地籍测量中界址点精度分析及改善

地籍测量中界址点精度分析及改善
地籍测量中界址点精度分析及改善

地籍测量中界址点精度分析及改善

摘要:我国的疆域十分的辽阔,国土面积也大,如何使我国的土地得到合理有效的利用,避免浪费土地的现象,是我国正致力于解决的问题,也是我国的专业人员在分析和研究的问题。一定要仔细的分析每一片土地的性质,分析每一片土地的质地,对地基进行科学合理的测量,保证每一个数据的准确性,使整个土地得到更加科学合理的划分与利用。随着我国现在综合国力的提高和经济实力的增强,为了更好的进行社会主义建设,为了使地域更加和谐,对于地域的划分也更加的精确,我们对于整个地籍测量中界址点的准确性有了更加严格的标准,有了更加严格的要求。

Abstract:Because of China's vast territory and land area,that how to make our land reasonable and effective be used and to avoid the waste has become a problem which is committed to solve and China's professional personnels are analyzing and studying. They must carefully analyze the nature and the texture of each piece of land,take scientific and reasonable measurements of the foundation,and ensure the accuracy of each data to make the land get more scientific and reasonable division and utilization. With the improvement of

China's comprehensive national strength and economic strength,and in order to get better for socialist construction and make the region more harmonious and the regional division more precise,we have more stringent standards for the accuracy of the boundary points in the cadastral survey and have more stringent requirements.

关键词:地籍测量;界址点;精度;分析测量

Key words:cadastral survey;boundary point;accuracy;analysis measurement

中图分类号:P271 文献标识码:A 文章编号:1006-4311(2016)15-0191-03

0 引言

我国的地势由南到北,由东到西,有很大程度的不同,地势的变化多端也会给地籍的测量带来很多的麻烦和阻碍,再加上近几年来,我国的经济的的飞速发展,我们在铁路公路的建筑工程越来越频繁,形成了一个个的公路铁路网,线路交错,线路与线路之间也比较的密集,使整个的地籍测量处于一种很不利的状态,不能保证地籍测量中界址点的精确度。众而皆知,界址点是用来规划宗地权属界限的最重要的标志,是我们进行地籍测量中最主要的部分,也是不能漏掉的一个关键步骤。因此,国家很重视这个问题,也在想办法提高测量的准确度和精确度,使土地得到更好的利用,土地

权属合理分配,减少土地资源的浪费。

1 界址点的测量方法

最近的这几年来,我们的经济发展比起从前有了更大的进步,科学技术水平也达到了前所未有的高度。在地籍测量的过程中也是一样,我们在引进先进的技术和设备的同时,也在不断的研发新的技术和方法,使得界址点的测量的精确度有了很大的提高。

2 影响界址点精确度的主要因素

我们在进行界址点的测量时主要作用两个方法,第一种方法是利用解析法,主要是利用一些专门的仪器进行测量,然后将测量出来的数据进行记录,在数据记录的过程中一定要保证数据的准确无误,在将数据全部的记录完毕后,一定要对数据进行精确的处理,然后利用所学的专业的知识,对记录的数据进行处理,将数据代入到相应的公式内,对数据进行科学的计算,而且在计算时一定要对数据进行多次的计算,保证计算结果的准确性,减少误差的产生。这种方法一般运用于对于测量结果的要求极为严格的测量中,在这种测量中,必须将测量的误差控制在一定的范围内,大约是±0.05如表1所示,这种方法对于专业水平有着很高的要求,在利用此方法进行测量时,可以与地籍图测量工作一起进行,也可以分开工作,但是必须要保证数据处理的准确性,进而使界址点的测量更加的精确。第二种方法是图解法。这种方法

与解析法在实际的应用中有很大的不同,数据的处理方法也不相同,图解法并不会测量出界址点的实际坐标,顾名思义,这种方法主要是利用图纸来进行工作,通过在图纸上进行一系列的操作和处理,然后进行转化,就可以得到我们所需要的数据,主要是用几何关系进行分析和处理。由于图解法没有对实际的坐标进行测量,因此导致这种方法的误差比较大,不能很好地进行数据的处理,不能用于对精确度要求大的工程,主要用于一些对于精确度要求比较低的测量工程,在农村的范围内的应用比较的广泛。

虽然我们的科学技术水平有了很大的提高,技术和设备也有了很大程度的进步,但是在进行测量的过程中,对于界址点的测量仍然存在着很多的误差。先进的技术和设备可能使测量过程中的系统误差减少,但是却不能避免偶然误差的出现,下面我们就来分析一下影响界址点精确度的因素:

①棱镜偏心对界址点的影响。我们在进行界址点的测量时,也都是在实践中不断的进行探索,寻找新的方法和技术来降低棱镜偏心对于界址点精度的影响,但是却始终没有找到合适的方法来解决这一问题。②管理不善导致误差的出现。在进行测量的过程中,有一套良好的管理制度对于测量工作的正常进行有着重要的意义。我们在进行地籍测量时,如果对于工程的管理缺乏相应的重视,那么就会容易造成测量现场的混乱,没有制度保障,就好像一盘散沙,进行测量

的人员的态度也可能会出现不端正的现象,尽不到的责任,工程施工人员也没有做好应做的工作,使整个工程的效率不高,效果也没有得到很好的实现。

③随着科学技术水平的提高,我们在进行地籍测量的过程中也引进了很多先进的技术和设备,在进行界址点测量时也应用到了这些先进的技术,但是由于管理方式的落后,不能对于这些设备进行良好的管理,也不能对这些技术进行有效的利用,使得整个的地籍测量的工作陷入停滞的境地;还可能会由于管理不善,造成对数据的测量结果不能进行很好的管理,可能会出现数据结果的遗漏和重复,使整个的测量工程失去数据的依据,进而导致整个工程的数据瘫痪,界址点的精度也得不到有效的保障。

④测量人员的专业素养低。在进行地籍测量的过程中,实施测量工作的人员是确保界址点精度精确的保障,因为测量人员直接影响着数据的记录和工作。如果测量人员的专业知识不够全面,就会造成对测量方法的理解出现问题,也不能及时地解决测量中出现的一些问题,就会出现对于数据的处理不正确、不完善的现象,使整个数据的代入,计算都会出现问题,就会导致坐标的计算错误,进而导致界址点的坐标存在着误差。那么我们在日常的培训过程中,测量人员对于先进技术和设备一定要很好的理解和接受,很好的运用操作,从而提高界址点的精确度。

