根据定理3可得,所需的水果最小件数为8+6+9-3+1=21件。3、从定理3得到的一个推论

推论3:设n和r都是正整数。如果把n(r-1)+1个物体分配到n个盒子中,那么至少有一个盒子含有r或更多个物体。

证明:n(r-1)+1=nr-n+1,令定理3中q l=q2=……=q n=r,则结论成立。

4、由推论3得到的3个平均原理

平均原理1:如果n个非负整数,q l,q2,q3,……,q n的平均数大于r-1,即(q l+q2+……+q n)/n>(r-1),那么那么这n个数中,至少有一个整数大于r-1(即大于或等于r)。

分析:根据推论3,如果n(r-1)+1个物体平均分配到n个盒子中,除一个盒子为r个物体外,其余盒子均为r-1个。反过来,如果平均数要大于r-1,那个必然一个盒子中的物体数量要大于或等于r。

证法1:(q l+q2+……+q n)/n= [n(r-1)+1]/n=r-1+1/n>(r-1),r∈N+,则必有q i≥r,i=1,2,……

证法2:反证法,不妨设q l=q2=……=q n=r-1,即设这n个整数全部比r小,则有(q l+q2+……+q n)/n=(r-1),与题设>r-1矛盾,所以这n个数不可能全部小于r,则必至少有一个大于或等于r。

平均原理2:如果n个非负整数,q l,q2,q3,……,q n的平均数小于r+1,即(q l+q2+……+q n)/n<(r+1),那么那么这n个数中,至少有一个整数小于r+1。

分析:根据推论3,如果n(r+1)-1(因为平均数小于r+1,所以设为n(r+1)-1,其平均数才能小于r+1)个物体平均分配到n个盒子中,除一个盒子为r个物体外,其余盒子均为r+1个。反过来,如果平均数要小于r+1,那个必然一个盒子中的物体数量要小于或等于r。

证明:(q l+q2+……+q n)/n= [n(r+1)-1]/n=r+1-1/n<(r+1),r∈N+。平均原理3:如果n个非负整数,q l,q2,q3,……,q n的平均数至少等于r,即(q l+q2+……+q n)/n≥r,那么这n个数中,至少有一个整数大于等于r。

证明:令平均原理中的r-1=u,则结论成立。

例5:有两个碟子,其中一个比另一个小,它们都被分成200个均等的扇形。在大碟子中,任选100个扇形并着成红色,而其余的100个扇形着成蓝色。在小碟子中,每一个扇形或者着成红色,或者着成蓝色,所着红色扇形和蓝色扇形的数目没有限制。然后,将小碟子放到大碟子上面使两个碟子的中心重合。证明:能够将两个碟子的扇形对

齐使得小碟子和大碟子上相同颜色重合的扇形的数目至少是100个。证明:设小碟子蓝色扇形的数量为x,红色扇形的数量为y。大碟子不动,转动小碟子,每转2π/200角度,就有一次对应,于是共有200次对应。大碟子的红色扇形有100个,小碟子的红色扇形有x个,那么转动一周,小碟子每个红色扇形与大碟子对应100次,所以红色扇形对应的次数共有100x次,同理,蓝色对应的次数为100y 次,颜色相同的对应次数为100x+100y=100(x+y)=100*200=20000次,那么每个位置颜色相同的平均次数为20000/200=100,根据平均原理3,则有某个位置颜色相同的扇形数目至少为100个。

习题

1、在边长为1的正方形内任意放置5个点,求证其中必有两个点,这两个点之间的距离不大于2/2。

证明:如图将正方形等分成4份,根据

定理1可知,必然有2个点落在正方形

的1/4区域内,这两点的距离小于1/4

小正方形的对角线长2/2。

2、在边长为1的正方形内任意放入9个点,证明:以这些点为顶点的许许多多三角形中,必有一个三角形的面积不超过1/8。

证明:如图,将正方形

用平行于边的平行线等

分为4分,取1/4。由

定理2可知,2x4+1=9个点放入4个盒子内,比然有一个盒子内有

2+1=3个点,现在讨论这三个点构成的三角形的面积。

S

△ABC = S

△AA’C

+S

△AA’B

≤1xhx1/2+1x(1/4-h)x1/2=1/8。

3、证明:每个由n2 + 1个实数构成的数列,a1,a2,……,a n2+1或者含有长度为n + 1的递增子数列,或者含有长度为n+l的递减子数列。

分析:当n=1时,n2+ 1=2,即该数列的长度为2,n+1=2,即含有长度为2的单调子数列。两个实数构成实数列,必然是单调的。当n=2时,n2+ 1=5,即该数列的长度为5,n+1=3,按题意应该能从中找出长度为3的单调子数列。这就是题目所要表达的意思。

