长链非编码RNAlongnoncodingRNAslncRNAs-南京医科大学学报

长链非编码RNAlongnoncodingRNAslncRNAs-南京医科大学学报
长链非编码RNAlongnoncodingRNAslncRNAs-南京医科大学学报

长链非编码RNA MEG3对胃癌细胞增殖的影响研究

[摘要] 目的:探讨长链非编码RNA MEG3在胃癌组织及细胞系中的表达水平,以及过表达MEG3对胃癌细胞增殖能力的影响,并探索其可能的作用机制。方法:用定量PCR(qRT-PCR)技术检测胃癌组织及细胞系中MEG3的表达水平;通过转染pCDNA-MEG3上调MEG3的表达水平,并通过qRT-PCR检测转染效率。用MTT和克隆形成实验检测上调MEG3的水平对BGC-823细胞和MGC-803细胞的增殖能力的影响,用Western blot实验检测这两种细胞中上调MEG3的水平对p53蛋白的表达水平的影响。结果:相比正常胃组织及细胞,在胃癌组织和细胞中MEG3的表达出现显著下调,SGC7901、MGC-803和BGC-823细胞中MEG3的表达水平分别是正常胃上皮细胞GES-1中的73.6 %、42.0 %和27.1 % (p<0.05)。BGC-823细胞和MGC-803细胞中转染pCDNA-MEG3能显著上调MEG3的表达,MEG3的表达水平分别为对照组的252倍和311倍(p<0.05);MTT和克隆形成实验显示,上调MEG3的表达能降低BGC-823细胞和MGC-803细胞的增殖能力。Western blot实验显示,转染了pCDNA-MEG3的MGC-803和BGC-823细胞中p53的表达相较对照组中显著增加。结论:胃癌组织及细胞中MEG3的表达下调,且这可能通过抑制p53蛋白的激活从而促进胃癌细胞增殖,影响胃癌的发生和发展。

[关键字]胃癌;长链非编码RNA;MEG3;细胞增殖;p53

Down-regulated long noncoding RNA MEG3 promotes cell proliferation in gastric cancer

[Abstract]Objective: To investigate the expression level of long noncoding RNA MEG3 in gastric cancer tissues and cell lines, and to study the effect of up-regulation of MEG3 expression on gastric cancer cells proliferation and its possible mechanism. Methods: Quantitative reverse-transcription PCR was performed to detect the relative expression of MEG3 in gastric cancer cell lines and tissues. pCDNA-MEG3 was transfected into BGC-823 cells and MGC-803 cells to down-regulate MEG3 expression, and quantitative reverse-transcription PCR was used to test the transfection efficiency. MTT and colony formation assays were performed to detect the effect of MEG3 on gastric cancer cells proliferation. Western blot assay was used to test the expression level of p53 protein in MGC-803 cells and BGC-823 cells transfected with pCDNA-MEG3 respectively, compared to those with empty vector. Results: This study showed that MEG3 was lowly expressed both in gastric cancer samples and cell lines compared with their corresponding normal tissues and cell lines. The expression level of MEG3 in SGC7901, MGC-803 and BGC-823 cells were 73.6 %, 42.0 % and 27.1 % of that in normal gastric epithelium cell GES-1, respectively (p<0.05). Transfection of pCDNA-MEG3 could significantly increase its’ expression in BGC-823 cells and MGC-803 cells respectively, 252 and 311 folds compared with control cells (p<0.05). MTT and colony formation assays indicated that up-regulated MEG3 could inhibit BGC-823 and MGC-803 cells proliferation. Western blot assay showed that the expression level of p53 protein was significantly increased in MGC-803 cells and BGC-823 cells transfected with pCDNA-MEG3 compared with those with empty vector, respectively. Conclusion: Down-regulated MEG3 could promote gastric cells proliferation, probably by inhibiting the activation of p53, and thus affect the development and progression of gastric cancer.

