小波分析大作业

小波分析大作业
小波分析大作业

小波分析及其应用

结课作业

小波分析在信号分析及滤波中的应用

指导老师:白键

学生姓名:

班级:071011

学号:07101075

小波分析在信号分析及滤波中的应用

信号滤波是信号处理中的重要的一环,在实际测量中,由于噪声源的存在,传播过程中加载的噪声,还有传感器本身的测量误差,信号中总会存在一些噪声,在处理信号之前,必须将噪声滤掉,否则会影响后续的时频分析,得不到信号中想要的结果。

一、信号时频分析方法比较

1.1Fourier变换与Gabor变换

在信号分析中,最基础的Fourier变换,Fourier变换提供了从另一个角度看信号的一种方法,将函数展成以余弦为基本函数的叠加,Fourier系数表示了信号在频域上的幅值和相角,但Fourier变换只能从整个信号分析其频率,不能很好的反应时间特性,故此提出了窗口Fourier变换,即Gabor变换,窗口Fourier 变换则将非平稳信号假定为分段平稳的,通过采用一个滑动窗截取信号,一次次地对截得的信号进行Fourier变换。但由于Fourier变换时间分辨率与频率分辨率矛盾,得不到时间分辨率与频率分辨率都很高的信号分析结果。

1.2小波变换

小波变换是在Fourier变换基础上提出的。其基础函数是小波函数,其可在通过伸缩和平移实现信号的分析,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的时间一频率窗口,是进行信号时频分析和处理的理想工具。但是依旧有一些局限性,小波变换中,可以根据需要构造不同的小波函数,正是由于有不同的小波函数可供选择,使得小波变换对信号分析有足够的适应性,但是小波函数的选择成为一大问题,此外选取的小波函数可能在全局是最佳的,但是对某个局部区域可能是最差的,而一旦小波函数确定,所有的分析特性就会确定,因此缺乏一定的自适应性。

1.3希尔伯特黄变换

对一列时间序列数据先进行经验模态分解然后对各个分量做希尔伯特变换的信号处理方法是由美国国家宇航局的Norden E. Huang 于1998年首次提出的称之为希尔伯特黄变换Hilbert-Huang Transformation HHT 。由于时间序列的信号经过EMD分解成一组本征模函数Intrinsic Mode Function IMF 而不是像傅立叶变换把信号分解成正弦或余弦函数因此该方法既能对线性稳态信号进行分析又能对非线性非稳态信号进行分析。

1.3.1EMD 方法基本原理

经验模态分解(Empirical Mode Decomposition, 简称EMD))方法是由美国NASA 的黄锷博士提出的一种信号分析方法.它依据数据自身的时间尺度特征来进行信

号分解, 无须预先设定任何基函数。它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。经验模态分解法能使非平稳数据进行平稳化处理,然后进行希尔伯特变换获得时频谱图,得到有物理意义的频率。与短时傅立叶变换、小波分解等方法相比,这种方法是直观的、直接的、后验的和自适应的,因为基函数是由数据本身所分解得到。由于分解是基于信号序列时间尺度的局部特性,因此具有自适应性。

经验模态分解EMD 方法能把非平稳非线性信号分解成一组稳态和线性的数据序列集即本征模函数IMF 所谓本征模函数必须满足2 个条件

1.对于一列数据极值点和过零点数目必须相等或至多相差一点在任意点

2.由局部极大点构成的包络线和局部极小点构成的包络线的平均值为零

这种方法本质是通过特征时间尺度获得本征振动模式然后由本征振动模式来分解时间序列数据下面是时间序列数据X(t)经验模态分解的一种算法对一原始信号X(t),首先找出X(t)上所有的极值点。然后用三次样条函数曲线对所有的极大值点进行插值,从而拟合出原始信号X(t)的上包络线Xmax(t)。同理,得到下包络线Xmin(x)。。上、下两条包络线包含了所有的信号数据。按顺序连接上、下两条包络线的均值即得一条均值线Ml;

Ml (t) =(Xmax(t)+Xmin(t))/2;