在证明之前,补充一下与数列相关的定义。

数列:按照一定顺序排列起来的数串a1,a2,……,a n,a n+1,……,叫数列。

数列的长度:数列项数的数量成为数量的长度。

有穷数列:数列的项数是有限的称为有穷数列。

无穷数列:数列的项数是无限的称为无穷数列。

若a l≤a2≤a3≤……≤a n≤a n+1≤……则为单调递增数列。

若a l≥a2≥a3≥……≥a n≥a n+1≥……则为单调递减数列。

单调递增数列和单调递减数列统称为单调数列。

由相等的数构成的数列也可称为单调数列。

去掉上述单增和单减数列中的等号,则为严格单调数列。

从原数列中抽出一部分,但不改变它们在原数列中的先后顺序,这样得到的一个新数列称为原数列的子数列。子数列用a i1,a i2,……,a in,a in+1,……,表示,其脚标必须满足

1≤i1≤i2≤……≤in≤in+1≤……

原数列本身也是其子数列。原数列中抽出1项构成的数列也是其子数列。

下面证明例3。

证明:记原数列为a1,a2,……,a n,a n+1,……a n2+1。先考虑递减的情况。设以a i为首项的最长递减数列的长度为N i。下面看一个特例,任意写一个长度为5的数列如,5,9,88,22,31,以5为首项的递减数列的长度为1,以9为首项的递减数列的长度为1,以88为首项的递减数列的长度为3,……由此可知,N i≥1,且对于长度为n2+ 1的数列,N i为n2+ 1个正整数。如果原数列中没有长度为n+1的递减数列,则N i为1到n之间的n2 + 1个正整数,根据定理2可知,其中必然有n+1个数是相等的。例如,n=3时,n2 + 1=10,10个数分配到1、2、3三个盒子中,必然有4个数都为1,或者都为2,或者都为3。n+1个数相等记为N i1=N i2=……=N in+1,其脚标适合1≤i1≤i2≤……≤in≤in+1≤……≤i n2+ 1。这就是说,原数列中有n+1个递减子数列的长度是相等的。任意列出其中两个如下:

a i1,a i5,……,a in,a in+1……………①

a i2,a i6,……,a in+2,a in+8,……………②

其脚标适合1≤i1≤i2≤……≤in≤in+1≤……≤i n2 + 1

比较a i1,a i2,两个不同的实数比较,必然有大小。作为递减数列,当a i1>a i2时,必然有数列①比数列②多一项。当a i1<a i2时,必然有数列②比数列①多一项。这与N i1= N i2=……=N in+1是矛盾的。所以对于a i1>a i2的情况,必然有a i1<a i2成立,以此类推,n+1个长度相等的递减数列必然存在一个长度为n+1的递增数列。对于a i1<a i2的情况也是如此。如果设原数列中没有长度为n+1的递增子数列,同理可证必然存在一个长度为n+1的递减子数列。

4、一个国际社团的成员来自6个国家,共有1978人,用1,2, (1978)

编号,证明:该社团至少有一个成员的编号与他的同胞的编号之和相等或是其一个同胞的编号的两倍。

证明:该题目与下面的叙述是等价的,即把1,2,……1978按任意方式分成6组,则必有一组具备这样的性质,其中至少有一个数或是等于同一组中其它两数的和,或是等于另一数的两倍。题目改写是简化明确题目的一种方法。

反证法,设任何一组数都不具备这样的性质,那么应该具备下列性质:*同一组中任何两个数之差必不在这个组中,若a,b和b-a这三个数在同一组中,则有a+(b-a)=b,就具备欲证的性质了。

①由1978/6>329,根据定理1可知,必然存在一个数组A,其中至少含有330个数。对于这330个数,记最大的为m A,m A减去其它329个数,所得的差是既为正整数又小于1978的329个数,根据性质*

可知,这329个数一定不在数组A中,必然在其它的5个数组中。

②由329/5>65,根据定理1,必然存在一个数组B,其中至少含有上面329个数中的66个数。对于这66个数,记最大的为m B, m B减去其它65个数,所得的差是既为正整数又小于1978的65个数,根据性质*可知,这65个数一定不在数组B中,同时也不在数组A中。假若其中一个数(m B-b)∈A,其中m B=m A- a1,b=m A- a2,其中a1,a2∈A,a2>a1,令a2-a1=(m A-b)-(m A-m B)= m B-b∈A,这与性质*相违背,所以这65个数不在数组A、B中,必然属于其它的4个数组。

③由65/4>16,根据定理1,必然存在一个数组C,其中至少含有上面65个数中的17个数。对于这17个数,记最大的为m C, m C减去其它16个数,所得的差是既为正整数又小于1978的16个数,根据性质*可知,这16个数一定不在数组C中,同时也不在数组A、B中。假若其中一个数(m C-c)∈B,其中m C=m B-b1,c=m B-b2,b1,b2∈A,b2>b1,令b2-b1=(m B-c)-(m B-m C)= m C-c∈B,这与性质*相违背,所以这16个数不在数组A、B、C中,必然属于其它的3个数组。