[Keywords] gastric cancer; long noncoding RNA; MEG3; cell proliferation; p53

胃癌是导致全球癌症相关死亡的第二大恶性肿瘤, 近年来其发病率呈上升趋势,每年约有一百万新发病例,其中50%的病例发生在东亚地区(主要在中国)[1]。胃癌早期临床症状

不典型,确诊的患者多以进展期胃癌为主,常伴有淋巴结转移和腹腔内侵袭、转移,因此胃癌患者治疗效果不佳、预后差,5年生存率低于10%[2-4]。因此,更好地理解胃癌的发病机制以及分子水平的变化对发展生物诊断标志物至关重要,这些标志物能帮助提供新的有效的胃癌治疗手段。

长链非编码RNA(long noncoding RNA,lncRNA)是一类在基因组转录中不参与编码蛋白、长度超过200nt的转录产物。它具备多种生物学功能,并在染色质修饰、转录、翻译、剪接、表观遗传学调控等[5]多种生物进程中发挥重要作用。研究证实,lncRNA的变异和调节异常能够导致包括肿瘤在内的多种疾病[6]。因此确定癌症相关的lncRNA并研究其分子和生物学功能对理解肿瘤分子生物学及其进展十分重要。

母系表达基因3(Maternally expressed gene 3, MEG3)是位于染色体14q32的肿瘤抑制基因,其编码产物——非编码RNA(noncoding RNA, ncRNA)与肿瘤发生有关[7,8]。MEG3 RNA在许多正常组织中表达,但其在许多人类原发性肿瘤中表达缺失,包括神经胶质瘤、肝细胞肝癌、脑膜瘤和膀胱癌[9-12]。在人神经胶质瘤细胞系中,MEG3过表达能够诱导细胞生长停滞并促进细胞凋亡[9]。但是,目前对MEG3在胃癌中的表达水平和在胃癌致病机制中的生物学作用知之甚少。

本研究旨在阐明lncRNA MEG3在胃癌中的表达情况,探索MEG3水平变化对体外胃癌细胞表型的影响。本研究进一步希望为胃癌预后提供的新标志物,为胃癌干预治疗提供新的靶标。

1 材料与方法

1.1组织收集

36例样本来自于江苏省人民医院2006-2008年间被诊断为胃癌并接受手术的患者,这些样本经过病理科严格鉴定(分期II, III, IV; 美国癌症联合会癌症分期指南第七版)。在手术前所有患者均未接受过局部或全身治疗。所有样本取下后立即液氮冷冻,在提取RNA之前,一直置于-80 °C环境中冻存。本研究由南京医科大学伦理委员会通过,并取得所有患者的知情同意书。

1.2 细胞系和培养条件

三种胃癌细胞系(SGC7901,MGC-803和BGC-823)以及胃粘膜上皮正常细胞系GES-1购自中国科学院生物化学与细胞生物学研究所。细胞用高糖DMEM、含有10% FBS、100 U/mL青霉素以及100 mg/mL链霉素的培养基于37 ℃,含5% CO2的潮湿恒温培养箱中常规培养。每1-2天更换新鲜培养基,当细胞融合度达到80%-90%时进行传代培养。

1.3 RNA提取和定量反转录PCR(qRT-PCR)

使用TRIzol试剂(购自美国的Invitrogen公司)提取组织或培养的细胞中的总RNA。使用反转录盒(购自大连的Takara公司)将RNA反转录为cDNA。使用Power SYBR Green (购自大连的Takara公司)做实时PCR分析。结果用GAPDH的表达量标准化。MEG3的PCR引物:上游引物:5’-CTGCCCATCTACACCTCACG-3’,下游引物:5’-CTCTCCGCCGTCTGCGCTAGGGGCT-3’;GAPDH 上游引物:5’-GTCAACGGATTTGGTCTGTA TT-3’,下游引物:5’-AGTCTTCTGGGTGGCAGTGAT-3’。qRT-PCR和数据收集基于ABI 7500平台。MEG3相对于GAPDH的表达使用2?ΔΔCt法计算和标准化。

1.4 质粒的构建

MEG3序列被合成和亚克隆至pCDNA3.1载体(购自上海的Invitrogen公司)。通过使用pCDNA-MEG3转染实现MEG3的异常表达,使用空的pCDNA载体作为对照。使用qPCR 检测MEG3的表达水平。

1.5 胃癌细胞转染

所有用于转染的质粒载体(pCDNA-MEG3和空载体)经DNA Midiprep或Midiprep盒(购自德国的QIAGEN公司)提取。按照使用说明书通过Lipofectamine 2000(购自上海的Invitrogen公司)将pCDNA-MEG3或空载体转染至六孔平板上培养的胃细胞上。48h后收集细胞用于qRT-PCR和Western blot分析。