3 改善测量中节制点精度的措施

对于影响界址点精度的因素如果进行良好的管理和控制,我们主要给出了以下几点建议,保障地籍测量中界址点的精度:

①准确地找好棱镜的位置。棱镜的位置对于界址点的精度有着重要的影响,我们在进行测量的时候一定要准确的计算好棱镜的位置,对于各种设备也要进行准确的安放,为棱镜的准确安放提供一个良好的基础。在用棱镜进行测量时,一定要按照要求和规格进行测量,瞄准好方向后再利用棱镜进行距离的测量,如果在测量的过程中需要立靶,那么就应该瞄准其底部,如果不能瞄准底部的话,就要要求测量人员进行校正,使棱镜的位置正确;还有在测量时,使用棱镜时对于各种要求都要严格的执行,注意细节,考虑全面,使测量结果更加的准确。

②加强管理。随着科学技术水平的不断进步,除了技术和设备越来越先进之外,管理技术也在不断的进步和发展,我们要积极的引进先进的管理方式和管理方法,摒弃落后的管理方式,对测量的现场和设备实施有效的管理;还要对数据进行科学有效的管理和处理,掌握合适的管理方法,这样才能使整个测量工程顺利的开展。

③提高测量人员的专业素养。测量人员对于整个测量工作的顺利进行有着重要的影响,我们在对测量人员尽心选拔

的时候一定要高标准,严要求,选出专业知识强,学习能力强,操作能力强的测量人员,这就会减少在测量工作中由于测量人员的专业的原因造成的误差;还要定期的给测量人员进行培训,使他们学会更好的学习和了解先进的技术,更好的使用设备,提高测量结果的精度和准确度。

4 在城镇地籍测量中几种控制测量方法应用比较

以广州1∶500数字化地籍测量项目为例。测区位于广

州某风景区以南,以居民区和山地、丘陵地、水库区为主,该工程属于全国二调城镇地籍测量部分。布设四等GPS网一个作为测区首级控制,施测四等控制点12个;并布设城市

一级GPS网作为首级网加密,施测一级控制点81个;GPS

网采用四等水准联测约70%网点建立水准面模型作GPS高程拟合。二级、图根控制点测量采用导线测量、GPS-RTK控制

测量、广州CORS控制测量等方法进行。为了检验各种作业

方法在不同环境精度及相互精度,通过二种以上方法测同一组控制点进行比较分析,操作严格执行规范。

4.1 广州CORS与静态GPS网点比较

在不同范围选择四等或一级GPS静态测量网控制点,利用广州CORS系统提供的网络RTK检测进行对比,共检测控

制点25个。最大较差为:dx=4.6cm,dy=-4.2cm,dH= -5.3cm。平均较差为:dx=-1.22cm,dy=1.14cm,dH=2.16cm。由较差计算得的中误差为mx=±1.58cm,my=±1.67cm,mH=

±2.55cm。从较差和中误差来看,广州CORS提供的网络RTK 测量结果精度完全符合《城市测量规范》要求,可作城市二级以下控制测量,可否作城市一级或更高等级控制测量,有待于进一步验证。

4.2 GPS类方法与常规方法对比

利用全站仪实测相互通视的GPS静态网点、CORS控制点及RTK控制点相邻点对的边长和高差,与点对测量坐标反算值进行比较,共检测点对62对。统计结果如下:边长最大较差为5.57cm,最小为0.02cm,平均为1.69cm,间距中误差1.83cm;高差最大较差为7.05cm,最小为0.04cm,平均为2.42cm,高差中误差2.66cm。几种方法的对比结果,平面差值在许可范围内,个别RTK控制点高差较值稍大,考虑城镇地籍测量对高程一般不作要求,因此几种方法皆能满足城镇地籍测量中控制测量的需要。

4.3 几种方法在不同地形条件下的比较

分别在建成区、山地、丘陵地、水库边4类不同的地形条件选择导线测量方法施测的控制点和利用RTK施测能得到固定解的控制点对,每组地形条件检测20对,共80对。在不同地形条件下,RTK测量与导线测量较差区分较显著,在建成区由于建筑物的遮挡和反射,较差值最大;在较开阔的丘陵地,较差值最小;山地由于山体对部分卫星信号遮挡,较差值稍大;大面积水域对RTK测量值影响并不明显。在距

离较短的点对,RTK测边误差比导线较高,但点位误差却较小,可以得出在短距离测量中,导线测量相对于RTK测量精度较高。

5 结束语

地籍测量的过程中,我们测量人员要利用科学的观测方法与手段,降低观测误差。力争界址点的坐标准确无误,更好地开展土地管理的工作和土地划分的工作,使每一寸土地都能够得到有效的利用。

参考文献:

[1]王莉.地籍测量中影响界址点精度的因素[J].科技之光,2010.

[2]周爱华.关于地籍测量中界址点精度影响因素的探讨[J].2009.

[3]李天昊.浅谈地籍测量中界址点精度的影响因素及改

善措施[J].2009.

[4]王爱文.地籍测量中界址点精度分析及改善[J].城市勘测,2012.

[5]王帅.地籍测量中影响界址点精度的主要因素与对策[J].科技世界,2008.

[6]李爱生.地籍测量中界址点精度的分析及改善措施[J].

吉林大学,2009.

精密水准测量的测量精度分析

精密水准测量的测量精度分析 【摘要】现阶段,在对地面上点的高程进行测量的过程中,运用精密水准测量的方式是众多测量方式中较为有效的方法之一。本文对目前精密水准测量中的相关规范进行阐述,并结合笔者自身的实践经验,对精密水准测量中的误差进行分析,并对提高精密水准测量精度的措施进行总结。 【关键词】精密水准测量;测量精度;分析 Abstract:At this stage, the process of measurement in the elevation of the ground point, using precise leveling way is one of the effective methods in many measurements. This article carries on the elaboration to the related specifications in precise leveling at present, and combining with the author’s own practical experience and analyzes the error in precise leveling, and to improve the leveling precision measures were summarized. Keyword:precise leveling accuracy of measurement; analysis; 中图分类号: P224.1 1前言 在对地面点高程进行测量的过程中,精密水准测量是目前精度较高的方法之一,该类测量方式能够有效的运用在野外测量的工作中。精密水准测量一方面为国家统一的高程测量系统的建立发挥着积极的作用,另一方面能够为相关学者对地球的研究提供较为精确的数据,尤其是在对海平面等方面的研究发挥着积极的作用。然而随着我国科学技术的不断发展以及相关研究领域对精度方面的日益提高的要求,精密水准测量的测量精度也越来越受到社会各界的关注。 2精密水准测量的相关规范 目前,在进行精密水准测量的过程中,其相关规定主要包括以下几个方面的内容: 第一,在进行测量之前的半个小时左右,应将仪器避光放置,并使得仪器的温度基本与外界环境的温度保持一致。在进行测量的过程中,应运用遮阳伞等设备对阳光进行遮挡,避免对测量结果产生影响。同时,在变换观测地点期间,应运用相关的保护装置将仪器进行遮盖。 第二,在对测量仪器位置进行确定的过程中,应将其置于与前后标尺连线中央的位置,其所偏差的距离应控制在相关规定允许的范围之内。在进行二等测量的过程中,其测点与前后标尺之间距离的差异应控制在1m之内。