④由16/3>5,根据定理1,必然存在一个数组D,其中至少含有上面16个数中的6个数。对于这6个数,记最大的为m D, m D减去其它5个数,所得的差是既为正整数又小于1978的5个数,根据性质*可知,这5个数一定不在数组D中,同理也不在数组A、B、C中。必然属于其它的2个数组。

⑤由5/2>2,根据定理1,必然存在一个数组E,其中至少含有上面5个数中的3个数。对于这3个数,记最大的为m E,m E减去其它2个数,所得的差是既为正整数又小于1978的2个数,根据性质*可知,这2个数一定不在数组E中,同理也不在数组A、B、C、D中。必然属于最后一个数组。

⑥若最后两个数在数组F中,记较大的减去较小的所得的差是既为正整数又小于1978,根据性质*可知,这个数一定不在数组F中,同理也不在数组A、B、C、D、E中。这显然是一个矛盾。

所以题目的结论是正确的。

总结:鸽巢原理的关键是找到鸽子和构造鸽巢,这要求具备代数、几何、数论等方面的坚实知识基础,通过对大量问题的分析、练习、总结,才能成为构造鸽巢的能工巧匠。

数学人教版六年级下册《鸽巢问题》教学设计

数学广角——鸽巢问题 教学内容: 最简单的鸽巢问题(教材第68页例1和第69页例2)。 教材分析: 本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。 学情分析: “鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。 教学目标: 1.知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2.过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3.情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重点:引导学生把具体问题转化成“鸽巢问题”。 教学难点:找出“鸽巢问题”解决的窍门进行反复推理。 教学准备:实物投影,每组3个文具盒和4枝铅笔。

《鸽巢问题》教学设计

《鸽巢问题》教学设计 【教学内容】 人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。 【教学目标】 1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。 2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。 3.使学生感受数学的魅力,培养学习的兴趣。 【教学重点】 经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。 【教学难点】 理解抽屉原理,并对一些简单的实际问题加以模型化。 【教学过程】 一、开门见山,引入课题。 承接课前谈话内容,直接揭示课题。 二、经历过程,构建模型。 (一)研究“4个小球任意放进3个抽屉”存在的现象。 1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。 让学生说说对这句话的理解。 2.验证结论的正确性。 让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。 3.全班交流。 学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。 (二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。 1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球? 2.验证。 学生以小组为单位共同研究:先画出不同的放法。然后观察分析每种放法, 1 / 3

新人教版六年级数学下册 5.1《鸽巢原理》教学设计

《鸽巢原理》教案设计 教学目标 1.初步了解“鸽巢原理”,学会简单的“鸽巢原理”分析方法,运用“鸽巢原理”的知识解决简单的实际问题。 2.使学生逐步理解和掌握“鸽巢原理”,经历将具体问题数学化的过程,培养学生的模型思想。 3.通过对“鸽巢原理”的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。 教学重点 理解鸽巢原理,掌握列举法”和尽量“平均分”的方法。 教学难点 理解“总有”“至少”的意义,理解“至少数=商数+1”。 课前准备 教师准备PPT课件一副扑克牌 学生准备4支铅笔3个笔筒 教学过程 ⊙游戏导入 1.组织学生玩“抽扑克牌”游戏。 (1)准备一副扑克牌,取出大王、小王。 (2)选出5名同学,请他们任意抽取一张扑克牌并记在心里,把牌收好。 (3)教师猜测“在这5张扑克牌里,至少有2张是同一花色的。” (4)学生把扑克牌拿出来验证教师的猜测。 2.引入新课。(板书课题:鸽巢原理) 设计意图:通过“抽扑克牌”游戏,使学生初步体验从一副4种花色的扑克牌中任意抽取5张扑克牌,不管怎么抽,都至少有2张扑克牌是同一花色的,为新知的探究作铺垫。 ⊙探究新知 1.教学例1。

(1)出示题目:把4支铅笔放进3个笔筒中,有几种不同的放法? (2)探究放法。 ①自主摆放并汇报放法及发现。 预设 生1:我用数字表示放法:(4,0,0),(3,1,0),(2,2,0),(2,1,1)。 生2:我用式子表示放法:4=4+0+0,4=3+1+0,4=2+2+0,4=2+1+1。 生3:我用数的分解表示放法: 4400431042204211 生4:我发现不管怎么放,总有一个笔筒中至少有2支铅笔。 ②直接摆放。 a.引导学生找到一种更为直接的方法,只摆一种情况就能得到上面的结论。 预设 生:可以采用平均分的方法。4÷3=1……1,每个笔筒中各放1支,剩下的1支无论放进哪个笔筒中,总有一个笔筒中至少有2支铅笔。 b.组织学生小组合作探究。 把5支铅笔放进4个笔筒中,把6支铅笔放进5个笔筒中,把7支铅笔放进6个笔筒中,各会出现什么情况?找到其中的规律。 预设 生:铅笔的支数比笔筒数多1,用平均分的方法直接计算就可以发现:不管怎么放,总有一个笔筒中至少有2支铅笔。 (3)总结“鸽巢原理”(一)。 把m个物体任意分放进n个鸽巢中(m>n,m和n是非0自然数),那么一定有一个鸽巢中至少放进了2个物体。 2.教学例2。 (1)出示思考题目。 ①把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进几本书?