1.6 细胞增殖实验

本研究使用MTT试剂盒(购自美国的Sigma公司)并按其使用说明进行细胞增殖实验。对于克隆形成实验,在含有10% FBS的六孔板中,每孔加入500个细胞,保存两周。集落用甲醇固定并用0.1% 的结晶紫在PBS中染色15分钟。通过用倒置显微镜取三个随机视野观察来判断集落形成情况。每个处理组一式三份。

1.7 Western blot实验

对细胞蛋白溶解物进行10%的SDS-PAGE实验,将蛋白转到NC膜(Sigma公司)上,并用特定抗体孵育。通过放射密度测定法(Quantity One software,Bio-Rad)对放射自显影图片进行量化。GAPDH作为对照。抗p53抗体(1:1000)购自Cell Signaling Technology公司。

1.8 统计分析

使用SPSS软件包(20.0版,SPSS Inc.)进行统计分析。针对重要的指标,给出相应的95%可信区间。根据需要选用Student t检验或卡方检验进行统计学显著性分析。P值小于0.05则认为差异具有统计学意义。

2 结果

2.1 胃癌组织、细胞中MEG3的表达水平

将36位患者的胃癌样本与癌旁正常组织的组织进行配对,使用qRT-PCR分别检测MEG3的水平,结果用GAPDH标准化。结果显示癌组织中,MEG3的表达水平比正常组织的平均表达水平低,为正常组织的0.625倍(95%可信区间:0.39~0.86,P<0.01)(图1A)。本研究接下来使用qRT-PCR检测三种胃癌细胞系(SGC7901,MGC-803和BGC-823)中MEG3的表达水平。结果显示,SGC7901细胞中MEG3的表达水平是正常胃上皮细胞GES-1中的73.6 %(95%可信区间:0.703~0.768,P<0.05);MGC-803细胞中,MEG3的表达水平是GES-1细胞中的42.0 %(95%可信区间:0.255~0.287,P<0.05);BGC-823细胞中,MEG3的表达水平是GES-1细胞中的27.1 %(95%可信区间:0.391~0.448,P<0.05)(图1B)。这些结果证实,MEG3的表达在胃癌组织及细胞中出现了显著的表达下调。

A.定量PCR检测36对胃癌组织/癌旁正常组织中MEG3的相对表达水平(倍数关系)。按从大到小的顺序排列,其中蓝色表示MEG3在胃癌组织中表达水平高于癌旁正常组织水平,共5组;红色表示MEG3在胃癌组织中表达水平低于癌旁正常组织水平,共31组。P<0.01

B.定量反转录PCR检测三种胃癌细胞系(SGC7901,MGC-803和BGC-823)以及正常胃上皮细胞系GES-1中MEG3的相对表达水平(相对于GES-1中MEG3的表达水平)。(*,P<0.05)

图1胃癌组织、细胞系中MEG3的表达水平

Figure 1 Expression level of MEG3 in gastric cancer tissue and cell lines

2.2 体外实验外源性上调MEG3的表达对胃癌细胞增殖的影响

MEG3在胃癌样本细胞中的显著低表达促使本研究作者探索MEG3在肿瘤发生中可能的生物学重要性。为了调控胃癌细胞中MEG3的水平,本研究将pCDNA-MEG3载体转染至BGC-823和MGC-803细胞中,以空载体作为对照。转染48h后进行qRT-PCR分析MEG3的表达。实验结果显示,与各自对照细胞相比,BGC-823和MGC-803细胞中MEG3的表达分别增加252倍(95%可信区间:214~290,P<0.05)和311倍(95%可信区间:282~340,P<0.05)(图2A)。另外,MTT实验显示,转染了pCDNA-MEG3载体的BGC-823和MGC-803细胞数量于24、48、72、96小时后均显著高于各自的对照组(48小时P<0.05,72、96小时P<0.01),提示细胞增殖受到明显抑制(图2B,2C)。类似地,克隆形成实验同样显示,随着BGC-823和MGC-803细胞中MEG3的过表达,视野观察的集落形成数目减少,克隆源性细胞的存活明显减少(图2D,2E)。

A.转染了pCDNA-MEG3的BGC-823和MGC-803细胞中MEG3的过表达效率。纵轴过表达效率数值为与各自空白对照对比的相对值。两者皆有P<0.01

B.MTT实验显示与转染了空载体的细胞相比,转染了pCDNA-MEG3的BGC-823细胞生长情况明显受抑。(*,P<0.05,**,P<0.01)