再用X(t)减掉Ml (t)得到h1(t):

h1(t)=X(t)-m1(t)

对于不同的信号,h1(t)可能是一个IMF分量,也可能不是。一般来说,它并不满足IMF

所需的条件,此时将hl(t)当作原信号,重复上述步骤,即得:

h11(t)=h1(t)-m11(t)

式中,m11(t)是hl(t)的上、下包络线均值,若h11(t)不是IMF分量,则继续筛选,重复上述方法k次,得到第k次筛选的数据k1t(t):

h1k(t)=h1(k-1)(t)-m1k(t)

在实际计算中满足IMF的2个条件并不是一件容易的事必须确定一个准则使筛选过程能够中止,Huang等提出利用2个连续处理结果之间的标准差SD作为判据:

其中,T为原始信号的长度.决定筛选过程是否,SD值的选取至关重要.如果SD的值选得过小,会使IMF分量变成纯粹的频率调制信号,造成幅值恒定。-如果选得过大,会使筛选的结果和IMF的2个条件相差太远。经验表明,SD的取

值在0.2~0.3之间为宜。既可保证IMF分量的线性稳定性,又可使IMF分量具有相应的物理意义.

当h1k(t)满足筛选终止准则的要求,则h1k(t)为第一阶IMF,记为cl(t),即

C1(t)=h1k(t)

从X(t)中减去c1(t)得剩余信号,即残差r1(t):

r1(t)=X(t)-c1(t)

将r1(t)看作一组新信号重复上述模态分解过程,经多次运算可得到全部的残差ri(t):

ri(t)=r(i-1)(t)-ci(t) i=2,3,…,n

当ri(t)满足条件:https://www.360docs.net/doc/666604337.html,(t)或rn(t)小于预定的误差;或2.残差rn(t)成为一个单调函数,即不可能再从中得出提取IMF分量时,就终止模态分解过程。该条件的选取也应适中。若条件太严格,则得到的最后几个IMF分量没有太大意义,并且还消耗时间;若条件太松,则会丢失有用信号分量。具体终止条件的选取可通过对信号的反复分解并依据对原始信号的先验知识来最终确定。至此,原始信号X(t)可由n阶IMF分量及残差rn(t)构成。

1.3.2Hilbert变换与Hilbert谱

对给定的信号X(t),其Hilbert变换定义为

构造解析信号Z(t):

Z(t)=X(t)+iY(t);

Z(t),可写为:

其中:

上式以极坐标的形式明确表达了瞬时振幅和瞬时相位,很好地反应了信号的

瞬时特性,在此基础上,瞬时频率定义为:

对式*做Hilbert变换,则有:

其中,是第j阶IMF分量cj(t)的解析信号幅值。这里省略了第n阶残差这是因为rn(t)是单调函数或常数的缘故.

式*中的H(t)既是时间t的函数,又是瞬时频率的函数。而瞬时频率也是时间t的函数。取实部,定义他为Hilbert谱,记作:

将对时间积分,就得到Hilbert边际谱:

边际谱表达了每一个频率值上分布的总的振幅(或能量),他以统计的形式表示在整个数据序列上的振幅(或能量)累积。

以上的EMD分解和Hilbert谱分析方法统称为Hilbert-Huang变换。傅立叶变换,小波变换及HHT变换比较:

(1分析信号。

傅立叶变换只能处理线性非平稳的信号,小波变换虽然在理论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。。HHT则不同于这些传统方法,它彻底摆脱了线性和平稳性束缚,其适用于分析非线性非平稳信号。

(2)自适应性。

HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。这点不同于傅立叶变换和小波变换。傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小波基,小波基也是预先选定的。在实际工程中,如何选择小波基不是一件容易的事,选择不同的小波基可能产生不同的处理结果。我们也没有理由认为所选的小波基能够反映被分析数据或信号的特性。

