一种适用于开关电源的内部供电电路设计

一种适用于开关电源的内部供电电路设计
一种适用于开关电源的内部供电电路设计

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

美的内部资料-QMN-J33[1].228-2009_电流检测电路设计指引

美的家用空调国内事业部设计规范规范编号:QMN-J33.228-2009 电流检测电路设计指引 (发布日期:2009-04-02) 1范围 本设计指引对电流检测电路的电路原理,各器件的参数计算选择,相关技术要求和实际使用中的有关问题进行了阐述。 本设计指引适用于美的家用空调国内事业部的电流检测电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QMN-J52.053 电流互感器(原标准号05.132) 3定义 无 4总述 在空调整机上,常用到电流互感器检测压缩机工作电流,下面根据常用电流检测电路介绍其工作原理及注意事项。 1

美的家用空调国内事业部设计规范规范编号:QMN-J33.228-2009 5电路原理 5.1电路原理图 5.2工作原理简介 在了解电路工作原理之前,首先简单介绍电流互感器CT1的工作原理。电流互感器实际是一个线性变压器。其输入电流(被检测电流)与输出电流跟它的内部线圈匝数成正比关系(均为交流电流量)。这样我们开始叙述电路的工作原理: 假如检测压缩机电流值为Ii,根据电流互感器固定的初级/次级线圈匝数比(常量)C,可确定输出电流(为交流)Io=Ii/C;在选取负载电阻R6(通常为1KΩ、1%)时,其阻值远远小于两分压电阻值。这样,R6的阻值约等于实际的负载电阻值。于是,R6两端的电压Uo=R6*Io=R6*Ii/C;(注:此为交流电压值)。 在经过整流二极管D10半波整流后(由于MCU 的A/D口所需输入电流很小,此处按严格的计算关系),二极管D10的负极与地之间的直流电压V1=1.414/2*Uo=0.707*R6*Ii/C;要减掉二极管上的压降约0.5V。 直流电压V1在分压电阻R14和R13上分压,得出该点的电压值V2=R13/(R13+R14)*V1=R13/(R13+R14)*(0.707*R6*Ii/C-0.5),这就是最终输入到芯片检测口的压缩机电流参数模拟量(该值仍需通过实验最终确定。电流互感器0057W对应不同分压电阻R14时输入到芯片检测口的电压参数表见附录)。 直流电压V2必须经过电解电容E6平滑波形,成为较平稳的电压模拟量输入到芯片A/D口。钳位二极管D9目的是确保输入到芯片口的模拟量不大于5V,以保证芯片的工作可靠性;电阻R12和电容C8滤除输入量的高频成分,减小其对MCU的影响。 5.3各元器件作用 电流互感器CT1——将要求检测的交流电流转化成电压信号(交流); 模拟负载电阻R6——主要是为CT1的磁场转化提供一个偏置电阻,保证CT1内部的转化磁场处 于非饱和状态; 2

300w开关电源设计(图纸)

TND313/D Rev 3, Sep-11 High-Efficiency 305 W ATX Reference Design Documentation Package ? 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 80% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

简单电路图的设计过程

电路原理图的绘制方法与步骤 一.电路原理图绘制前的准备工作 1.设计电路原理图的草图 例如要画出图1所示的稳压电源的电路图,首先要画出电路图的草图。 2.电路图有关资料的整理、列表 为了方便快捷地画出电路原理图,首先必须将电路图中所有零件的名称、拟采用的编号、零件的类型以及元件封装进行整理,列出表格,如表1所示。 二、Protel 99 SE 的启动 在Windows 桌面上,将鼠标的指示箭头对准图2所示的Protel 99 SE 图标, 双击鼠标左键,启动Protel 99 SE 。 启动Protel 99 SE 后,屏幕会出现图3所示的界面。 图2 Protel 99 SE 图标 图1 稳压电源电路图

几秒钟后,Protel 99 SE 的启动界面消失,留下了Protel 99 SE 的初始操作界面,如图4所示: 三、进入电路原理图设计环境 1.启动电路原理图编辑器 (1)创建工程设计数据库FirstDesign.ddb : 启动Protel 99 SE 后,打开File 菜单,选择New 命令,则弹出的题目为New Design Database 的对话框,在Design Storage Type 栏内,选择设计数据库的格式为MS Access Database ;在Databass Location 框中指定设计数据库存放的位置为:C :\Design Explorer 99se\\Examples ;在Databass File Name 文本框中输入数据库的名称FirstDesign.ddb 。单击OK 按钮,完成设计数据库的创建。 标题栏 菜单栏 工具条 设计管理面板 设计工作区 图4 Protel 99 SE 的操作界面 图6 图2 Protel 99 SE 的启动界面