C.MTT实验显示与转染了空载体的细胞相比,转染了pCDNA-MEG3的MGC-803细胞生长情况明显受抑。(*,P<0.05,**,P<0.01)

D.克隆形成实验显示与转染了空载体的细胞相比,转染了pCDNA-MEG3的克隆源性BGC-823细胞存活明显减少

E.克隆形成实验显示与转染了空载体的细胞相比,转染了pCDNA-MEG3的克隆源性MGC-803细胞存活明显减少

图2 上调MEG3的表达对BGC-823和MGC-803细胞增殖的影响

Figure 2 The effect of up-regulated MEG3 on BGC-823 cells and MGC-803 cells proliferation

2.3 MEG3诱导p53蛋白的激活

最近,有研究表明许多lncRNA可能通过调节p53通路来调节细胞生长[13]。先前也有研究报道,MEG3的再表达可以导致p53蛋白的聚集及其靶基因的表达,由此抑制肿瘤细胞的生长[14]。为进一步探索MEG3抑制胃癌细胞增殖的机制,本研究检测了转染pCDNA-MEG3的p53野生型MGC-803和BGC-823细胞中的p53表达水平。Western blot 试验后,电泳条带示转染了pCDNA-MEG3的MGC-803细胞和BGC-823细胞的p53条带宽

度、深度分别高于各自转染了空载体的对照细胞(图3A),用放射密度测定法定量分析,转染了pCDNA-MEG3的MGC-803细胞和BGC-823细胞的p53表达水平明显增高至各自对照组细胞的2.3倍(P=0.026<0.05)与2.2倍(P=0.031<0.05)(图3B)。这些数据提示,MEG3在胃癌中可能通过激活p53的表达而发挥抑制肿瘤抑制的作用。

A.电泳条带显示转染了pCDNA-MEG3的MGC-803细胞和BGC-823细胞的p53的表达水平高于转染了空载体对照细胞

B.定量放射密度测定法显示转染了pCDNA-MEG3的MGC-803细胞和BGC-823细胞的p53的表达水平显著高于转染了空载体对照细胞,两者均有P<0.05

图3 western blot检测转染了pCDNA-MEG3的MGC-803细胞和BGC-823细胞与转染了空载体对照细胞的

p53的表达水平

Figure 3 The expression level of p53 in MGC-803 cells and BGC-823 cells transfected with pCDNA-MEG3

respectively, compared to those with empty vector

3 讨论

胃癌是异质的、多因素的侵袭性疾病,是癌症相关死亡的主要原因,也是全世界范围的重大公共卫生问题。胃癌预后较差,难以治愈,患者的预后取决于确诊时癌症的分期,完全切除癌组织依旧是目前得到证实的唯一治愈措施[15]。

在细胞水平上,胃癌早期和远期进展中发生的一系列复杂的分子异常将扰乱正常的细胞功能。这些异常包括遗传和表观遗传学修饰,导致许多基因在正常和受影响的细胞中差异表达。因此,针对这些分子的异常改变进行研究,理解癌细胞生物学行为的机制对于更深入地认识胃癌很重要。其中,随着对长链非编码RNA探索的逐渐深入,长链非编码RNA的异常表达对胃癌的发生发展的机制也逐渐为人们所了解。

Yang等人实验证明,lncRNA H19在胃癌细胞和组织中的表达显著增高,H19的高表达促进了细胞增殖,而H19表达抑制可促进胃癌细胞凋亡[16]。他们进一步证实,H19可以促使p53部分失活。有研究发现,结肠癌中lncRNA H19被癌基因转录因子c-Myc直接激活,从而提示lncRNA H19可能是c-Myc和下游基因表达的中介[17]。相反地,抑癌基因和转录激活子p53被发现可以下调H19的表达[18]。c-Myc作为转录因子被描述在超过40%的胃癌中过表达[19]。c-Myc通常被认为是细胞周期、增殖、分化和凋亡的重要调节因子[20],其可通过结合到顺式调控元件E盒结构以调节靶基因的作用[21]。随后,Yang等人再次通过实验证明,lncRNA CCAT1的过表达也可以促进胃癌细胞的增殖和转移[22]。他们发现,c-Myc可以直接结合到CCAT1启动子区的一个E盒结构而调节启动子活性和CCAT1的表达。最近,Sun等人证明GACAT1(gastric cancer-associated transcript 1,或名AC096655.1-002)在胃癌中表达降低,这与胃癌淋巴结转移和远处转移显著相关[23]。另外,GACAT1在胃癌中的表达水平也因肿瘤分期、侵袭深度和分化程度而不同。