(3) Heisenberg测不准原理制约——突变信号。

傅立叶变换、短时傅立叶变换、小波变换都受Heisenberg测不准原理制约,即时间窗口与频率窗口的乘积为一个常数。这就意味着如果要提高时间精度就得牺牲频率精度,反之亦然,故不能在时间和频率同时达到很高的精度,这就给信号分析处理带来一定的不便。而HHT不受Heisenberg测不准原理制约,它可以在时间和频率同时达到很高的精度,这使它非常适用于分析突变信号。

(4)瞬时频率。

傅立叶变换、短时傅立叶变换、小波变换有一个共同的特点,就是预先选择基函数,其计算方式是通过与基函数的卷积产生的。HHT不同于这些方法,它借助Hilbert变换求得相位函数,再对相位函数求导产生瞬时频率。这样求出的瞬时频率是局部性的,而傅立叶变换的频率是全局性的,小波变换的频率是区域性的。

EMD分解各阶IMF分量大致是高频到低频的分布,噪声大多包含在前几个IMF 中,对其进行阈值处理,然后进行重构叠加即可进行滤波。

1.3.3HHT分解及滤波实例:

下图为某声音信号的原始信号及HHT分解以及滤波后的信号:

原始信号:

HHT分解信号:

可以看出,HHT分解的EMD信号有高频到低频的趋势。下图为滤波后的信号:

二、小波分析的去噪方法

小波滤波的机理是基于信号与噪声的小波系数的尺度上的不同性质,采用相应规则,对含噪信号的小波系数进行取舍、抽取或切削等非线性处理,以达到去除噪声的目的。小波滤波研究主要集中在三个方向,包括基于信号奇异性的模极大值重构滤波、基于信号尺度间相关性的空域相关滤波和基于小波变换解相关性的小波域阈值滤波。

2.1模极大值重构滤波

1992年,Mallat等人提出了基于信号奇异性的信号和图像多尺度边缘表示法,利用Lipschitz指数在尺度上对信号和图像及噪声的数学特性进行描述,提出模极大值重构滤波方法。

模极大值重构滤波是指利用信号在各个尺度上小波系数的模极大值来重构信号。信号小波系数的模极大值包含了信号的突变值与奇异值。如果可以从这些极大值重构信号,那么就可以通过处理小波系数的模极大值而实现对信号奇异值的修改。可以通过改变模极大值来修改奇异性的强度,也可以通过抑制某些极大值点而去除相应的奇异性,这是模极大值重构滤波的基本思想。

模极大值重构滤波方法是根据信号和噪声在小波变换下随尺度变化呈现出的不同变化特性提出来的,有很好的理论基础,因而滤波性能较为稳定,它对噪声的依赖性较小,不需要知道噪声的方差,特别是对低信噪比的信号滤波时更能

体现其优越性。

2.2空域相关滤波

1994年,根据Rosenfield所提出的思想,xu提出了基于信号尺度间相关性的空域相关滤波算法(ssNF),就是在进行数字图像处理时,直接将相邻频带上的数据相乘,可以准确地定位信号边缘。

信号的突变点有良好的局部性质,并且出现在各尺度上,而噪声的能量却集中在小尺度上,其小波系数随着尺度的增大而迅速衰减。而且,Mallat和Hwang 指出,对正态白噪声来说,其在尺度j+l上的局部模极大值点的平均数目为尺度j上的一半。即信号经过小波变换之后,其小波系数在各尺度上有较强的相关性,尤其是在信号的边缘附近,其相关性更加明显,而噪声对应的小波系数在尺度间却没有这种明显的相关性。因此,可以取相邻尺度的小波系数直接相乘进行计算,这样做相关计算将在锐化信号边缘与其他重要特征的同时抑制噪声,而且能够提高信号主要边缘的定位精度,更好地刻真实信号。

基于小波系数尺度之间相关性原理的空域相关滤波方法,在对含噪信号进行滤波时取得了很好的效果,其实现原理也较简单。然而在算法中,相关系数如何定义将直接影响到效果。如果在小波分解过程中,计算出来的小波系数点的位置稍有偏差,得到的相关系数不能很好地体现和描述该点处的真实相关性,而且计算量较大,需要进行迭代。