PI开关电源电路设计

PI开关电源设计指引 (发布日期:2011-11) 1范围 本标准描述了开关电源电路硬件控制的实现方法,一般开关电源电路设计者在使用不同型号的开关电源控制IC及不同的开关电源电路方案时可以此为参考,更快、更好地完成特定功能的硬件设计。希望本标准能对硬件可靠性的提升有所帮助。 本标准适用于PI开关电源电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 7725 房间空气调节器 GB/T 15184 按能力批准评定质量的电子设备用开关电源变压器分规范 GB/T 14714 微小型计算机系统设备用开关电源通用技术条件 QMK-J33.242 开关变压器设计指引 3硬件接口定义及相关原理图 3.1控制芯片型号——TinySwitch-III系列离线开关IC(TNY276~TNY279); 3.2管脚功能说明如下: EN/UV脚:输入使能信号和输入线电压欠压检测。 1、EN功能:在正常工作时,通过此引脚可以控制功率MOSFET的开关,当从此引脚拉出的 电流大于115μA,MOSFET被关断。当此引脚拉出的电流小于75μA时,MOSFET重新开启。 2、UV功能:在EN/UV引脚和DC电压间连接一个外部电阻可以用来感测输入电压的欠压情况。 如果没有外部电阻连接到此引脚,TinySwitch-III可检测出这情况并禁止输入电压欠压保护功能。 BP/M脚:旁路/多功能控制脚。 1、旁路:一个外部旁路电容连接到这个引脚,用于生成内部5.85 V的供电电源。 2、外部限流点设定:根据所使用电容的容值选择电流限流值。 3、关断功能:在输入掉电时,当流入旁路引脚的电流超过I SD时关断器件,直到BP/M电压下降 到4.9 V之下。还可将一个稳压管从BP/M引脚连接到偏置绕组供电端实现输出过压保护。 D脚:旁路电容充电引脚,同时也是内部功率MOSEFT的漏极(D极)。 S脚:内置功率MOSEFT的源极(S极),同时也是开关电源控制电路的参考点。 3.3参考设计原理图

按键和LED复用电路设计指引

电控设计规范按键和LED复用电路设计指引 1总述 在空调整机上,常常用到按键和LED显示电路,但由于芯片口资源有限,需要按键和LED复用芯片口,下面根据常用按键和LED复用电路介绍其工作原理及注意事项。 2电路原理 2.1电路原理图 2.2工作原理简介 74LS164芯片(以下简称164芯片):8位串入并出移位寄存器。 如图所示,数码管与LED采用共阳极驱动,164芯片Q0-Q7需输出低电平才能点亮与其对应的数码管字段或LED灯;164芯片输出口作为SEG口输出信号,主芯片口作为COM口, 且数码管和LED 的显示采用COM口逐一点亮,SEG口一次全亮的方式;由于数码管个位、十位和LED等的点亮时序不同,所以他们之间不会相互干扰; 由于数码管与LED显示用了3个COM口,建议按键扫描程序每隔8 ms左右进入一次,连续四次检测到按键输入就确定,如此可消除按键抖动,增强抗干扰; 由于按键扫描频率为8ms,远小于人眼能感知的闪烁频率12ms,因此数码管和LED灯看起来都是没有闪烁的。 2.3各元器件作用 第 1 页