《鸽巢问题(例1)》教学设计

《鸽巢问题(例1)》教学设计 教学内容:教科书第68页例1。 教学目标: 1.使学生理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。 2.通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。 教学过程: (一)呈现问题,引出探究 课件呈现:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。 师:“总有”和“至少”这两个词是什么意思? 生:“总有”就是一定有,至少就是“最少,最起码”。(学生都有类似的理解。) 师:你觉得这句话说得对吗?请你静静思考一下。 师:大家可以用摆一摆、画一画、写一写等方法把自己的想法表示出来。 (二)自主探究,初步感知 1.学生探究。(略) 2.反馈交流。 (l)枚举法。 生1:我们是用铅笔模拟摆出来的,一共有四种情况。这四种情况中,不管哪一种,都有一个笔筒里至少有2支铅笔。 师:我们来看这些摆法,凭什么说“总有一个笔筒里至少有2支铅笔”? 生:第一种摆法有一个笔筒是4支,第二种摆法有一个笔筒是3支,第三种摆法有一个笔筒是2支,第四种摆法有两个笔筒都是2支,所以“总有一个笔筒里至少放进2支铅笔”。 师:比2支多也可以吗? 生:至少放进2支笔就是最少是2支,比2支多也是可以的,3支、4支都是符合要求的。

教师再次引导学生观察四种摆法,把符合要求的笔筒用彩色粉笔标出予以“检验”,理解总有一个笔筒里至少有2支铅笔,对学生的方法给予肯定。 生2:我们是用数表示的,比他的方法要简单。 师生一起圈出每种分法中不小于2的数,认可这种方法,对学生简洁的表示法予以表扬。 (2)假设法。 师:除了像这样把所有可能的情况都列举出来,还有没有别的方法也可以证明这句话是正确的? 生:我是这样想的,先假设每个笔筒中放1支,这样还有1支。这时无论放到哪个笔筒,那个笔筒中就是2支了。所以我认为是对的。 教师板书图示,引导学会直观认识“这时无论放到哪个笔筒,那个笔筒中就有2支”的情况。 师:你为什么要先在每个笔筒中放1支呢? 生:因为总共只有4支,平均分,每个笔筒只能分到1支。 师:你为什么要一开始就要去平均分呢?(板书:平均分) 生:平均分,就可以使每个笔筒的笔尽可能少一点,也就有可能找到和题目意思不一样的情况。 师:我明白了。但是这样只能证明总有一个笔筒中肯定会有2支笔,怎么能证明至少有2支呢? 生:平均分已经使每个笔筒中的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。 (3)确认结论。 师:到现在为止,我们可以得出什么结论? 生(齐):把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。 (三)提升思维,构建模型 1.加深感悟。 师:刚才我们通过不同的方法验证了这句话是正确的。现在老师把题目改一改,你们看看还对不对,为什么? 师(口述):5支铅笔放进4个笔筒,总有一个笔筒至少放进2支铅笔。 (生答略。) 教师让学生继续思考:6支铅笔放进5个笔筒,总有一个笔筒至少放进()支铅笔。 10支铅笔放进9个笔筒呢?100支铅笔放进99个笔筒呢? (教师引导学生说理,学生逐渐都采用假设的思路熟练地来表达。)

部编人教版六年级数学下册 《鸽巢问题(2)》优质教案【新版】

鸽巢问题(2) 教学导航: 【教学内容】 “鸽巢问题”的具体应用(教材第70页例3)。 【教学目标】 1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。 2.培养学生有根据、有条理的进行思考和推理的能力。 3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 【重点难点】 引导学生把具体问题转化为“鸽巢问题”,找出这里的“鸽巢”有几个,再利用“鸽巢问题”进行反向推理。 【教学准备】 课件,1个纸盒,红球、蓝球各4个。 教学过程: 【情景导入】 教师讲《月黑风高穿袜子》的故事。 一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,这时他又要出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的