2.3小波域阈值滤波

小波域阈值滤波算法是实现最简单、计算量最小的一种方法,因而应用最广泛。但其阈值的选取比较困难,虽然Donoho在理论上证明并找到了最优的通用闭值,但实际应用中效果并不十分理想。另外,阈值的选取还依赖于噪声的方差,因此需要事先估计噪声方差。

Donoho提出了小波域lheJ值滤波算法:信号经小波变换后,可以认为由信号产生的小波系数包含有信号的重要信息,其幅值较大,而噪声对应的小波系数幅值小。通过在不同的尺度上选取一合适的阈值,并将小于该阂值的小波系数置零,而保留大于闭值的小波系数,从而使信号中的噪声得到有效的抑制,最后进行小波逆变换,得到滤波后的重构信号。

目前,有大量的文献中提出了各种各样确定阈值的方法,其中主要有Donoho 提出的通用闭值法、极小化风险阈值法(suRE法、交叉验证(Cv)算法、广义交叉验证(oev)算法)、假设检验法(FnR滤波算法)。和BayessShrink阈值法(Bayesian检验算法等),以及各种经改进后的方法等等。

阈值函数体现了对小波系数的不同处理策略,主要课分为硬阈值函数,软阈值函数,半软阈值函数。三种方法分别如下图所示:

下图为采用db3小波,分别采用'rigrsure',自适应阈值选择使用Stein的无偏风险估计原理,首先得到一个给定阈值的风险估计,选择风险最小的阈值作为最终选择;'heursure',使用启发式阈值选择,它是sqtwolog和rigrsureD Z 综合,当信噪比很小时,估计有很大的噪声,这时heursure,采用固定阈值sqtwolog; 'sqtwolog',阈值等于sqrt(2*log(length(X))),这种阈值形式在软门限阈值处理中能够得到直观意义上很好的去噪效果; 'minimaxi',用极大极小原理选择阈值,和sqtwolog一样也是一种固定的阈值,它产生一个最小军方误差的极值。且分别采用硬阈值和软阈值处理后的图像:

可以看出,阈值函数中硬阈值方法相比软阈值方法失真要小,且采用

'rigrsure'方法的滤除频率较少,而'minimaxi'法将高频部分滤除较多。

如下为由wnosie()函数产生的含标准高斯白噪声比为3的heavy sine信号,由上述方法处理后的结果:

原信号:

加噪信号:

db3去噪信号:

根据图像可以看出去噪信号并不是很好。'sym8'去噪信号:

SNR:

28.3266826611648 43.9603633625514

50.6928672403042 53.2912060188090

53.4124505532682 51.6542394856458

35.5860235392333 52.8326719232419

PMSE:

0.755987254840015 0.345965992374046

0.247080770291762 0.216978517181903

0.215667123216712 0.235484872596939

0.525871808761479 0.222010583521530

由图像看出,采用sym8小波可以达到较好的效果,同时可以看出,软阈值法在信号突变的地方会有一些失真,'heursure'软阈值与'sqtwolog'硬阈值均可取得较好的效果。

可以看出,由于各小波具有不同的对称性,正交性,紧支撑性得特征,小波的选取会影响滤波效果,同时阈值的选取以及阈值函数的选取都会影响滤波效果。

三、总结

本文简介了Gabor变换,小波变换及希尔伯特黄变换,重点介绍了希尔伯特黄变换的实现过程,比较了给自的优缺点,同时采用希尔伯特黄变换进行了声音信号的滤波。并总结介绍了小波滤波的三种方法,重点介绍了小波域阈值滤波,并对其阈值选取和阈值函数的选取进行了介绍,并选取两小波,用不同阈值不同

阈值函数进行仿真,并对结果进行分析。

小波分析考试题(附答案)