02 第二章 精度指标与误差传播

第二章:精度指标与误差传播 内容及学习要求 本章详细讨论偶然误差分布的规律性,衡量精度的绝对指标-中误差,相对指标-权及其确定权的实用方法;方差、协因数定义及其传播律等问题。本章内容是是测量平差的理论基础,也是本课程的重点之一。学习本章要求深刻理解精度指标的含义,掌握权、协方差、协因数概念,确定权及根据已知协方差、协因数的观测值求其函数的方差、协因数的方法(协因数、协方差传播律)。 §2-1概述 概括本章内容,其主线是偶然误差的统计规律→衡量单个随机变量的精度指标-方差→衡量随机向量的精度指标-协方差阵→求观测值向量函数的精度指标-协方差传播律→精度的相对指标-权。 §2-2偶然误差的规律性 本小节阐述偶然误差的统计规律性,提出偶然误差服从正态分布的结论 任何一个观测值,客观上总是存在一个真正代表其值的量,这一数值就称观测值的真`值。从概率统计的观点看,当观测量仅含偶然误差时,真值就是其数学期望。 某一随机变量的数学期望为:i n i i p x X E ∑== 1 )( 或 ?+∞ ∞ -=dx x xf X E )()( 期望的实质是一种理论平均值,可用无穷观测,以概率为权,取加权平均值的概念理解.dx x f )(表示x 出现在小区间dx 的概率。 设对n 个量进行了观测,观测值为。 、、、n L L L ???21其相应的真值分别为。 、、、n L L L ???21令i i i i L L ?-=?, 即真误差。由于假定测量平差所处理的观测值只含偶然误差,所以真误差i ?就是偶然误差。用向量形式表述为: ? ????????????=?n b L L L L 211、?????? ????????=?n n L L L L ..211、?? ?????????????=??n n .211 则有:111???-=?n n n L L 注意:本教程中凡是不加说明,即没有下标说明的向量都是列向量,若表示行向量则加以转置符号表示,如:T T T B A L 、、等。 对单个的偶然误差而言,大小和符号都没有规律,及事先完全不可预知。但从大量测量实践中知道,在相同的观测条件下,偶然误差就总体而言,有一定的统计规律,表现为如下几点: 1、 误差绝对值有一定限值 2、 绝对值小的比大的多 3、 绝对值相等的正负误差出现的个数相等或接近。 教材中分别列举两个实例,以358和421个三角形闭合差的分析结果验证了上述结论(闭合差是理论值与观测值之差,故是真误差)。注意:统计规律只有当有较多的观测量时,才能得出正确结论。 为了形象地刻画误差分布情况,以横坐标表示误差的大小,纵坐标采用单位区间频率(出现在某区间内的频率,等于该区间内出现的误差个数i v 除误差总个数n ,而采用单位频率 i i nd V ?为纵坐标值,使曲线(直方图)趋势不因区间间隔不同而变化)。根据统计规律可知,在相同条件下所得一组独立观测值,n 足够大时,误差出现在各个区间的频率总是稳定在某一常数(理论频率)附近,n 越大;稳定程度越高。n 趋于∞,则频率等于概率(理论频率)。令区间长度0→?d ,则长方条顶形成的折线变成光滑曲线,称概率曲线。

GPS RTK在界址点测量中的应用及精度分析

GPS RTK在界址点测量中的应用及精度分析 【摘要】农村集体土地使用权确权登记发证项目中,使用无人机航测可以明显提高工作效率,但无法满足界址点精度要求。介绍了GPS RTK在界址点测绘中的工作流程,分析了应该注意的问题。使用全站仪进行了界址点精度检查,并以全站仪测量结果为真值,计算GPS RTK中误差为±4.4cm。结果表明,GPS RTK可以满足界址点精度测量要求。 【关键词】界址点测绘;GPS RTK;精度检查 目前农村集体土地使用权登记发证工作正在进行,该项目时间紧、任务重、质量要求高。传统地籍测量一般采用数字化测图的方法,首先进行首级控制测量,在首级控制点的基础上布设导线控制点及图根点,然后使用全站仪进行宗地界址点及碎部测量。该方法需要分级布网,层层控制,需要耗费大量的人力物力,难以在规定时间内完成农村集体土地使用权测量任务。目前无人机航测技术已经在使用权确权登记发证中得到了广泛的应用,根据无人机低空摄影测量和全野外数据采集两种成图方法的比较结果[1],无人机低空摄影测量地物点的平面位置中误差和间距中误差完全满足TD/T1001-2012 《地籍调查规程》的要求,界址点的精度达不到TD/T1001-2012 《地籍调查规程》规定的测量中误差5cm的精度要求,因此,界址点需要全野外测量[2]。 1 GPS RTK在界址点测绘中的应用 1.1 基准站位置的选择 在测量时,GPS RTK基准站应该选在上空开阔、无大面积遮挡物的区域,并要求避开大面积水域、高大的建筑物,基准站四周100m范围内无大功率电磁波辐射源如微波站、高压线等。在较远距离工作时,将基准站设置在高楼顶或山顶上,提高基准站的高度。 1.2 移动站作业环境的要求 移动站应避免在树丛中或高压线下使用。在得到固定解的情况下,移动站可以开始作业。由于电台通讯的无线电频率高,具有直线传播的特性,且GPS RTK 的测量精度随着移动站到基准站距离的增加而降低,因此移动站距基准站的距离在6km以内为宜。 1.3 坐标转换参数的求取 由于GPS测量获得的是WGS84坐标,而目前使用1980西安坐标系,因此需要进行坐标转换。联测覆盖整个区域的GPS点,选择位置分布合理,点位稳定的控制点使用布尔莎模型求取七参数。使用其他控制点进行精度检核,结果表明,求取的七参数精度较高,完全能够满足界址点测量精度要求。