一双。你们知道最少拿几只袜子出去吗? 在学生猜测的基础上揭示课题。 教师:这节课我们利用鸽巢问题解决生活中的实际问题。 板书:“鸽巢问题”的具体应用。 【新课讲授】 1.教学例3。 盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球? (出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下)师:同学们,猜一猜老师在盒子里放了什么? (请一个同学到盒子里摸一摸,并摸出一个给大家看) 师:如果这位同学再摸一个,可能是什么颜色的?要想这位同学摸出的球,一定有2个同色的,最少要摸出几个球? 请学生独立思考后,先在小组内交流自己的想法,验证各自的猜想。 指名按猜测的不同情况逐一验证,说明理由。 摸2个球可能出现的情况:1红1蓝;2红;2蓝 摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝 摸4个球可能出现的情况:2红2蓝;1红3蓝;1蓝3红;4红;4蓝 摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红;5红;5蓝

鸽巢原理教学设计优质课

《鸽巢原理》教学设计 教学内容:义务教育教科书六年级下册第68、69页。 教学目标: 1.知识与能力目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。 2.过程与方法目标:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 3.情感、态度与价值观目标:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 教学重点:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。 教学难点:理解“鸽巢原理”,并应用这一原理解决实际问题。 教学准备:多媒体课件、纸杯、铅笔、书。 教学过程: 一、游戏激趣,初步体验。 1、游戏:猜扑克牌。请5位同学,每人随意抽一张扑克牌。 2、教师猜:在5张扑克牌里至少有2张的花色是一样的。 3、引入学习内容。 二、操作探究,发现规律。 1.自主猜想,初步感知。 把4枝铅笔放进3个笔筒中。不管怎么放,总有一个笔筒至少放进()枝铅笔。让学生猜测“至少会是”几枝? 2.验证结论。

小组合作:学生借助实物进行操作,(摆一摆、画一画、写一写)来验证结论,并做好记录。 3、指名学生汇报 (1)根据学生汇报的情况,教师适时演示,同时教师根据学生的回答板书所有的情况。(4,0,0)(3,1,0)(2,2,0)(2,1,1)(明确这是枚举法) (2)观察摆一摆、画一画、写一写的结果,你发现了什么?(把4枝铅笔放进3个笔筒中。不管怎么放,总有一个笔筒里至少有2枝铅笔) 4、思考:“总有”、“至少”是什么意思? 5、提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?在学生汇报的基础上,教师小结:假如把4枝铅笔中的3枝平均放到3个笔筒中,每个笔筒放1枝铅笔,剩下的1枝铅笔不管怎样放,总有一个笔筒里至少有2枝铅笔。(明确这是假设法) 6、初步观察规律。 教师继续提问:把5支铅笔放进4个笔筒里会出现什么情况? 把5支铅笔放进4个笔筒里会出现什么情况? 把7支铅笔放进6个笔筒里呢? 把8枝笔放进7个笔筒里呢?…… 100支铅笔放进99个笔筒呢? 教师引导学生进行比较:你发现什么? (笔的枝数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2枝铅笔。) 7、看有关鸽巢原理资料,让学生感受古代数学文化。 8、学习例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉至少放进3本书。为什么?

第五单元《鸽巢问题》例1例2 教学设计教学提纲

第五单元数学广角 第一课时《鸽巢问题》例1例2 教学设计 教学内容: 人教版教材六年级数学上册第68--69 页。 教学目标: 1.知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。 2.过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。 3.情感态度价值观:通过“鸽巢原理”的灵活应用感受数学的魅力。教学重、难点: 经历“鸽巢原理”的探究过程,理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。 课时安排:一课时 教具学具:多媒体课件、每人一枚一元硬币 教学过程 一、问题引入。 师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来? 1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。 2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。 引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究

这个原理。 二、探究新知 (一)教学例1 1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。 板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1), 问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢? 引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。 问题: (1)“总有”是什么意思?(一定有) (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?) 教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢? 学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。 问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。) 总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。 2.完成课下“做一做”,学习解决问题。

鸽巢问题的教学反思

六年级数学下册《鸽巢问题》教学反思 大花岭小学孙立群 数学广角的教学是为了丰富学生解决问题的方法和策略,使学生感受到数 学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢 原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思 维。 一、情境导入,初步感知 兴趣是学习最好的老师。所以在本节课我就设计了表演魔术的游戏来导入 新课,在上课开始我就说:我给大家表演一个“魔术”。一副扑克牌,去掉大 小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?想参与这个游戏的请举手。同学们踊跃参加,然后叫举手的两组同学 上台抽牌。同学们发现抽的牌中至少有2张牌是同花色的,接着引出了课题。 相机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数 学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数 学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动 情的完美结合,全面提高学生的整体素质。这个游戏虽简单却能真实的反映 “鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有效地调动和 激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。 二、活动中恰当引导,建立模型 采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、 画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简 单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉, 看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比 平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。大量列举 之后,再引导学生总结归纳这一类“鸽巢原理”的一般规律,让学生借助直观 操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。特别是通 过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思 维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明” 的过程,培养了学生的推理能力和初步的逻辑能力。 三、通过练习,解释应用 适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑 克牌中去掉两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色的。任意抽出20张,至少有几张是数字相同的。把红白两种球各10个放在同 一个盒子里,要保证有两个球的颜色相同,至少要摸出几个球?(3个球), 要保证摸出的球有一个是红色的,至少要摸出多少个球?(11个球)。15只鸽子飞回4个鸽舍中,至少有()只鸽子飞回同一个鸽舍,为什么?教会