在电路中,164芯片输出口Q0-Q7作为SEG口输出信号,包括数码管、LED显示信号及按键扫描信号; Q1、Q2分别控制数码管个位,十位的显示与否,Q3控制LED的显示与否; 电阻R28,R39,R40确保三极管Q1,Q2,Q3可靠导通与截止; 二极管D2-D9,D20-D26利用其单向导通的特性,起隔离作用,确保按键不相互干扰。 2.4各元器件的选型 该电路中各元器件可选择性较大,出于通用性和标准化考虑,经实际应用验证,各元器件选型标准要求如下: 5.4.1选择三极管Q1, Q2, Q3 一般选取三极管KTC9012 5.4.2选择二极管D2-D9,D20-D26 一般选取二极管1N4148 5.4.3选择电阻R8-R10,R38-R40,R11-R12 一般选取电阻2K,5% 5.4.4选择电阻R33,R34 一般选择电阻10K,5% 5.4.5选择电阻R16-R23 一般选择电阻330欧,5%。 5.5 LED或按键驱动电路的扩展 在实际应用中,如须用到更多的LED或者按键,可采用如下方式进行扩展: 5.5.1 扩展SEG口,可将164芯片换成移位串行输入-输出口更多的芯片,可任意扩展; 5.5.2 扩展COM口,可将主芯片I/O口作为新的COM口成组扩展,但不可任意扩展,否则时序难以错开,最大COM口数量与芯片运算能力有关。 第 2 页

简单电路设计设计大全

装饰材料购销合同 简单电路设计设计大全 1.保密室有两道门,只有当两道门都关上时(关上一道门相当于闭合一个开关),值班室内的指示灯才会发光,表明门都关上了.下图中符合要求的电路是 2.小轿车上大都装有一个指示灯,用它来提醒司机或乘客车门是否关好。四个车门中只要有一个车门没关好(相当于一个开关断开),该指示灯就会发光。下图为小明同学设计的模拟电路图,你认为最符合要求的是 3.中考试卷库大门控制电路的两把钥匙分别有两名工作人员保管,单把钥匙无法打开,如图所示电路中符合要求的是 ”表示)击中乙方的导电服时,电路导通,4.击剑比赛中,当甲方运动员的剑(图中用“S 甲 乙方指示灯亮。下面能反映这种原理的电路是 5.家用电吹风由电动机和电热丝等组成,为了保证电吹风的安全使用,要求:电动机不工作时,电热丝不能发热;电热丝发热和不发热时,电动机都能正常工作。如图所示电路中符合要求的是( )

6.一辆卡车驾驶室内的灯泡,由左右两道门上的开关S l、S2和车内司机右上方的开关S3共同控制。S1和S2分别由左右两道门的开、关来控制:门打开后,S1和S2闭合,门关上后,S l和S2断开。S3是一个单刀三掷开关,根据需要可将其置于三个不同位置。在一个电路中,要求在三个开关的共同控制下,分别具有如下三个功能:(1)无论门开还是关,灯都不亮; (2)打开两道门中的任意一道或两道都打开时,灯就亮,两道门都关上时,灯不亮;(3)无论门开还是关,灯都亮。如图所示的四幅图中,符合上述要求的电路是 A.图甲 B.图乙 C.图丙 D.图丁 7.教室里投影仪的光源是强光灯泡,发光时必须用风扇给予降温。为了保证灯泡不被烧坏,要求:带动风扇的电动机启动后,灯泡才能发光;风扇不转,灯泡不能发光。则在如图3所示的四个电路图中符合要求的是 ( ) 8.一般家用电吹风机都有冷热两挡,带扇叶的电动机产生风,电阻R产生热。冷热风能方便转换,下面图3中能正确反应电吹风机特点的电路图是 ( ) 9.飞机黑匣子的电路等效为两部分。一部分为信号发射电路,可用等效电阻R1表示,用开关S1控制,30天后自动断开,R1停止工作。另一部分为信息存储电路,可用等效电阻R2表示,用开关S2控制,

超声波电路设计指导

超声波电路设计指导 1.超声波发射电路 τ 图1 发射电路 T IRFP840 耐压500V以上,额定功率10W以上的场效应管 U1 IR4426 电源电压用12V 注1:若使用IR4427,当注意其输入输出波形不反相,故须正 脉冲输入。 注2:U1极忌长时间导通。在U1与T之间可以插入限流电 阻保护U1,电阻不宜大,否则输出脉冲边沿会变得过缓;在 正常工作状态,U1只在极短时内导通,即使无限流电阻也不 致损坏。 R1 50K~1MΩ电阻取值与两次发射的最小间隔时间有关,间隔越长则回路充 放电时间可越长,R1可以越大。 建议设法取1MΩ,以便减小250V电源的输出电流。 C1 1000pF/1000V 高压瓷片电容 RL 510Ω 简要工作原理如下: 当T截止时,250V电压源通过R1和RL向C1充电。一般认为,持续充电时间大于5倍的回路充放电常数,则C1两端电压能基本达到250V,为驱动超声波发射做好准备。 当T瞬时导通,T、C1和RL构成放电回路。超声波传感器的阻抗约为50Ω,故C1中的电荷被快速释放,在超声波传感器上形成一个负向冲击脉冲,脉冲宽度约为0.5~1.5us。