lncRNA MEG3由位于14q32的MEG3基因表达,在体内的生理作用较多。研究表明,lncRNA MEG3不仅能确保机体按照合适的速率和方向生长发育[24],而且也是一种肿瘤抑制因子。有实验证明,MEG3在垂体瘤中表达被沉默,而MEG3的过量表达则可抑制人体肿瘤细胞的生长,提示MEG3是一个新的重要抑癌基因[25]。在恶性间皮瘤、膀胱癌和宫颈癌中,亦有相同的结论[26-28]。

在一项对脑膜瘤的研究中发现,脑膜瘤细胞的MEG3的拷贝数明显降低,MEG3拷贝数降低的细胞lncRNA MEG3的表达水平降低,而激活MEG3的转录则可显著刺激p53的表达、抑制肿瘤细胞生长[29],一项针对散发性垂体腺瘤的实验同样印证了这一结论[30]。这两项实验初次证明了lncRNA MEG3对p53表达调控的作用。另外,lncRNA MEG3也能增加GDF15(TGF-β家族成员)的表达,这成为了p53之外的另一抑制细胞增殖的通路[14]。还有研究表明,MEG3的敲除引发的lncRNA MEG3的缺失也可反过来增强脑VEGF信号通路的表达[31]。

可以认定,lncRNA MEG3一方面可能抑制VEGF信号通路,阻碍肿瘤的血管新生,从而起到抑癌作用;一方面可以通过增加GDF15、p53等的表达或其他途径抑制肿瘤细胞增殖。

因此,本研究通过检测长链非编码RNA MEG3在胃癌组织及细胞系中的表达水平,以及过表达MEG3对胃癌细胞增殖能力的影响,来确立MEG3与胃癌发生发展的关系,并由前人实验验证的MEG3抑制其他肿瘤细胞增殖的机制推测其可能的在胃癌发生发展中的分子水平的作用机制。本研究证明,提高MGC-803细胞和BGC-823细胞中MEG3的表达可以促进p53蛋白的表达,故提示lncRNA MEG3在胃癌发生发展中可能通过促进p53的激活而发挥抑癌作用。但是,MEG3对胃癌细胞增殖的影响可能不仅仅限于p53这一条通路,本研究并未对GDF15与VEGF通路等其他可能的通路进行更深入的探究。

当前的研究热点,首先依然是关于lncRNA MEG3可能的其他表达调控机制[29],即lncRNA MEG3还能通过哪些其他作用途径调控肿瘤细胞生长;其次,lncRNA MEG3对已有通路具体产生哪些影响,例如lncRNA MEG3是通过哪一层面影响了p53的表达;另外,肿瘤的发展过程中,MEG3受到哪些方面调控也是可以研究的方面。例如,在一项针对肿瘤发生的研究发现,MEG3的表达受到了cAMP的正向调控。cAMP通过激活CREB转录因子,结合至MEG3近端启动子的cAMP反应元件,从而促进MEG3的表达,使lncRNA MEG3的含量上调。这个启动子的甲基化会阻断这一调控过程,进而降低细胞内lncRNA MEG3的含量[32]。肿瘤发生过程中,调控MEG3基因或元件的甲基化程度如何,怎样影响lncRNA MEG3的表达,是否还有其他表观遗传学的改变抑制了MEG3的表达,以及是否有lncRNA MEG3的转录后调控(如碱基修饰)等,都是未来需要解决的问题。

综上所述,本研究证实lncRNA MEG3在胃癌组织及细胞中出现了显著的表达下调,上调其表达则能显著减弱胃癌细胞的增殖能力,并且这种作用可能是通过激活p53蛋白的表达实现的,提示MEG3的表达下调在胃癌的形成和进展中可能发挥关键作用。因此,进一步阐明MEG3在胃癌发生和发展中调控靶基因的作用机制可能为未来临床上胃癌的早期诊断、后期治疗、疗效评估、预后估计等方面提供有效的分子标记物和药物靶点。

[参考文献]

[1] Ferlay J, Shin H R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008[J]. International journal of cancer, 2010, 127(12): 2893-2917.