全站仪三角高程测量精度分析报告

全站仪三角高程测量精度分析 作者修涛 容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析

Total Station trigonometric leveling accuracy analysis Abstract T otal Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction. Research and verify through practice, Total Station trigonometric leveling observations amendment can fully meet the accuracy requirements of the third and fourth level measurement, Can take advantage of Excel's powerful data processing capabilities, more convenient to make the processing of observational data.Article based on trigonometric leveling principle and law of error propagation, Total Station trigonometric leveling application and accuracy in the measurement are discussed. Different methods of measurement for triangulation were compared, analyzed and summarized. Trigonometric leveling Total Station Standards test, measurement accuracy analysis. Key words Electronic Total Station;trigonometric leveling;accuracy analysis

如何理解电子测量仪器的精度指标

如何理解电子测量仪器的精度指标 精确度是衡量电子测量仪器性能最重要的指标,通常由读数精度、量程精度两部分组成。本文结合几个具体案例,讲述误差的产生、计算以及标定方法,正确理解精度指标能够帮助您选择合适的仪器仪表。 一、测量误差的定义 误差常见的表示方法有:绝对误差、相对误差、引用误差。 1)绝对误差:测量值x*与其被测真值x之差称为近似值x*的绝对误差,简称ε。 计算公式:绝对误差 = 测量值 - 真实值; 2)相对误差:测量所造成的绝对误差与被测量(约定)真值之比乘以100%所得的数值,以百分数表示。 计算公式:相对误差 =(测量值 - 真实值)/真实值×100%(即绝对误差占真实值的百分比); 3)测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常以百分数表示。引用误差=(绝对误差的最大值/仪表量程)×100% 引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围,以减小测量误差 举个例子,使用万用表测得电压1.005V,假定电压真实值为1V,万用表量程10V,精度(引用误差)0.1%F.S,此时万用表测试误差是否在允许范围内? 分析过程如下: 绝对误差:E = 1.005V - 1V = +0.005V; 相对误差:δ=0.005V/1V×100%=0.5%; 万用表引用误差:10V×0.1%F.S=0.1V; 因为绝对误差0.005V<0.1V,所以10V量程引用误差0.1%F.S的万用表,测量1V相对误差为0.5%,仍在误差允许范围内。 二、测量误差的产生 绝对误差客观存在但人们无法确定得到,且绝对误差不可避免,相对误差可以尽量减少。误差组成成分可分为随机误差与系统误差,即:误差=测量结果-真值=随机误差+系统误差因此任意一个误差均可分解为系统误差和随机误差的代数和系统误差: 1)系统误差(Systematic error) 定义:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。 产生原因:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差。 特性:是在相同测量条件下、重复测量所得测量结果总是偏大或偏小,且误差数值一定或按一定规律变化。 优化方法:方法通常可以改变测量工具或测量方法,还可以对测量结果考虑修正值。 2)随机误差。 定义:随机误差又叫偶然误差,是指测量结果与同一待测量的大量重复测量的平均结果之差。产生原因:即使在完全消除系统误差这种理想情况下,多次重复测量同一测量对象,仍会由于各种偶然的、无法预测的不确定因素干扰而产生测量误差。 特点:是对同一测量对象多次重复测量,测量结果的误差呈现无规则涨落,可能是正偏差,也可能是负偏差,且误差绝对值起伏无规则。但误差的分布服从统计规律,表现出以下三个

高程测量的精度研究.

高程测量的精度研究

摘要 由于其高效方便,得到了迅猛发展,成为了现在地形测量、变形监测、低等级高程控制测量的首选。近年来在理论和技术高速发展的带动下在平面测量精度和高程测量精度方面都得到了很大的提高。硬件方面,扼流圈天线使得的多路径效应得到了有效的消除;理论方面,各种对流层、电离层延迟改正模型的提出及其应用,以及许多研究表明有效的消除误差理论的应用,使得的诸多与卫星及接收机之间的误差得到了很好的改正,所以在平面位置和高程的测量精度也进一步提高。由于测量的大地高应用于实际时需要经过高程转换为正常高,中间转换过程中需要解算高程异常,一系列的计算使得在高程控制测量方面误差偏大,影响了高程控制测量在许多方面的应用。本文在双频观测的基础上,通过解算原始的观测数据,建立一种区域的电离层延迟改正模型,取代现在最常用的克罗布歇模型来消除电离层对测量的影响,更好的消除电离层延迟的影响,以提高的解算数据的精度。 本文在阐述高程系统和高程测量原理的基础上,首先分析并总结了影响测高的各种因素及大地高的测定精度;其次对现有的高程转换方法进行了全面分析,结合工程算例,深入探讨了各种拟合模型的适合范围及精度情况;同时针对高程测量中几何方法转换的不足,本文研究了基于人工神经元网络转换高程的新方法,通过实例分析证明了该方法转换高程的可行性与可靠,对神经网络模型转换高程的BP网络结构中隐层单元数量的确定、隐含层数的确定、学习速率的选择、初始权值的选择、训练样本对网络泛化能力的影响等问题进行了较为深入的探讨。为避免应用单一模型进行高程拟合方法的局限性,在吸收和学习己有研究成果的基础上,将不同的拟合模型进行迭加,提高高程异常的逼近精度和可靠性。 关键词:1、三角高程;2、测量精度;3、井下三角;4、GPS高程测量

建筑物沉降观测精度指标及评定方法

建筑物沉降观测精度指标及评定方法 摘要:本文结合相关标准,探讨了建筑物沉降观测精度指标的含义及其估算方法,并对沉降观测结果的精度评定进行了研究。 关键词:建筑物;沉降观测;精度评定;精度指标 0 引言 沉降观测的精度要求取决于观测的目的、该建筑物的允许变形值以及建筑物的结构与基础类型[1]。由于沉降观测的精度直接影响到观测成果的可靠性和精确性,因此精度指标的确定及评定是沉降观测中的一个重要环节。然而,在现实工作中,建筑物沉降观测的精度评定经常被忽视,不少测量工作者甚至不清楚精度指标的含义及精度评定的方法。本文结合标准《建筑物沉降观测方法》DGJ32/J18-2006及《建筑变形测量规范》JGJ8-2007的要求,对建筑物的精度指标及评定进行深入探讨,弄清精度指标的概念及精度评定的方法。 1 基本概念 在测量中,由于受到测量仪器、观测者、外界条件等种种因素的影响,产生误差是不可避免的。测量误差分为偶尔误差和系统误差两大类,所谓精度,就是描述偶然误差分布的参数,精度越高,表示偶然误差的离散度越小,观测成果越可靠,反之亦然。 为了衡量观测精度的高低,利用一些数字反映误差分布的离散程度,这些数字称为衡量精度的指标,较常用的精度指标为方差和中误差,计算公式如下: (1) (2) 方差和中误差是表征精度的绝对数字指标,权、协因数(权倒数)则是表征精度的相对数字指标。设有观测值,对应的方差为,如选定任一常数,协因数的计算公式为: (3) 则称为的协因数或权倒数,为单位权中误差。对于水准测量,常用每公里观测高差中误差或者每测站高差中误差作为单位权中误差。 2 建筑物沉降观测精度指标及评定方法 2.1 精度指标