鸽巢问题教学设计公开课

数学广角——鸽巢问题教案 朱小姜松 一、教学目标: 1、经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。 2、通过操作发展学生的类推能力,形成比较抽象的数学思维。 3、培养学生有根据、有条理地进行思考和推理的能力。 4、通过“鸽巢问题”的灵活应用感受数学的魅力;提高学生解决问题的能力和兴趣。 二、教学重点: 经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。 三、教学难点: 理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。 四、教材说明: 这部分教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理 解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。 在数学问题中有一类与“存在性”有关的问题。例如,任意13人中,至少有两人的出生月份相同。任意367名学生中,至少存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。例如,要把三个苹果放进两个抽屉,至少有一个抽屉里有两个苹果。这样的道理对于学生来说,也是很容易理解的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。 五、教学设计 课前谈话: 1、同学们,今年是2016年,很多预言家都曾预言2012年是世界末日,可是没能成真,他们的预言准确 吗?知道吗?姜老师也是一位预言家,你不信?请你在纸上写三位你的好朋友的名字,我预言你的三位好朋友中至少有两位是同性,对不对?我还能预言我们全班34位同学,总有一个月份至少有3位同学出生(学生起立验证)。 2、你想不想当一名预言家?谁来试试?从一副扑克牌中抽出大小王,还剩下52张,任意抽取5张牌,谁

参赛《鸽巢原理》教学设计(1)知识讲解

《鸽巢原理》教学设计 修水二小向娟红 一、教材内容:人民教育出版社小学数学六年级下册第68至69页 二、教学目标: 1.经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。 2.通过操作发展学生的类推能力,形成比较抽象的数学思维。 3.通过“鸽巢原理”的灵活应用感受数学的魅力。 教学重点:经历“鸽巢原理”的探究过程初步了解“鸽巢原理。 教学难点:理角“鸽巢原理”并对一些简单简单的实际问题加以“模型化。 三、教学过程 (一)情境导入 1.创设情境: 师:这有一副牌(抽掉大、小王),老师用它变一个魔术,想看吗?这个魔术的名字叫“猜花色”。老师请5名同学每人随意抽一张牌,我能猜到,至少有两位同学的手中的花色是相同的,你们信吗? 师:谁能猜一猜,我是用什么方法知道的结果? 2.揭示课题,板书“鸽巢原理” 师:刚才老师和这5名同学合作展示了鸽巢原理中最简单的一种问题。鸽巢原理很神奇,我们用它可以解决很多有趣的的问题,这节课我们就一起来探究这个神秘的原理。

(设计意图:通过一个学生感兴趣的展示生活中的一种简单的“鸽巢原理”问题,激发学生的好奇心和学习欲望,为原本枯燥的数学课注入活力。) (二)合作探究建立原理模型 1. 小组合作探究,初步感知“鸽巢原理” (1)课件出示简化后的例题1(将3支笔放进两个笔筒里,你有几种放法? 同时出示小组合作要求:学生拿出准备的3枝笔,2个笔筒,摆一摆,想一想共有有几种放法?然后小组内说一说,你有什么发现? (2)小组汇报展示 学习小组派代表到台前展示成果。要求学生边摆边说,老师同时在黑板上画出草图。可能会出现以下几种放法: 放法1 或 (引导学生明确虽然摆放的顺 序不一样,但是同一种放法) 放法或 师:还有别的放法吗? 生:没有了。 师:是的,就这两种放法。除找到不同的放法之外,哪个小组还有其它的发现? 引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。 问题: (1)“总有”是什么意思?(一定有) (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?) 教师引导学生总结规律:我们把3枝笔放进2个盒子里,不管怎么放,

人教版小学数学六年级下册 鸽巢问题 教学设计

《鸽巢问题》教学设计 教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。 教学目标: 1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重、难点: 重点:引导学生把具体问题转化成“鸽巢问题”。 难点:找出“鸽巢问题”解决的窍门进行反复推理。 教学准备:课件。 教学过程: 一、情境导入: 老师组织学生做“抢凳子的游戏”。 请4位同学上来,摆开3张凳子。 老师宣布游戏规则:4位同学跟随着音乐(甩葱歌)围着凳子转圈,音乐“停”的时候,四个人每个人都必须坐在凳子上。 教师背对着游戏的学生。 师:都坐下了不?老师不用瞧,也知道肯定有一张凳子上至少坐着2