图2 超声波传感器上信号波形示意2.超声波接收电路 限幅限幅放大检波后级放大比较 或1N60 图3 接收电路 图3中: (1)R1、R2取值一般为100~300Ω,与后级放大器输入阻抗大小有关。 (2)Ci不宜太大,否则超声波发射后电路会有一段时间无法正常接收回波信号,故一般可小于0.1uF; 也不宜太小,否则信号损耗会比较大。 (3)通路上放大器的总增益应大于50dB,大于60dB则更佳。 (4)检波电路时间常数的选取要得当,太大则造成包络展宽,太小则单个回波脉冲会被检测成多个脉冲。可根据超声波工作频率确定,并通过观测检波输出波形加以矫正。 3.脉冲间隔测量电路 请参考并分析ultrasonic.ddb中图纸。 4.声波传导耦合剂 实验中,使用超声波传感器探头探测实验样块。样块与探头的接触面、多个样块层叠时样块之间的接触面,可能因不平整而有空气间隙,影响声波传导,带来较严重的界面衰耗,故建议实验中使用清水在接触面涂抹填充,作为耦合剂,并压实接触面,减小声波传导损耗。 有些同学选择将样块完全浸没在一个盛水容器中。这种做法当十分小心操作,防止将探头完全浸没造成损毁!探头的前部为密封构造,故可局部浸入水中,但后部并不密封。 医学B超常用凡士林作耦合剂,若有条件使用,则效果或许更理想。

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

家庭电路设计(DOC)

家庭照明电路设计 姓名:杨光辉 学号:2011173124 班级:2011级机电一体化 呼伦贝尔学院工程技术学院

一、设计目的 二、家庭照明电路组成部分的功能和安装要求三、设计的总体思路 四、电路布线施工图及及电路原理图 1. 阳台灯的自动控制系统 2.电机控制电路系统 3. 客厅灯电路系统 4.自来水开关控制系统 五、安装用电路元器件以及预算六、施工要求 七、设计总结

家庭照明电路设计 一、设计目的 1、理解家庭电路的基本原理,巩固和加深在电路课程中所学的理论知识和实践技能。 2、学会查阅相关手册和资料,了解照明电灯的相关知识,培养独立分析与解决问题的能力。 3、掌握常用电子电路的一般设计方法,学会使用常用电子元器件,正确开绘制电路图。 4、掌握平面图的正规设计与应用。 5、认真写好总结报告,培养严谨的作风与科学态度,提高我们从实践中提高的能力。 二、家庭照明电路组成部分的功能和安装要求 家庭照明电路组成部分主要包括电能表、闸刀、空气开关、导1、电能表线(包括火线和零线)、熔断器、电灯开关、电灯和插座这几部分。电能表的作用是测量电路消耗了多少电能,计量每单位消耗的电能值,也就是度或者千瓦时,电能表常见的有感应式机械电度表和电子式电能表。 感应式机械电度表其工作原理为:根据电磁感应原理,电表通电时,在电流线圈和电压线圈产生电磁场,在铝盘上形成转动力矩,通过传动齿轮带动计度器