GPS高程测量的精度分析

GPS高程测量的精度分析 介绍了GPS在市政工程高程测量中的应用,并揭示了造成实践应用不广泛的主要原因—测量精度。进而从GPS卫星、卫星信号的传播过程和地面接收设备以及地面高程的转化四个方面分析了GPS高程测量的精度问题。 标签:市政工程高程测量GPS信号接收机测量精度 一、引言 在工程测量中,高程测量的精度问题一直被测绘学界的工作者们广泛关注。水准测量的精度较高,但是测量工作量太大、测量速度较慢。相较于水准测量而言,GPS测量高程在效率上有很大的提高。理论与试验研究表明,如果在测量时加上一些特定的措施,GPS的高程测量精度可以达到三、四等水准测量的要求。近年来,随着RTK技术的广泛应用,尤其是多基站连续运行卫星定位服务综合系统在各城市的相继建立,高程测量方法得到了有效扩展,作业效率大大提高,但由于高程异常变化复杂,所以,GPS高程的精度普遍不高,分析影响GPS测量精度的影响因素,提高GPS的测量精度有重要的实践意义。 二、GPS高程测量的影响因素分析 1.与卫星相关的因素。卫星是GPS测量的信息发出点,卫星的分布、数量、稳定性对GPS测量结果的稳定性和精确度影响很大。 (1)卫星的个数及稳定程度。在解算整周模糊度时,至少需要有5颗公共卫星。星数越多,解算模糊度的速度越快、越可靠。当周围高层建筑物密集且有大树时,公共卫星数如果少于5颗,就很难得到固定解。当降低卫星的截止高度角时,公共卫星数将增加,但将使采集的数据含有较低的信噪比,使GPS接收机解算模糊度的时间延长,且观测精度较差,很难满足要求;当周围只是一侧或部分遮挡,此时的卫星个数需根据实际情况而定,如果卫星正好在遮挡物的一侧,此时,可能导致卫星数少于5颗,或者卫星数时而增加,时而减少。这样就会造成测回间的数据精度不稳定;当周围较空矿时,一般都能达5颗或者5颗以上,且卫星个数固定,此时采集的数据精度也比较稳定,但不排除个例。 (2)卫星分布情况。卫星分布用PDOP值(位置精度强弱度,为玮度、经度和高程等误差平方和的平方根)来衡量。PDOP值越小,说明卫星的分布越好,定位精度越高。一般规定,PDOP值应小于6。 2.与卫星信号传播相关的因素。卫星信号要经由大气空间传播到GPS数据接收器上来,在传播过程中,信号可能受到大气层的影响而发生波动,这就会对GPS接收到的数据造成影响,进而影响解算结果,影响测量的精度。 (1)对流层延迟。对流层延迟是指电磁波信号通过高度在50km以下的未

界址点

一、界址点及其精度要求 界址点是指土地或房产界址线或边线的空间或属性的转折点。在进行界址点测量之前,应在对土地或房屋进行权属调查的同时,确定界址点的位置、设置界标并编号。《城镇地籍调查规程》设计了5种界标,应根据实际情况选用。例如,图为喷漆界址标桩。 喷漆界址标桩(图中单位为毫米) 界址点的精度,应根据测区土地经济价值和界址点的重要程度来加以选择。欧洲对界址点的精度要求很高,一般为±(3~5)cm。在我国,考虑到地域广大和经济发展不平衡,对界址点精度的要求也应有不同的等级,表列出了《地籍测量规范》中对界址点精度的规定。 表《地籍测量规范》对界址点精度的规定 档次界址点相对于邻近 控制点的点位中误 差(单位m) 适用范围 A1±0.05大、中城市的繁华地区街道外(街坊)内明显的界址点 A2±0.10中、小城市(城镇)一般地区或大型工矿区、新型住宅区, 街道(街坊)内部的隐蔽界址点 A3±0.25其它地区 A4±0.50农村地区 二、界址点的测量方法 界址点的测量方法一般有解析法、图解法。 1、解析法 解析法即采用相应的仪器及适当的测量方法,在野外测定待观测的元素,利用坐标计算公式计算出界址点的坐标。如极坐标法、交会法、截距法等。采用的测量仪器可以是全站仪、测距仪等。当地籍测量中要求界址点的测量精度为±0.05m时,必须采用解析法测定界址点的坐标。

采用解析法测定界址点时,界址点坐标的测量可以单独进行作业,也可以和地籍图的测量同时进行。界址点的外业观测工作结束之后,应及时地计算出界址点坐标,反算出相邻界址点的边长,并与实量边长进行比较,进行检查,发现错误,及时改正。 2、图解法 图解法是根据勘丈实量元素采用距离交会或截距法等利用几何关系图解确定界址点点位的方法。该方法中,不实地测定界址点坐标,而由图上直接量取界址点坐标。量取时要独立量取两次,两次量取坐标的点位较差不得大于图上的0.2mm,取中数作为界址点的坐标。采用图解法量取坐标时,应量至图上的0.1mm。图解法的精度较低,适用于农村地区的地籍测量,并且是在要求的界址点精度与所用图解的图件精度是一致的情况下采用。

谈全站仪的高程测量精度

谈全站仪的高程测量精度 本人在从事工程技术管理的工作中,经常听到有测量工程师抱怨说某某全站仪不好用,测高程测不准。于是我问他:测距离准不准?得到回答是,测距离没问题!于是我就奇怪了,为什么测距离准,测高程不准呢?全站仪工作时测得夹角a和距离L,如下图: s H L a H=L*sina S=L*cosa 既然S准确,相应的H也应该准确,因为他们的计算变量都是一样的。但经过本人实际操作,全站仪测高程精度确实比较差。到底是什么原因使得同样的参数,计算出来的结果一个精确,另一个却不精确呢?进过详细分析,本人发现其实并不是仪器的问题,而是误差给大家带来的麻烦:

90sinx cosx Y Y1 Y2 上图是正弦曲线和余弦曲线示意图,我们可以发现在全站仪镜头水平x=0°—竖直x=90°期间y值的变化,当我们在接近0°附近测量时f(x)=cosx相对于g(x)=sinx对x的增量来说不敏感,也就是说,当我们在仪器测量a角时,一个增量Δa引起的S的变化比H的变化小的多,而实际操作中,各位测量工程师也会发现,由于仪器的构造限制,很少有机会在测量的时候使全站仪仰俯超过45°,而真正当仰俯角超过45°,(例如在近距离测量盖梁或者墩顶高程)时,全站仪的高程测量精度并不比水平坐标的测量精度低。例如:sin10.1-sin10=0.00171855,cos10.1-cos10=-0.0003045,这表明在角度误差0.1°的情况下,瞄准接近100米的目标,高程会差17cm,而距离只差3cm,这就是为什么大家都抱怨全站仪测高程不精确的原因。 当然测量高程精度不准还与另外一些因素有关,如:1、仪器高不能准确测得,2、镜杆高度由于标杆底的磨损产生偏差,3、对站标时习惯性只左右对中,不上下对中等。这些原因都可能使全站仪的高

如何读懂测量仪器的精度指标

如何读懂测量仪器的精度指标 摘要:在精密测试测量行业,测量准确度(精度)是仪器本身的灵魂,是仪器最重要的指标之一,但不同的仪器其准确度有不同的表达方式,因此只有理解了仪器的精度指标后才能更好地指导我们进行测量。 在测试测量过程中,受测量仪器硬件本身、测量条件或测量方法的影响,测量得到的结果(测量值)与真实值之间有一定的差异,这个差异就是测量误差,测量误差可能包含与测量值成比例的误差,也可能包含与测量值无关的固定误差。通常测量仪器的精度指标会以这两种误差的组合方式给出,例如PA8000的精度指标如图1所示。 图1 PA8000精度指标 图1中的精度指标是以“±(%读数 + %量程)”的方式表示的,即读数精度+满量程精度表示法。顾名思义,读数精度就是仅与测量值成比例的误差,而满量程精度则是与测量值无关仅与量程有关的固定误差,即当量程确定后这个误差也就固定了。 电测量仪表的精度指标还有另外一种表达方式,介绍之前先回顾一下误差的两种表示方式:绝对误差和相对误差。绝对误差是测量值与标准值(真实值)之差;相对误差是绝对误差与标准值(真实值)的比值。前面所说的读数精度就是用相对误差来表示,而满量程精度就是用绝对误差来表示的。相对误差能直观地表示测量的质量,而绝对误差则不如相对误差来的直观。 电测量仪器仪表精度指标的另外一种表达方式就是准确度等级。电测量仪器仪表在规定条件下工作时,绝对误差的最大值与仪表量程的比值就叫做仪表的准确度等级,比如某电流互感器的准确度等级如图2所示。 图2 电流互感器指标参数 在《GB/T 13283-2008工业过程测量和控制用检测仪表和显示仪表精确度等级》中对我

利用GPS全站仪进行界址点测量及精度分析

利用GPS全站仪进行界址点测量及精度分析摘要:随着现代高新技术的发展与运用,测绘工作正从数字化测绘技术手段向信息化测绘阶段过渡,遥感与gps在测量工作中的运用也越来越多。利用gps在工程测量中进行界址点测量,对测量结果进行精度分析。通过对界址点测量结果的精度分析,得出了gps 的测量精度是可以达到界址点测量的精度要求,并且gps具有工作效率高、定位精度高、全天候作业、数据处理能力强和操作简单易于使用等特点。 关键字:gps;界址点测量;测量精度分析; abstract: with the development of modern high technology and application of surveying and mapping work from digital mapping technology means is to surveying and mapping phase transition information, remote sensing and gps in the use of the measurement work more and more. using gps measurement in engineering in the estate boundary location points measurement, the measurement accuracy of analysis. through to the estate boundary location points measuring the accuracy of the results analysis, obtained gps measurement precision is can achieve estate boundary location points the accuracy of measurement requirements, and gps have high efficiency, higher precision, all-weather work, data processing ability and operation simple is easy to use, etc.

测量精度指标

学习情境5 测量误差分析与数据处理 项目载体:北京工业职业技术学院地形图测绘数据分析与处理教学项目设计: 1、项目分析:项目来源:根据北京工业职业技术学院国家级示范院校建设工作的要求,为了提高学院管理的水平,已经测绘了该院综合地形图;根据实际工作的需要,测绘地形图的比例尺为1:500。 北京工业职业技术学院位于北京市石景山区五里坨地区,占地面积400余亩,建筑面积约20万平方米,大部分地区的自然地貌已经被建筑物和绿化带所覆盖,植被、建筑物相对比较密集,测区内的图根控制点大多数完好可以利用。 地形图的图式采用国家测绘局统一编制的《1:500、1:1000、1:2000大比例尺地形图图式》。 在地形图测绘过程中,获得了大量的外业观测数据,由于测量观测成果中测量误差的存在,使得测量数据之间存在着诸多矛盾,为了消除这些矛盾获得最终的测量成果,冰瓶定期精度,就必须要按照要求进行测量数据的分析与处理。。 2、任务分解:根据根据实际工作的需要,测量数据分析与处理工作任务可以分解为:评定精度的指标、中误差传播定律、盈盈误差传播定律处理测量观测资料、坐标方位角、根据地形图绘制断面图、量算制定区域的面积、根据指定坡度确定最短路线等 3、各环节功能:评定精度的指标是进行测量数据分析与处理时,进行精度评定的重要环节,是衡量测量成果精度高低的指标和手段;中误差传播定律是分析测量内业计算成果的误差分析的重要手段和基本技能;测量数据分析与处理是测量内业工作的核心内容,是测量工作者的重要的专业技能之一。 4、作业方案:根据实际工作的需要,确定衡量精度的指标,运用中误差传播定律分析解决测量工作中的数据分析问题;运用误差理论对测量过程中获得的高程测量数据、平面控制测量数据进行综合分析与处理,获得合格的测量内业成果并进行精度评定。 5、教学组织:本学习情景的教学为14学时,分为3个相对独立又紧密联系的子学习情境,教学过程中以作业组为单位,以各作业组的外业观测成果数据分