[2] Son T, Hyung W J, Lee J H, et al. Clinical implication of an insufficient number of examined lymph nodes after curative resection for gastric cancer[J]. Cancer, 2012, 118(19): 4687-4693.

[3] Biffi R, Botteri E, Cenciarelli S, et al. Impact on survival of the number of lymph nodes removed in patients with node-negative gastric cancer submitted to extended lymph node dissection[J]. European Journal of Surgical Oncology (EJSO), 2011, 37(4): 305-311.

[4] Wang X, Wan F, Pan J, et al. Prognostic value of the ratio of metastatic lymph nodes in gastric cancer: an analysis based on a Chinese population[J]. Journal of Surgical Oncology, 2009, 99(6): 329-334.

[5] Mitchell Guttman I A, Garber M, French C, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature, 2009, 458(7235): 223-227.

[6] Gibb E A, Brown C J, Lam W L. The functional role of long non-coding RNA in human carcinomas[J]. Mol Cancer, 2011, 10(1): 38-55.

[7] Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis[J]. International Journal of Cancer, 2011, 129(4): 773-779.

[8] Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor[J]. Journal of molecular endocrinology, 2012, 48(3): R45-R53.

[9] Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation[J]. Journal of Cellular Biochemistry, 2012, 113(6): 1868-1874.

[10] Anwar S L, Krech T, Hasemeier B, et al. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma[J]. PloS one, 2012, 7(11): e49462.

[11] Ying L, Huang Y, Chen H, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer[J]. Mol. BioSyst., 2013, 9(3): 407-411.

[12] Balik V, Srovnal J, Sulla I, et al. MEG3: a novel long noncoding potentially tumour-suppressing RNA in

meningiomas[J]. Journal of neuro-oncology, 2013, 112(1): 1-8.

[13] Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response[J]. Cell, 2010, 142(3): 409-419.

[14] Zhou Y, Zhong Y, Wang Y, et al. Activation of p53 by MEG3 non-coding RNA[J]. Journal of Biological Chemistry, 2007, 282(34): 24731-24742.

[15] Saghier A A, Kabanja J H, Afreen S, et al. Gastric Cancer: Environmental Risk Factors, Treatment and Prevention[J]. J Carcinogene Mutagene S, 2013, 14.

[16] Yang F, Bi J, Xue X, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells[J]. FEBS Journal, 2012, 279(17): 3159-3165.

[17] Barsyte-Lovejoy D, Lau S K, Boutros P C, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis[J]. Cancer research, 2006, 66(10): 5330-5337.

[18] Dugimont T, Montpellier C, Adriaenssens E, et al. The H19 TA TA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53[J]. Oncogene, 1998, 16(18): 2395.

[19] Zhang L, Hou Y, Ashktorab H, et al. The impact of C-MYC gene expression on gastric cancer cell[J]. Molecular and cellular biochemistry, 2010, 344(1-2): 125-135.

[20] Cole M D, Henriksson M. 25 years of the c-Myc oncogene[C]. Seminars in Cancer Biology. Academic Press, 2006, 16(4): 241.

[21] Solomon D L C, Amati B, Land H. Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers[J]. Nucleic acids research, 1993, 21(23): 5372-5376.

[22] Yang F, Xue X, Bi J, et al. Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma[J]. Journal of cancer research and clinical oncology, 2013, 139(3): 437-445. [23] Sun W, Wu Y, Yu X, et al. Decreased expression of long noncoding RNA AC096655. 1-002 in gastric cancer and its clinical significance[J]. Tumor Biology, 2013: 1-5.

[24] Stadtfeld M, Apostolou E, Akutsu H, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells[J]. Nature, 2010, 465(7295): 175-181.

[25] Zhang X, Zhou Y, Mehta K R, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells[J]. Journal of Clinical Endocrinology & Metabolism, 2003, 88(11): 5119-5126.

[26] Zhang X, Shen W, Dong X, et al. Identification of Novel Autoantibodies for Detection of Malignant Mesothelioma[J]. PloS one, 2013, 8(8): e72458.

[27] Ying L, Huang Y, Chen H, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer[J]. Mol. BioSyst., 2013, 9(3): 407-411.