计数,电流电压越大,转矩越大,计数越快,用电越多。铝盘的转动力矩与负载的有功功率成正比。 电子式电度表是利用电子电路/芯片来测量电能;用分压电阻或电压互感器将电压信号变成可用于电子测量的小信号,用分流器或电流互感器将电流信号变成可用于电子测量的小信号,利用专用的电能测量芯片将变换好的电压、电流信号进行模拟或数字乘法,并对电能进行累计,然后输出频率与电能成正比的脉冲信号;脉冲信号驱动步进马达带动机械计度器显示,或送微计算机处理后进行数码显示。在安装电能表时,进户电源线在允许的范围内线径越大越好,有条件建议使用单相电缆。必须安装在户外。进户电源线必须套绝缘管。下列场合不允许安装电能表,在易燃易爆的危险场所;有腐蚀性气体或高温的危险场所;有磁场影响及多灰尘的地方。 2、闸刀 闸刀开关是一种手动配电电器。主要用来隔离电源或手动接通与断开交直流电路,也可用于不频繁的接通与分断额定电流以下的负载,如小型电动机、电炉等。闸刀刀开关是最经济但技术指标偏低的一种刀开关。闸刀开关也称开启式负荷开关。使用闸刀开关时应注意要将它垂直的安装在控制屏或开关扳上,不可随意搁置;进线座应在上方,接线时不能把它与出线座搞反,否则在更换熔丝时将会发生触电事故;更换熔丝必须先拉开闸刀,并换上与原用熔丝规格相同的新熔丝,同时还要防止新熔丝受到机械损伤;若胶盖和瓷底座损坏或胶盖失落,闸刀开关就不可再使用,以防止安全事故。 3、漏电开关 漏电保护主要作用是解决漏电问题(相线流出多少电流,中性线就要回来多少电流,一旦有电流缺失,比如人体触电,电流通过人体流到地上的时候,一般超过30毫安,漏电保护器就会工作,切断电源,从而杜绝了电流对人体伤害),但是一般专用的漏电保护开关是不起过载保护用的(现在大多带过载保护)。当电流超过一定的电流的时候自身会发热,(利用双金属片受热弯曲的道理)导致

电子电路课程设计指导word文档

电子技术基础课程设计 (I) (基础训练部分) 张淑琴编撰 于枫校审 吉林大学电子信息工程2007年 9月

第一篇课程设计的基础知识 电子技术基础课程设计包括选择课题、电子电路设计、组装、调试和编写总结报告等教 学环节。本篇介绍课程设计的有关知识。 l-l 电子电路的设计方法 在设计一个电子电路系统时,首先必须明确系统的设计任务,根据任务进行方案选择, 然后对方案中的各部分进行单元电路的设计、参数计算和器件选择,最后将各部分连接在一 起,画出一个符合设计要求的完整的系统电路图。 一、明确系统的设计任务要求 对系统的设计任务进行具体分析,充分了解系统的性 08、指标、内容及要求,以便明确 系统应完成的任务。 二、方案选择

这一步的工作要求是,把系统要完成的任务分配给若干个单元电路,并画出一个能表示各 单元功能的整机原理框图。 方案选择的重要任务是根据掌握的知识和资料,针对系统提出的任务、要求和条件,完 成系统的功能设计。在这个过程中要敢于探索,勇于创新,力争做到设计方案合理、可靠、 经济、功能齐全、技术先进。并且对方案要不断进行可行性和优缺点的分析;最后设计出一 个完整框图。框图必须正确反映系统应完成的任务和各组成部分的功能,清楚表示系统的基 本组成和相互关系。 三、单元电路的设计、参数计算和器件选择 根据系统的指标和功能框图,明确各部分任务,进行各单元电路的设计、参数计算和器 件选择。 1.单元电路设计 单元电路是整机的一部分,只有把各单元电路设计好才能提高整体设

计水平。

每个单元电路设计前都需明确本单元电路的任务,详细拟定出单元电路的性能指标,与前 后级之间的关系,分析电路的组成形式。具体设计时,可以模仿成熟的先进的电路,也可以 进行创新或改进,但都必须保证性能要求。而且,不仅单元电路本身要设计合理,各单元电 路间也要互相配合,注意各部分的输入信号、输出信号和控制信号的关系。 2.参数计算 (1) 元器件的工作电流、电压、频率和功耗等参数应能满足电路指标的要求; (2) 元器件的极限参数必须留有足够裕量,一般应大于额定值的 1.5倍; (3) 电阻和电容的参数应选计算值附近的标称值。 3.器件选择 (1) 阻容元件的选择:电阻和电容种类很多,正确选择电阻和电容是很重要的。不同 1