位同学。老师说得对不? 师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。 二、探究新知: 教学例1、(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”与“至少”就是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 理解关键词的含义:“总有”与“至少”就是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 探究证明。 方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数就是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

鸽巢问题教学反思

《鸽巢问题》教学反思 我在设计鸽巢原理教学时,课堂上,我首先采用游戏导入、小组活动的形式,使学生集中注意力,把心思马上放到课堂上,让学生觉得这节课探究的问题既好玩又有意义。但这部分内容属于奥数知识范畴,真正理解对于学生来说有一定的难度。在教学中我通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“鸽巢原理”,会用“鸽巢原理”解决实际问题。 在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。 1、采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个抽屉里至少有2枝笔”。 2、让学生借助直观操作发现,把笔尽量多的“平均分”给各个笔筒,看每个笔筒能分到多少枝笔,剩下的笔不管放到哪个笔筒里,总有一个笔筒比平均分得的枝数多1,可以用有余数的除法这一数学规律来表示。 3、大量例举之后,再引导学生总结归纳这一类“鸽巢问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。 在这堂课的难点突破处,也就是让学生借助直观操作发现,把笔尽量多的“平均分”到各个笔筒,看每个笔筒能分到多少枝笔,剩下的笔不管放到哪个笔筒里,总有一个笔筒比平均分得的枝数多1,我还可以对教学环节进行再安排,让学生体会到多余的物体只要不超过抽屉的个数,总有一个抽屉至少放2个物体,这样学生对“鸽巢原理”规律会更清晰更明了。同时,我们要明确,教学知识不光是让学生按照公式来套用公式,这样很容易造成学生的思维定势,所以在让学生充分说理的基础上,明确把什么当作“抽屉数”,把什么当作“物体数”是相当重要的。 在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。

最新人教版六年级数学下册《鸽巢问题一》公开课优秀教案

《鸽巢问题一》 一、教学目标 (一)知识与技能 通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。(二)过程与方法 结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。 (三)情感态度和价值观 在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。 二、教学重难点 教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。 教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。 三、教学准备 多媒体课件。 四、教学过程 (一)游戏引入 出示一副扑克牌。

教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。同学们相信吗? 5位同学上台,抽牌,亮牌,统计。 教师:这类问题在数学上称为鸽巢问题(板书)。因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。 【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。 (二)探索新知 1.教学例1。 (1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。 教师:谁来说一说结果? 预设:一个放3支,另一个不放;一个放2支,另一个放1支。(教师根据学生回答在黑板上画图表示两种结果) 教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗? 教师:这句话里“总有”是什么意思? 预设:一定有。 教师:这句话里“至少有2支”是什么意思?

六年级数学《鸽巢原理》教学设计说明

数学广角—鸽巢问题 【教学容】 人教版小学数学六年级下册《数学广角--抽屉原理》。 【学情分析】 抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。 1.年龄特点:六年级学生既好动又敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。 2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。 【教学方法】 1.借助学具,学生自主动手操作、分析、推理、发现、归纳、总结原理。 2. 适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。 3.引导学生构建解决抽屉原理类问题的模式:明确“待分的物体”→哪是“抽屉”→平均分→商+1 4.完善评价体系,进行小组捆绑,激励学生全员参与,体验成功的乐趣。 5.师生课前准备:①学生:每组5根小棒、4个杯子;课件②学生记录自己是哪一个月出生的。③教师准备1副牌。 【教学目标】 知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

鸽巢问题教学反思

六年级数学下册《鸽巢问题》教学反思 云鹤镇中心小学夏春林 数学广角的教学是为了丰富学生解决问题的方法和策略,使学生感受到数学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。 一、情境导入,初步感知 兴趣是学习最好的老师。所以在本节课我就设计了表演魔术的游戏来导入新课,在上课开始我就说:我给大家表演一个“魔术”。一副扑克牌,去掉大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?想参与这个游戏的请举手。同学们踊跃参加,然后叫举手的两组同学上台抽牌。同学们发现抽的牌中至少有2张牌是同花色的,接着引出了课题。相机引入本节课的重点“总有……至少……”。这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有效地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。 二、活动中恰当引导,建立模型 采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。 在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。 大量列举之后,再引导学生总结归纳这一类“鸽巢原理”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。 三、通过练习,解释应用 适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中去掉两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色的。任意抽出20张,至少有几张是数字相同的。把红白两种球各10个放在同一个盒子里,要保证有两个球的颜色相同,至少要摸出几个球?(3个球),要保证摸出的球有一个是红色的,至少要摸出多少个球?(11个球)。15只鸽子飞回4个鸽舍中,至少有()只鸽子飞回同一个鸽舍,为什么?教会学生用算式来说明理由,简洁明了,因为15÷4=4……3 4+1=5,所以15只鸽子飞回4个鸽舍,总有5只鸽子飞进同一个鸽笼。六年级4班由67个同学,总有多少个同学的属相相同?学校有367个同学,总有各位同学同一天过生日?练习内容紧密联系生活,让学生体会数学来源于生活。练习由易到难,层层递进,符合学生的认知规律。在练习中,学生兴趣盎然,达到了预期的效果。 不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉

六年级下册《鸽巢问题》教案知识分享

“鸽巢问题”教案 教学内容:教材第68-70页例1、例2,及“做一做”。 学习目标: 1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。学习重点:引导学生把具体问题转化成“鸽巢问题”。 学习难点:找出“鸽巢问题”解决的窍门进行反复推理。教具准备:多媒体课件。 学习过程: 一、创设情境,导入新知 老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。 其实这个游戏中蕴藏着一个非常有趣的数学原理,这节课我们就一起来研究这类问题。-----出示课题《鸽巢问题》“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德

国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们就来研究这一原理。 二、合作交流,探究新知 1、教学例1(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢? 问题:“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 (3)探究证明。个人调整意见 方法一:用“分解法”证明。把4分解成3个数。由图

最新人教版六年级下册数学《数学广角——鸽巢问题》教案

数学广角——鸽巢问题 【教学目标】 1.知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2.过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3.情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 【课时安排】 3课时 【第一课时】 【教学重难点】 1.引导学生把具体问题转化成“鸽巢问题”。 2.找出“鸽巢问题”解决的窍门进行反复推理。 【教学准备】 课件 【教学过程】 一、探究新知: 1.教学例1.(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 探究证明。

方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 认识“鸽巢问题” (1)像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 (2)如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔…… 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了2个物体。 2.教学例2(课件出示例题2情境图) 思考问题: (1)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢? (2)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明→得出结论”的学习过程来解决问题(一)。 探究证明。 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

数学人教版六年级下册《鸽巢问题教学设计》

《鸽巢问题》教学设计 郝杰 教学内容:(人教版)数学六年级下册第68页例1 教学目标 (一)知识与技能 通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。 (二)过程与方法 结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动增强对逻辑推理、模型思想的体验。 (三)情感态度和价值观 在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。 二、教学重难点 教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。 教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。 【重难点分析:第一,要有意识地培养学生的模型思想。因为“抽屉原理”在生活中的变式是多样的,在解决这些问题的过程中,教师要引导学生明确什么是抽屉原理中的“物体”,什么是“抽屉”,让学生把这些具体问题模型化成一个“抽屉问题”。】 教学过程: 一、情境导思(任务驱动、生成问题) 游戏: 一副牌,取出大小王,还剩52张牌,找5名学生,你们每人随意抽一张,我知道至少有2张牌是同花色的,是这样吗?为什么呢?其实这是一个非常重要的数学问题,这节课我们就来研究一下。 二、问题探究(自主学习、合作探究) 第一种:枚举法 分组动手演示: 多媒体出示例1:4枝铅笔,3个杯子。 师:把4枝笔放在3个杯子中,会有几种方法呢? (1)出示探究任务,指名读要求 1、动手摆一摆:组内同学合作,把摆的结果用你喜欢的方法记录出来。 2、动脑想一想:还有其他的摆法吗? 3、组内说一说:观察杯子中笔的数量你发现了什么?

(2)学生分组活动,记录收获 (3)学生汇报展示,教师板书:总有一个杯子里至少有2枝铅笔。 (4)齐读:总有一个笔筒里至少放进2枝铅笔 这种把所有情况都一一列举出来,我们就叫做:枚举法。(教师板书) 【设计意图】通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。 三、交流点拨(交流充分、点拨精准) 第二种:假设法。 这种方法明晰、直观,不过有一些麻烦,费时,你能只摆了一种或没有摆放就能解释我们刚才得出的结论吗? 小组分分试试。 指名汇报。 引导学生在交流中明确:可以假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。也就是先平均分,每个文具盒中放1枝,余下1枝,不管放在哪个盒子里,一定会出现总有一个文具盒里至少有2枝铅笔。 【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。 请学生继续思考: 如果把5枝铅笔放进4个文具盒,结果是否一样呢?怎样解释这一现象?这种假设法其实就是在怎么分? 第三种:平均分 第二种方法其实就是在平均分 你可以列个算式吗?根据学生的回答板书:5÷4=1……1 1+1=2 【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。 4、比较优化。 请学生继续思考: 把7枝铅笔放进6个文具盒里呢? 把10枝铅笔放进9个文具盒里呢? 把100枝铅笔放进99个文具盒里呢? 你发现了什么? 引导学生发现:只要放的铅笔数比文具盒的数量多1,不论怎么放,总有一个文具盒里至少放进2枝铅笔。

相关文档
最新文档