[28] Qin R, Chen Z, Ding Y, et al. Long non-coding RNA MEG3 inhibits the proliferation of cervical carcinoma cells through the induction of cell cycle arrest and apoptosis[J]. Neoplasma, 2013.

[29] Zhang X, Gejman R, Mahta A, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression[J]. Cancer research, 2010, 70(6): 2350-2358.

[30] Zhou Y, Zhang X, Klibanski A. Genetic and Epigenetic Mutations of Tumor Suppressive Genes in Sporadic Pituitary Adenoma[J]. Molecular and cellular endocrinology, 2013.

[31] Gordon F E, Nutt C L, Cheunsuchon P, et al. Increased expression of angiogenic genes in the brains of mouse meg3-null embryos[J]. Endocrinology, 2010, 151(6): 2443-2452.

[32] Zhao J, Zhang X, Zhou Y, et al. Cyclic AMP stimulates MEG3 gene expression in cells through a cAMP-response element (CRE) in the MEG3 proximal promoter region[J]. The international journal of biochemistry & cell biology, 2006, 38(10): 1808-1820.

长链非编码RNA高分综述

Although the central role of RNA in cellular func-tions and organismal evolution has been advocated periodically during the past 50 years, only recently has RNA received a remarkable level of attention from the scientific community. Analyses that compare transcrip-tomes with genomes of mammalian species (BOX 1) have established that approximately two-thirds of genomic DNA is pervasively transcribed, which is in sharp con-trast to the <2% that is ultimately translated into pro-teins 1,2. Moreover, the degree of organismal complexity among species better correlates with the proportion of each genome that is transcribed into non-coding RNAs (ncRNAs) than with the number of protein-coding genes, even when protein diversification by both alterna-tive splicing and post-translational regulation are taken into account 3. This suggests that RNA-based regula-tory mechanisms had a relevant role in the evolution of developmental complexity in eukaryotes. The range of ncRNAs in eukaryotes is vast and exceeds the number of protein-coding genes. Besides the different families of small ncRNAs 4, a large proportion of transcriptomes results in RNA transcripts that are longer than 200 nucleotides, which are often polyadenylated and are devoid of evident open reading frames (ORFs) — these are defined as long ncRNAs (lncRNAs)5–7. Many roles are emerging for lncRNAs in ribonucleo-protein complexes that regulate various stages of gene expression 5,7. Their intrinsic nucleic acid nature confers on lncRNAs the dual ability to function as ligands for proteins (such as those with functional roles in gene regulation processes) and to mediate base-pairing interactions that guide lncRNA-containing complexes to specific RNA or DNA target sites 5,7,8. This dual activ-ity is shared with small ncRNAs 4, such as microRNAs (miRNAs), small nucleolar RNAs and many other small nuclear ribonucleoprotein particles (BOX 2). However, unlike small ncRNAs, lncRNAs can fold into complex secondary and higher order structures to provide greater potential and versatility for both protein and target rec-ognition 5,7,8. Moreover, their flexible 8,9 and modular 10,11 scaffold nature enables lncRNAs to tether protein fac-tors that would not interact or functionally cooperate if they only relied on protein–protein interactions 5,8,12–14. Such combinatorial RNA-mediated tethering activity has enhanced gene regulatory networks to facilitate a wide range of gene expression programmes (FIG. 1) to provide an important evolutionary advantage 5,7,8. This complexity is likely to be further expanded by differential splicing and the use of alternative transcription initiation sites and polyadenylation sites by lncRNAs, thus increasing the number of tethering-module combinations. The expression of lncRNAs has been quantitatively analysed in several tissues and cell types by high-throughput RNA sequencing (RNA-seq) experiments, and it was generally found to be more cell type specific than the expression of protein-coding genes 5,6,8,15–17. Interestingly, in several cases, such tissue specificity has been attributed to the presence of transposable elements that are embedded in the vicinity of lncRNA transcrip-tion start sites 18–20. Moreover, lncRNAs have been shown to be differentially expressed across various stages of differentiation, which indicates that they may be novel ‘fine-tuners’ of cell fate 5–7. This specific spatiotemporal expression can be linked to the establishment of both 1 Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.2 Institute of Molecular Biology and Pathology of the National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy.3 Istituto Pasteur Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185 Rome, Italy.4 Center for Life Nano Science @Sapienza, Istituto Italiano di T ecnologia, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy. Correspondence to I.B. e?mail: irene.bozzoni@uniroma1.it doi:10.1038/nrg3606Published online 3 December 2013 microRNAs (miRNAs). Small non-coding RNAs of ~22 nucleotides that are integral components of RNA-induced silencing complex (RISC) and that recognize partially complementary target mRNAs to induce translational repression, which is often linked to degradation. Among the RISC proteins, AGO binds to miRNA and mediates the repressing activity. Long non-coding RNAs: new players in cell differentiation and development Alessandro Fatica 1 and Irene Bozzoni 1–4 Abstract | Genomes of multicellular organisms are characterized by the pervasive expression of different types of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs) belong to a novel heterogeneous class of ncRNAs that includes thousands of different species. lncRNAs have crucial roles in gene expression control during both developmental and differentiation processes, and the number of lncRNA species increases in genomes of developmentally complex organisms, which highlights the importance of RNA-based levels of control in the evolution of multicellular organisms. In this Review, we describe the function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development. O N -C O D I N G R N A Nature Reviews Genetics | AOP , published online 3 December 2013; doi:10.1038/nrg3606 REVIEWS