《小波分析》试题 适用范围:硕士研究生 时 间:2013年6月 一、名词解释(30分) 1、线性空间与线性子空间 解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。2、基与坐标 解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 () 。an ...a a 11,,,3、内积 解释:内积也称为点积、点乘、数量积、标量积。,()T n x x x x ,...,,21= ,令,称为x 与y 的内积。 ()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间 解释:线性 完备的内积空间称为Hilbert 空间。线性(linearity ):对任意 f , g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。内积(inner product ):,它满足:,()T n f f f f ,...,,21=时。 ()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程 解释:所以都可以用空间的一个1010,V W t V V t ?∈?∈)()(ψ?) ()和(t t ψ?1V

小波分析应用实例读文报告

小波分析应用实例读文报告 一、小波分析的基本理论 小波分析(Wavelet Analysis )或多分辨分析(Multiresolution Analysis )是傅里叶分析仪发展史上里程碑式的进展,也是调和分析这一数学领域半个世纪以来工作的结晶。其基础理论知识涉及到泛函分析、数值分析、统计分析,涉及到电子工程、电气工程、通信工程和计算机工程等,其同时具有理论深刻和工程应用十分广泛的双重意义。 小波(wavelet ),即小区域的波,是一种特殊的长度有限(紧支集)或快速衰减,且均值为0的波形。 1.小波函数 小波函数的确切定义为:设()t ψ为一平方可积函数,即2()()t L R ψ∈,若其傅里叶变换()ψω满足条件: ()R C d ωωωψψ=0τ∈,; (1-4) 式中,a 为伸缩因子,τ为平移因子,,()a t τψ为依赖于参数a 和τ的小波基函数,由于尺度因子a 和平移因子τ是连续变化的值,因此称,()a t τψ为连续小波基函数。它们是由同一组母函数()t ψ经伸缩和平移后得到的一组函数序列。 小波奇函数的窗口随尺度因子的不同而伸缩,当a 逐渐增大时,基函数,()a t τψ的时间

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

基于小波变换的图像分割的研究

摘要 近年来,对图像分割的研究一直是图像技术研究的焦点。图像分割是一种很重要的图像分析技术,它的目的是把图像分为具有各种特性的区域并把感兴趣的部分提取出来。它融合了多个学科的成果,并且成功应用于工业、农业、医学、军事等领域,得到了广泛的应用。 图像分割是一个经典的问题,实现方法有很多种,但是至今仍没有一种通用的解决方法。经过研究发现,区分真正的噪声和边缘是图像分割的难题之一,然而小波变换则可以解决这一问题,小波变换是一种时--频两域的分析工具。本文则基于小波变换对图像分割技术进行研究,主要介绍了小波阈值分割方法。文中通过直方图、建立模型等手段对这两种方法做出具体的讨论,并利用Matlab分别对两种方法进行仿真,并得到了有效的结果。根据仿真结果我们可以看出不同分割方法的不同分割效果,从而更好地理解这些方法。 关键词:图像分割;小波变换;阈值;

Abstract In recent years, the study of image segmentation has been the focus of imaging technology. Image segmentation is an important image analysis, its purpose is to take the various characteristics part out of the image. It combines the results of multiple disciplines, and successfully applied to such fields as industry, agriculture, medicine, military, and a wide range of applications. There are many ways to achieve image segmentation, but could not find a common solution. After the study found that the distinction between real noise and the edge of one of the difficult problem of image segmentation, wavelet transform can solve this problem, wavelet transform is a time - frequency domain analysis tools. In this paper, image segmentation technique based on wavelet transform to study the two wavelet segmentation method, the wavelet thresholding segmentation method. Histogram, the establishment of model and other means to make a specific discussion of these two approaches, and use the Matlab simulation, and the effective results of the two methods, respectively. According to the results of the simulation we can see the different segmentation results of different segmentation methods, in order to better understand these methods. Key words:Image; Wavelet transform; Threshold

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨

小波分解与重构原理

“小波工程应用”实验报告 一维信号离散小波分解与重构(去噪)的VC实现 一、目的 在理解了离散小波变换的基本原理和算法的基础上,通过设计VC程序对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。 二、基本原理 1、信号的小波分解与重构原理 在离散小波变换(DWT)中,我们在空间上表示信号,也就是说对于每一个在上表示的信号能用在上面提到的两个空间中的基函数来表示。 Where and are the coefficients of the scale metric space (j-1) which are obtained after the Decomposing the coefficient of the scale metric space j . Analogously we could reconstruct the by and . 我们在尺度度量空间对系数进行分解得到在尺度度量空间的两个系数 和。同样的,我们也能从两个系数和通过重构得到系数。