界址点测量

界址测量 界址点坐标是在某一特定的坐标系中界址点地理位置的数学表达。它是确定地块(宗地)地理位置的依据,是量算宗地面积的基础数据。界址点坐标对实地的界址点起着法律上的保护作用。一旦界址点标志被移动或破坏,则可根据已有的界址点坐标,用测量放样的方法恢复界址点的位置。如把界址点坐标输入计算机,则可以方便地进行管理和用于规划设计。 界址点坐标的精度,可根据土地经济价值和界址点的重要程度来加以选择。德国、奥地利、荷兰等国家对界址点坐标的精度要求很高,一般为±(3~5)cm。在日本则分为6个等级,具体见表7-1。表中列出的界址点位置误差是指界址点相对于邻近控制点的误差。具体的施测精度等级由日本国土厅官房长官确定。 表7-1 日本地籍测量规范中对界址点测量精度的规定 体规定见表7-2。 注:界址点相对于对邻近控制点的点位中误差系指采用解析法测量的界址点应满足的精度要求;界址点间距允许误差是指采用各种方法测量的界址点应满足的精度。 第一节界址点的测量方法 界址点测量方法一般有解析法和图解法两种。无论采用何种方法获得的界址点坐标,一旦履行确权手续,就成为确定土地权属主用地界址线的准确依据之一。界址点坐标取位至0.01m。 (1)解析法。根据角度和距离测量结果按公式解算出界址点坐标的方法叫解析法。地籍图根控制点及以上等级的控制点均可作为界址点坐标的起算点。可采用极坐标法、正交法、

截距法、距离交会法等方法实测界址点与控制点或界址点与界址点之间的几何关系元素,按相应的数学公式求得界址点坐标。在地籍测量中要求界址点精度为±0.05m时必须解析法测量界址点。所使用的主体测量仪器可以是光学经纬仪、全站型电子速测仪、电磁波测距仪和电子经纬仪或GPS接收机等。 (2)图解法。在地籍图上量取界址点坐标的方法称图解法。作业时,要独立量测两次,两次量测坐标的点位较差不得大于图上0.2mm,取中数作为界址点的坐标。采用图解法量取坐标时,应量至图上0.1mm。此法精度较低,适用于农村地区和城镇街坊内部隐蔽界址点的测量,并且是在要求的界址点精度与所用图解的图件精度一致的情况下采用。 通常以地籍基本控制点或地籍图根控制点为基础(视界址点精度要求)测定界址点坐标。具体的方法有极坐标法、交会法、内外分点法、直角坐标法等。在野外作业过程中可根据不同的情况选用不同的方法。 一、极坐标法 极坐标法是测定界址点坐标最常用的方法(如图7-1所示)。 已知数据A(X A,Y A),B(X B,Y B),观测数据β,S,则界址点P的坐标P(X P,Y P)为:X P=X A+S cos(AB+) Y P=Y A+S sin(AB+) (7-1) 其中,AB =A B A B AB X X Y Y - - =arctan α 图7-1 极坐标法图示 测定β角的仪器有光学经纬仪、电子经纬仪、全站型电子速测仪等,S的测量一般都采用电磁波测距仪、全站型电子速测仪或鉴定过的钢尺。 二、交会法 交会法可分为角度交会法和距离交会法。 1. 角度交会法 角度交会法是分别在两个测站上对同一界址点测量两个角度进行交会以确定界址点的位置。如图7-2所示,A、B两点为已知测站点,其坐标为A(X A、Y A)、B(X B,Y B),观测α、β角,P点为界址点,其坐标计算公式(公式推导见有关测量学教材)如下: ? ? ? ?? ? ? + + - + = + - + + = β α β α β α β α cot cot cot cot cot cot cot cot A B A B P A B A B P X X Y Y Y Y Y X X X (7-2) 也可用极坐标法公式进行计算,此时图7-2中的 ) 180 sin( / sinβ α α- - = AB S S。其

关于城市测量中的测量精度分析

关于城市测量中的测量精度分析 城市测量是以城市总体规划为基础而进行的一项测量活动,它涉及的内容是十分丰富的,包括建设用地界址线、市政规划测量及城市道路规划测量等,这项工作的目标是促进城市建设的发展,基于其自身的特点,测量精度的要求是很高的,一旦出现误差,城市规划就可能出现不合理,最终影响到整个城市的发展。 标签:城市测量;测量精度;分析 随着计算机技术的不断发展,其在城市测量中的运用也越来越多,城市测量的高精度要求测量必须在统一的地面坐标系统控制下进行,它通常采用人工测量与计算机分析相结合的作业方法,其与周边测量工程的衔接度反映出实际操作的可行性,文章结合城市测量的实践经验,对测量精度进行了分析与思考。 1 城市测量精度分析 当前城市规划测量的控制主要采用在城市一、二级导线上分别设三级导线或导线网的方法,这种方法通过对导线中误差的分析,结合测边、测角、起始数据的影响,计算出导线的误差,其采用的公式是十分复杂的,公式中包含导线中点、导线横向误差以及导线纵向误差等数据,以上误差的分配都采用的是等影响原则,各项误差的分配值为+2.5cm或-2.5cm,最后,利用导线中点与端点各误差的比例关系,计算出导线端点各误差值的规定值,该计算公式中主要包含m、n、L三个数据,m代表偶然测距误差;n表示导线边数,L表示导线总长。 三级导线的平均边长为120cm,导线长度为1.5km,以三级导线测量精度要求估算导线误差如下表所示,其中,导线误差单位为mm,导线长度单位为km。 从以上表可以看出,随着导线长度的增加,导线测角误差对点位误差的影响越来越大,测站数对点位误差也有一定的影响,测边误差包括系统误差和偶然误差,大气折光误差和照准误差属于偶然误差,三级导线作为一种短导线,其系统误差与测边中偶然误差相比较小,所以,偶然误差是导线点位误差的主要影响因素,偶然误差会随着导线长度的增加而减少,随着导线边数的增加而增加,系统误差对点位的影响很小,它随导线长度的增加而增加,导线长度为1.5km时,系统误差只有±3毫米。在短导线中,导线点位误差受测邊误差的影响较大,当导线测站数为12站,长度为1.5千米时,各项误差对导线的影响大致相同,均在±2.5毫米左右,其中,最弱点的中误差为±5毫米,这个误差满足导线中误差精度的要求,测角误差会随着导线长度的增加而增大,此外,测站数的增加对最弱点导线误差的影响也会增大。 2 城市测量的现状 目前,GPS技术已在城市测量中得到有效运用,但大多数城市依然采用的是导线网的常规测量方法,据统计,在全年1217条导线中,三级导线为485条,