开关电源防雷电路设计1

防雷电路开关电源防雷电路设计方案上网时间: 2010-08-30防雷电路开关电源防雷电路设计方案 雷击浪涌分析 最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论: 1)电源浪涌 电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。 美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V 的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。 2)信号系统浪涌 信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。 基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。 防雷击浪涌电路的设计 本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。与经典的开关电源电路组成防雷仪表的电源电路,采用压敏电阻并联,延长使用寿命,在压敏电阻短路失效后与开关电源电路分离,不会引起失火。 为了实现上述目的所采取的设计方案是:将压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路应用到仪表的电源上。主要分为防雷电路部分和开关电源电路部分,电路简单,采用复合式对称电路,共模、差摸全保护,可以不分L、N端连接。使压敏电阻RV1位于贴片整流模块前端分别与电源L、N并联,主要来钳位L、N线间电压,压敏电阻RV0、RV2与陶瓷气体放电管FD1串联后接地,RV0与FD1串联主要是泄放L线上感应雷击浪涌电流,RV2与FD1串联主要是泄放由信号口串人24V参考电位上的能量,RV0、RV2短路失效后,FD1可将其与电源电路分离,不会导致失火现象。 RV1前端线路上串联了一个线绕电阻,当此RV1短路失效时,线绕电阻可起到保险丝的作用,将短路电路断开,压敏电阻属电压钳位型保护器件,其钳位电压点即压敏电阻参数选择相对比较重要(选压敏电压高一点的,通流量大一些的更安全、耐用,故障率低);根据通流容量要求选择外形尺寸和封装形式,本电路中采用561k-10D的压敏电阻与陶瓷气体放电

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

三相检测电路设计指引

电控设计规范三相检测电路设计指引 1.1三相交流电:由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统。 1.2相电压:火线对零线的电压。 1.3线电压:火线与火线间的电压。 2总述 在三相空调室外机上,常用到三相检测电路来检测三相电的相序和缺相,以达到保护压缩机的目的。下面介绍其工作原理及注意事项。 3电路原理 3.1电路原理图 图1 3.2工作原理简介 3.2.1在了解电路工作原理之前,首先简单介绍三相交流电的知识。 所谓三相交流电是指由三个频率相同、电势振幅相等、相位差互差120 °角的交流电路组成的电力系统。如图2所示:

图2 其三角函数表示为: 三相交流电有星型(Y)和三角形(Δ)两种接法,如图3所示: a星型接法b三角形接法 图3 星型接法采用三相四线制,有一根公共的零线;线电压是380VAC,相电压是220VAC,因此可以提供380VAC和220VAC电压,适用于三相负载平衡和不平衡的场合。目前市电是采用三相四线制的供电方式,本标准只适用于该接线方式。 三角形接法采用三相三线制,没有公共零线;只能提供380VAC线电压,一般用于三相平衡的场合。有些船舶等环境下使用,本标准不适用于该接线方式。 3.2.2从原理图1可以看到,需检测的电源是采用三相四线制方式,每一相的电压(A、B、C相和零线之间电压,220VAC)通过4007二极管和68K大功率电阻加到PC817光耦上,在正半周期光耦导通,负半周期则光耦截止;由于光耦输出端有上拉电阻,故光耦导通时芯片检测到低电平,光耦截止时芯片检测到高电平。A、B、C三相电的相差是120o,芯片检

单端正激式开关电源-主电路设计

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation 目录 前言 (1) 1. 开关电源的发展及趋势 (2)

直流稳压电源电路设计

模拟电子技术课程设计报告 题目名称:直流稳压电源电路设计姓名: 学号: 班级: 指导教师: 成绩:

目录 1课程设计任务和要求 2 2方案设计 2 3单元电路设计与参数计算 4 4总原理图及元器件清单9 5安装与调试 11 6性能测试与分析12 7结论与心得14 8参考文献 14

课程设计题目: 直流稳压电源电路设计 一、课程设计任务和要求: 1)用桥式整流电容滤波集成稳压块电路设计固定的正负直流电源(±12V)。 2)输出可调直流电压,范围:1.5∽15V; 3)输出电流:IOm≥1500mA;(要有电流扩展功能) 4)稳压系数Sr≤0.05;具有过流保护功能。 二、方案设计: 稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成,如下图1所示,其整流与稳压过程的电压输出波形如图2所示。 图1稳压电源的组成框图 图二整流与稳压过程波形图 电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。