如上图中的分解与重构我们可以通过一定的滤波器组来实现(也就是小波变换算法)。当小波和尺度在空间内是正交的,我们就可以用内积公式计算得到系数和: 下面是内积计算方法的具体公式: 具体的系数计算过程如下: 对于上面的小波分解过程,通过分别设计高通滤波器和低通滤波器两组滤波器的系数(数组g[]和h[])即可实现,特别是对于离散小波变换,程序算法相对简单。而重构也只是分解的逆过程,重构算法和分解的算法是相对应而互逆的。 2、小波去噪原理

基于小波分析的机械故障诊断

绪 论 机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。 要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。 关键词:小波分析,故障诊断,小波基选取,奇异性 基于小波分析的机械故障检测 小波奇异性理论用于机械故障检测的基本原理 信号的奇异性与小波变换的模极大值之间有如下的关系: 设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞ ∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -= ,令 d x,/x)( dg x)(=ψ由于?+∞ ∞-=0x)dx (ψ,因此,可取函数x)(ψ

小波分析结课论文

小波分析结课论文 基于正交滤波器组的Daubechies 小波设计及Quartus ll 仿真 1.非平稳信号的局部变换 信号s(t)和其频谱S(w)构成Fourier 变换对,由于Fourier 变换或反变换都属于全局变换,不能告知某种频率分量发生在那些时间内,因此用来不能描述信号的局部统计特性。对于非平稳信号s(t),应该采用局部变换来描述其随时间变化的统计特性。并且信号的局部性能需要使用时域和频域是我二维联合表示,才能精确描述。 1.1用内积构造信号变换 任何一种信号变换都可以写成该信号与某个选定的核函数之间的内积,因此可以用下面两种基本形式来构造。 信号s(t)的局部变换 = <取信号s(t)的局部,核函数无穷长> 或 信号s(t)的局部变换 = <取信号s(t)的全部,核函数局域化> 1.2小波变换 1.2.1选用小波变换的原因 三个信号局部变换的典型例子是短时Fourier 变换、Gabor 变换、小波变换,它们都是时频信号分析的线性变换。而短时Fourier 变换和Gabor 变换都属于“加窗Fourier 变换”,都以固定的滑动窗对信号进行分析,可以表征信号的局部频率特性。显然,这种时域固定等宽的滑动窗处理并不是对所有的信号都合适。因为有较多的自然界信号在低频端应具有很高的频率分辨率,在高频端的频率分辨率可以比较低。而从不相容原理的角度看,这类信号的高频分量应该具有高的时间分辨率,低频分量应该具有低的时间分辨率。对这类非平稳信号的线性时频分析,应该在时频平面的不同位置具有不同的分辨率,小波变换就是这样一种多分辨(率)分析方法,其目的是既见森林——信号概貌,又见树木——信号细节,所以,小波分析被称为数学显微镜。 1.2.2连续小波变换的定义及参数含义 平方可积分函数s(t)的连续小波变换定义为 (,)()*( )(),()s ab t b W T a b s t dt s t t a ψψ∞ -= =??? , a > 0

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

小波分析基础及应用期末习题

题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤

11()3.k k h k p -=为高通分解滤波器,写出个双倍平移正交关系等式 题6:列出二维可分离小波的4个变换基。 题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。 (1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件: (2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式: (3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整: 222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0 ,1 2h h h h h h h h n ?+++=???+==??? 规范性低通双平移正交阶消失矩