长链非编码RNA与病毒和微小非编码RNA关系的研究进展

长链非编码RNA与病毒和微小非编码RNA关系的研究进展 作者:何金花, 黎毓光, HE Jin-hua, LI Yu-guang 作者单位:广东省广州市番禺区中心医院检验科,广东广州,511400 刊名: 基础医学与临床 英文刊名:Basic & Clinical Medicine 年,卷(期):2013,33(7) 参考文献(20条) 1.Caley DP;Pink RC;Trujillano D Long noncoding RNAs,chromatin,and development 2010 2.Tim RM;Marcel ED;John SM Long non-coding RNAs:insights into functions 2009 3.Jiang Q;Wang Y;Hao Y miR2Disease:a manually curated database for microRNA deregulation in human disease 2009 4.陈勇;刘巍microRNA影响抗肿瘤药物敏感性相关研究进展[期刊论文]-临床肿瘤学杂志 2009(9) 5.Iwakiri D;Zhou L;Samanta M Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 2009 6.Eilebrecht S;Pellay FX;Odenwalder P EBER2 RNA-induced transcriptome changes identify cellular processes likely targeted during Epstein Barr Virus infection 2008 7.Zhao J;Sinclair J;Houghton J Cytomegalovirus beta2.7 RNA transcript protects endothelial cells against apoptosis during ischemia/reperfusion injury 2010 8.Buck AH;Perot J;Chisholm MA Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection 2010 9.Sonkoly E;Bata-Csorgo Z;Pivarcsi AI dentification and characterization of a novel,psoriasis susceptibility-related noncoding RNA gene,PRINS 2005 10.Mao YS;Sunwoo H;Zhang B Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs 2011 11.Vigneau S;Rohrlich PS;Brahic M Tmevpg1,a candidate gene for the control of Theiler's virus persistence,could be implicated in the regulation of gamma interferon[外文期刊] 2003 12.Andersson MG;Haasnoot PC;Xu N Suppression of RNA interference by adenovirus virus-associated RNA 2005 13.Xu N;Segerman B;Zhou X Adenovirus virus-associated RNAII-derived small RNAs are efficiently incorporated into the rna-induced silencing complex and associate with polyribosomes 2007 14.C Braconi;T Kogure;N Valeri microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer 2011 15.Katarzyna Augoff;Brian McCue;Edward F miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer 2012 16.Wang JY;Liu XF;Wu HC First published online:April 27,2010 CREB up-regulates long non-coding RNA,HULC expression through interaction with microRNA-372in liver cancer 2010 17.Calin GA;Liu C;Ferracin M Ultraconserved regions encoding ncRNAS are altered in human leukemias and carcinomas [外文期刊] 2007(3) 18.Cazalla D;Yario T;SeeitZ JA Down regulation of a host microRNA by a herpesvirus saimiri noncoding RNA 2010 19.Faghihi MA;Modarresi F;Khalil AM Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of B-secretase expression 2009 20.Christopher S New roles for large and small viral RNAs in evading host defences 2008 本文链接:https://www.360docs.net/doc/665377441.html,/Periodical_jcyxylc201307035.aspx

相关主题
相关文档
最新文档