方案一、单相半波整流电路 半波单相整流电路简单,电路及其电压输出波形分别如图3、图4所示,使用元件少,它只对交流电的一半波形整流,其输出波形只利用了交流电的一半波形则整流效率不高,且输出波形脉动大,其值为:S= =≈1.57,直流成分小,= ≈0.45,变压器利用率低。 图3 单相半波整流电路 图 4 单相半波整流电路电压输出波形图 方案二、单相全波整流电路 使用的整流器件是半波电路的两倍,整流电压脉动较小,是半波的一半,无滤波电路时的输出电压=0.9,变压器的利用率比半波电路的高,整流器件所承受的反向电压要求较高。 方案三、单相桥式整流电路 单相桥式整流电路使用的整流器件较多,但其实现了全波整流电路,它将的负半周也利用起来,所以在变压器副边电压有效值相同的情况下,输出电压的平均值是半波整流电路的两倍,且如果负载也相同的情况下,输出电流的平均值也是半波整流电路的两倍,且其与半波整流电路相比,在相同的变压器副边电压下,对二极管的参数要求一样,还具有输出电压高、变压器利用率高、脉动小等优点。所以综合三种方案的优缺点决定用方案三。

开关电源课程设计

太原理工大学课程设计任务书

指导教师签名:日期:

前言 随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。 本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。通过输出反馈经UC3842控制占空比,从而使输出电压稳定。反激电路中开关管开通原边线圈储存能量,副边不导通。原边关断时,线圈储存的能量通过互感向负载提供能量。输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。 设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。 论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。

目录 前言 第一章开关电源概述 (1) 1.1开关电源综述 (1) 1.2反激式开关电源介绍 (2) 第二章总体方案的确定 (2) 2.1总体设计思路及框图 (2) 2.2仿真原理图 (3) 第三章具体电路设计 (5) 3.1EMI滤波电路 (5) 3.2整流滤波电路设计 (6) 3.3 高频变压器的设计 (7) 3.4控制反馈电路的设计 (15) 3.5保护电路的设计 (17) 3.6输出侧滤波电路设计 (18) 第四章电路仿真与结果 (19) 4.1 EMI滤波电路 (19) 4.2整流电路 (21) 4.3反激型电路 (22) 4.4反馈电路 (23) 4.5总电路 (24)

开关电源电路设计指引

电控设计规范 NCP1001PG 开关电源电路设计指引 (发布日期:2005-10-7) 1范围 本设计指引对美的变频空调室外机电控板应用的NCP1001PG 开关电源的基本原理,硬件电路的参数计算选择,相关技术要求和应用的有关问题进行了阐述。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB4706.1-2005 家用和类似用途电器的安全第一部分:通用要求 GB4706.32-2004 家用和类似用途电器的安全热泵、空调器和除湿机的特殊要求 QJ/MK02.008-2003 空调器电子控制器 3定义 3.1脉冲宽度调制方式 Pulse Width Modulation 脉冲宽度调制方式,简称脉宽调制(缩写为PWM)方式。其特点是固定开关频率,通过改变脉冲宽度来调节占空比。目前,集成开关电源大多采用PWM方式。 4安森美NCP1001PG 开关电源方案简介 4.1安森美主芯片NCP1001P基本简况 主芯片NCP1001P内置集成700V高耐压开关管,采用PWM控制方式,固定100KHZ开关频率,外围器件少,设计简单的单芯片开关电源方案。整流二极管建议使用超快恢复型MUR220 (2A/200V)、MUR120(1A/200V),可降低省耗,提高转换效率,减少噪声。(附表为主要参数)

4.2主要特征 a.宽电源输入电压范围85Vac-265Vac。 b.电源转换效率高,满载时可到达75%。 c.多路电压输出,电压稳定性好。 d.有输出过功率保护max30w和短路保护自恢复功能。 e.有输出过压保护自恢复功能(如反馈回路器件失效)。 f.有内置过热迟滞(30°自恢复保护(IC结温超过140°) g.低功待机小于0·5w 4.3安森美开关电源方案优、缺点 优点: a、外围器件少,设计调试简单。 b、该芯片相似TOP 系列,PCB布线不很严格,技术应用成熟。 c、技术支持力量较强,时间及时。 e、主程序芯片任意负载电流情况可进入睡眠状态。 f、其它空调公司有应用(如海信NCP1200) 缺点: a、过载能力设计保守,为1.25倍。 4.4美的应用的NCP1001PG 开关电源方案技术参数设计 a、输入电压:AC85V-265V

相关文档
最新文档