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

小波分析学习心得

小波分析学习心得 学习小波分析这门课程已经有一段时间了,我对于这一门课程已经有了一定程度的认识。由于学科专业所限,我平时接触小波分析的机会并不是很多,很高兴在这个学期能够有机会专门学习小波分析。经过这一段时间小波分析的学习,虽然我还不能说是精通小波分析,不过也是对其中的一些基本概念有了一定的理解。后文中,我将会对在小波分析学习过程中所得到的一些学习心得进行总结。 我们通常说的波一般指的是物质的一种运动方式,在数学中它对应于时间域或空间域的震荡方程。正弦波就是一种最为常见的波,它的振幅均匀的分布时域中,并不收敛,所具有的能量是无穷的。小波,顾名思义,就是小的波,它的能量是有限的,相对于正弦波而言,它的振幅在时域上是收敛的,能量并不是无穷的。傅里叶变换将函数投影到正弦波上,将函数分解成了不同频率的正弦波,这是一个非常伟大的发现,但是在大量的应用中,傅里叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅里叶变换已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,傅里叶变换在奇异点的表现就令人非常不满意,从对方波的傅里叶逼近就可以看出来,用了大量不同频率的正弦波去逼近其系数衰减程度相当缓慢。其内在的原因是其基底为全局性基底,没有局部化能力,以至局部一个小小的摆动也会影响全局的系数。很多应用场合要求比较精确的时频定位,傅里叶变换的缺点就越来越突出了。 窗口傅里叶变换将信号乘上一个局部窗,然后再做傅里叶变换,获得比较好的时频定位特性,再沿时间轴滑动窗口,得到整个时间轴上的频率分布,似乎到这里就应该结束了,因为我们可以把窗设计小点获得较高的时间分辨率,并期望有同样高的频率分辨率,但测不准原理无情的告诉我们,没有这么好的窗能在时

一个小波变换实例及Matlab实现

1、选择'(t)或,使心(t-k)J?k z为一组正交归一基 2、求h n。 h n *W(t)] 或H( Jh?(2 ?)/ ?( ?) 3、由h n求g n。 g n - ( -I) h1 Jn 或G( J=e^1H (仁) 4、由g n, ;:(t)构成正交小波基函数(t) ⑴八g n ln(t) 或?^ J=GC ■ /2)?C ■ /2) Haar小波的构造 1)、选择尺度函数。 ⑴=1 O *1 C)O 其他 易知「(t - n)关于n为一正交归一基 2)、求h n h n In(t);=2. - (t)(2t-n)dt 其中 n n 1 壬F= 1 2 0 其他 当n=0时, ——I cp(2t)=[ 0 当n=1时, 1 C -t 2 其他

e J σj +26" S J U 6 N H e ^ 。≡ G 怪 A 寸 超 M O 一 L H U L ^二— 7τd L I τu 6 0"u ? 二 甘 LHU ≡ 超 M 01 0!— ’」丄U — &¥( ? ?H 0 IHU P H (U l 10) ? (I)Cb 匸 ?f? LHU O H U ≡ 疼 超 M 0 ________ CXI H — &) Cb

其图形如下: 1、Haar尺度函数 Haar尺度函数空间: C , (2 jχ 2), (2 j X -1), (2j x), (2 jχ -1), :(2j x-1), ? J 为非负的整数,该空间又称为J级阶梯函数空间V i。则 V O 二V1二V2二=V jJ=V j= V j 1 随j的增加,分辨更为精细。 2、性质 函数集、2j/2「(2j X - k): k Z ?是V j的一个标准正交基。 f(x) V0当且仅当f(2j x) V j。 3、Haar小波函数 函数满足两点:(1)??是V1的成员;(2)??与V0正交。 (X)V(2x) _ (2x -1) -bo 性质:j(,(x)dx=0 (x)是对称的、局部支撑的函数; 小波函数空间Wj : V a k (2j x-k),a k R kZ W j是V j的正交互补,即V jT=V j二W j 函数集、2j/2 "2j x-k):k?Zi是W i的一个标准正交基 4、Haar小波分解与重建 对Haar 小波,有(2j x^( (2j^xp :(2j4x))/2 (2jχ-1) = ( Q j"1 x) - ’(2j*x)) / 2

相关文档
最新文档