地籍测量中界址点精度分析及改善

地籍测量中界址点精度分析及改善 摘要:我国的疆域十分的辽阔,国土面积也大,如何使我国的土地得到合理有效的利用,避免浪费土地的现象,是我国正致力于解决的问题,也是我国的专业人员在分析和研究的问题。一定要仔细的分析每一片土地的性质,分析每一片土地的质地,对地基进行科学合理的测量,保证每一个数据的准确性,使整个土地得到更加科学合理的划分与利用。随着我国现在综合国力的提高和经济实力的增强,为了更好的进行社会主义建设,为了使地域更加和谐,对于地域的划分也更加的精确,我们对于整个地籍测量中界址点的准确性有了更加严格的标准,有了更加严格的要求。 Abstract:Because of China's vast territory and land area,that how to make our land reasonable and effective be used and to avoid the waste has become a problem which is committed to solve and China's professional personnels are analyzing and studying. They must carefully analyze the nature and the texture of each piece of land,take scientific and reasonable measurements of the foundation,and ensure the accuracy of each data to make the land get more scientific and reasonable division and utilization. With the improvement of

RTK测高试验与精度分析

马永来宋海松弓增喜(黄河水利委员会水文局郑州450004) 摘要:RTK技术是基于载波相位观测量的实时动态定位技术。为了解RTK技术的应用情况,在小浪底库区及花园口大堤做了RTK测高试验,并对实测资料进行了分析。分析结果表 明:RTK测高精度能够达到仪器标称精度,数据可靠;若选择VDOP<4、可用卫星为5颗以上的情况下进行观测,可提高观测精度;RTK测量高差通过布尔莎模型转化后,仍为大地高高差,经高程拟合消除高程异常后,所得正常高可以达到五等水准测量要求。 关键词:精度实时动态测量RTK快速静态测量高程拟合 GPS即全球定位系统,80年代主要是基于载波相位差分的静态测量,要得到可靠的解向量,通常需要观测一二个小时l至更长时间、随着GPS应用技术的发展,义出现了GPS快速定位技术(快速静态、动态、伪静态)、当基线长度小于15 km时,GPS快速定位技术可在较短的时间内达到厘米级的定位精度,具有。·短、平、快,,的优点、然而,观测时需要对己知数据点进行各种各样的初始化,对卫星凡何条件及卫星跟踪都有较高要求,而巨只能通过事后数据处理得到测量结果、为缩短观测时间,提高工作效率,在小范围测量中,义逐渐提出了一种新技术实时动态测量RTK(Real Time Kine matic技术)。 1.RTK技木简介 RTK技术是基于载波相位观测量的实时动态定位技术,一般中基准站、移动站、数据通讯链3部分组成、其工作原理是:基准站接收机~调制器~发射电台~转发器~接收电台~解调器~移动站接收机、基准站和移动站同时接收GPS卫星定位信息、通过差分数据链,移动站接收基准站发送的GPS数据,结合自月采集的GPS数据进行实时处理,在Is内以厘米级的精度给出移动站的点位信息、通过OTF(Oil The Fly)实时处理算法,移动站在动态环境下可进行初始化处理,无需在己知点上进行初始化、RTK测量必须有伪距和相位观测值(最好带双频P码,有利于实时快速解求模糊度)。 2.RTK测高试验与精度 2.1试验基本情况 RTK测量和解算是在WGS84坐标系中进行的,实时给出的高程为大地高、我国采用的高程为丁常高,在实际应用时还需将大地高转换为丁常高、因此,RTK的应用范围,RTK技术确定丁常高的精度和可靠性,以及将大地高转换为丁常高时采用的方法等都是人们十分关心的问题、为此我们在小浪底库区进行了RTK实地测量、为了解平原地区倩况,又在郑州郊区黄河花园口大堤选驭部分试验点,试验点高程范围为98 856-314053 m,移动站至基准站间距离为0-1049 km、试验点均经快速静态布网测量,井经过平差,得到了WGS84大地坐标和大地高成果、试验之前对所有试验点进行了四、五等水准测量、RTK试验所用仪器为Trimble4000SSE(OTF)、仪器实时动态(RTK)标称精度:水平10 mm+ZD。10‘,垂直20 mm+ZD。10‘;快速静态标称精度:水平10 mm+D。10‘,垂直10 mm+ZD。10‘、D表示测量基线的距离。

精度指标的含义

关于不确定度指标的理解 在测试仪器行业,不确定度(很多人称之为精度,因此下面就称之为精度)是仪器的一个最重要指标之一,而不确定度指标的表示是有不同的方式的。而不同的表示方式有时会带来一些意义上的混淆或混乱。因此如何理解精度的指标就变得非常重要了。 不确定度指标是指仪器测量值的可能范围,也就是估计的误差范围。误差的类型有与测量值成比例的误差,有与测量值大小无关的固定误差,一般仪器的指标是两种误差之和。通常人们希望仅有与测量值成比例的误差,读数(Reading)精度就是指这种误差。如果仪器仅用固定误差表示指标的叫做引用误差,满量程(Full Range)精度就是指这种误差。 在压力测试(通常称为表)中常使用满量程精度。读数精度和满量程精度的表示有什么不同吗?他们是怎么计算出来的?下面我们以一个压力测试的例子来具体说明,更有助于直观的理解之间的区别。 具体的例子如下:两个压力测试仪,最大量程都是10MPa。一个是读数精度1%,另一个是满量程精度1%。二者有何区别? 我的不确定度是0.02% 我的不确定度也是0.02% 首先要介绍两种误差表示方式,一个是绝对误差,一个是相对误差。绝对误差是测量值与标准值(估计真值)之差;相对误差是绝对误差和标准值的比值。例如测量数值是100,其绝对误差是1,则相对误差就是1/100,也就是1%。再如,测量值是50,绝对误差是0.5,则相对误差是0.5/50,还是1%。 通过相对误差才能表示出测量的质量,所以通常评价测量结果和测量仪器都使用相对误差。如果不确定度给出的是相对误差,马上就知道最后测量结果究竟如何。如果是给出的是绝对误差,最后的不确定度需要进行计算才能知道。在解释读数精度和满量程精度的实际例子中就可清楚的了解这一点。 搞清楚相对误差和绝对误差后,我们就很容易理解读数精度和满量程精度了。所谓读数精度就是用相对误差表示。而满量程精度是用引用误差或绝对误差表示。以上面提出的例子来说,两个压力测试仪,最大量程都是10MPa。一个读数精度是1%,另一个满量程精度是1%。二者有何区别?

相关文档
最新文档