风机空气动力学

风机空气动力学
风机空气动力学

二维空气动力学

叶片细长,展向速度远小于流向速度;二维流动

The reacting force F:作用力

升力系数、阻力系数、力矩系数均是攻角α,雷诺数Re、马赫数M的函数

升力L:垂直于来流;

升力系数:在α达到一定值前,升力系数随攻角线性变化,斜率大约为2排/rad;

失速后,升力系数以一个非常几何依赖性的方式下降;

阻力D:平行于来流;

阻力系数在小攻角时几乎是一个常数,但是在失速后迅速增大;

对于阻力系数,当雷诺数达到一定值时,雷诺数对其的影响很小。

升力阻力方向

力矩M:作用点1/4弦长处;力矩系数

雷诺数的影响主要和翼型边界层发生层流到湍流转变的点有关;翼型的失速依赖于几何形状;薄翼型的前缘曲率大,比厚翼型更易发生失速。

如果分离发生在翼型后缘,并且随着攻角的增加变化缓慢,这是一个平缓的失速;但是如果分离开始于翼型的前缘,整个边界层可能随着升力的突然下降而同时发生分离。粘性边界层的性质非常复杂,和翼型的曲率、雷诺数、表面粗糙度,高速时的马赫数都有关系。

层流翼型

三维空气动力学

定量的描述流体流管三维翼,展向升力分布对上游流动及当地迎角的影响;

翼是有限长度,以翼型为截面,上下表面存在压力差从而产生升力的横梁;

尾涡

小攻角,无粘,Laplace方程、

Kutta-Joukowski方程

一个强度为的涡线代替翼型;小攻角时,3维翼产生的升力用一系列展向的涡线模拟(附着涡);尾涡模拟三维翼产生的涡流层。

由Biot-Savart定律知,自由涡在任意展向诱导产生一个向下的速度分量

W为诱导速度

Multhopp’s solution of Prandtl’s integral equation

在旋转的叶片失速后,科氏力及离心力边界层分离中起着重要的作用;在分离的边界层中,相对于离心力,速度和动力都比较小,离心力式流体沿展向流向叶尖;科氏力产生顺压力梯度使流向叶尖的流体向尾缘偏离;

科氏力和离心力改变了失速后二维翼型的数据

风力机后的涡系

由于水平轴风力机有旋转的叶片组成,那么必然存在与线性平移翼相似的涡系。

在转子后自由涡的涡层是螺旋向的;强叶尖涡位于转子尾流的边缘,根部涡主要位于转轴的轴线上。这个涡系诱导产生了和风方向相反的轴向速度,产生了和转轮叶片旋转方向相反的切向速度分量

注意研究对象,研究对象不同,力方向不同

轴向诱导速度、周向诱导速度

理想风力机的一维动量理论

通过转轮的流线

转子前后轴向速度、压力分布

转轮(阻力装置)使风速下降

来流圆环控制体,动量方程

功率P,推力T

轴向诱导速度

功率系数Cp,

推力系数CT

最大功率系数0.593,贝兹极限,诱导因子1/3;

风力机,大推力系数对应着大轴向诱导因子,此时对应着低风速;

当轴向诱导因子a大于0,4时,简单动量理论不适用的原因是当速度由Vo到u变化过大时,外流动量转化为尾涡时会形成涡流,导致在尾涡边缘的自由剪切层不稳定。

旋转的影响

周向诱导因子

经典叶素动量理论(BEM)

在一维动量理论中,实际的转子几何形状如叶片数、叶片扭角、弦分布、翼型都没考虑。在BEM模型中,对环状控制体有以下假设:

1、径向互相独立

2、叶片对来流的力是一个常数,这相当于风轮由无限个叶片组成。(普朗特叶尖损失因子修正实际风轮由有限个叶片组成)

叶片实度:

由式(6.21)和(6.4)

由式(6.22)和(6.5)

迭代方法求轴向诱导因子a、周向诱导因子a’

1、假设a=a’=0;

2、利用(6.7)求入流角φ;

3、计算当地攻角α;

4、根据翼型空气动力学特性曲线得到叶素的升力系数和阻力系数

5、由(6.12)(6.13)计算叶素的法向力系数和切向力系数

6、由(6.23)(6.24)计算新的a、a’

7、比较新计算的a和a’值与前一次值,如果误差小于设定值,迭代结束;否则继续步骤(2)继续迭代。

8、计算叶片每部分的当地载荷

以上是BEM方法的基本准则,但是为了得到更好的结果,需要应用两个修正方法。

1、普朗特叶尖损失因子(修正无穷多叶片的假设)

2、葛劳渥特修正方法(当轴向诱导因子大于0.4时,推力系数与a的经验关系式)

离心风机结构形式

离心风机 离心叶轮的进风方向与出风方向呈90°,离心叶轮可分为前弯叶轮、后倾叶轮、后弯叶轮。 1、前弯叶轮:气流方向与叶片的线速度方向夹角为锐角。 特点:低转速,大风量,低静压(相对后倾,后弯叶轮),成型工艺简单,成本低。 前弯叶轮转速过高会造成电机过载,所以使用前弯叶轮的风机不允许空载运行。 2、后倾叶轮:气流方向与叶片的线速度方向的夹角为钝角,叶片为直板形式。 特点:高转速,转速范围宽,风量小,高静压,不过载,效率高。(相对前弯叶轮做比较) 3、后弯叶轮:气流方向与叶片的线速度方向的夹角为钝角,叶片为曲面形式。 特点:高转速,较大风量(比后倾叶轮大),更高静压,更高效率,不过载。后弯叶轮的风机性能与后倾叶轮的风机性能非常相似,但后弯叶轮的效率更高,性能也更稳定,加工工艺更困难,在高压风机领域应用广泛。 结构型式 (1)传动型式 :离心通风机的传动型式通常有电动机直联、带轮、联轴器等三种 型式。各种传动型式的代表符号与结构说明见表与图。 离心通风机传动型式代表符号与结构说明

连接方式AMCA标准连接方式 中国标准 说明 ARR1 无ARR1安装形式:皮带传动,风机不带底座与皮带轮,电机由用户自己安装。 ARR3 E型ARR3安装形式:皮带传动,轴承位于风机两侧。例 如:ICC ARR4 A型ARR4安装形式:直联传动,电机轴与风机叶轮直接 连接。例如:CFD/CBD ARR8 D型ARR8安装形式:直联传动,电机与风机轴通过连轴 器传动。 ARR9 C1型ARR9安装形式:皮带传动,电机位于电机支撑板侧 面。 ARR10 C3型ARR10安装形式:皮带传动,电机位于风机轴正下 方。例如:CUS ARR12 C2型ARR12安装形式:皮带传动,轴承位于叶轮同一侧,电机置于风机底座上。例如:BCSD、BCSL 直联传动优点:节省部件(皮带轮、轴、轴承、皮带等)易损部件少,可靠性高; 缺点:转速固定,其转速就等于电机转速;

空气动力学的历史

Aerodynamics History(空气动力学历史) 袁亚 011010836 摘要:空气动力学是一门比较年轻的科学,主要研究物体主要是飞行器在空气中的运动特性的一门科学。本文深入浅出,为读者介绍了空气动力学的历史,让大家对这门重要的科学有一些更深刻的认识。本文正文是摘要自:Aircraft Design:Synthesis and Analysis,中文名《飞机设计:综合与分析》 关键词:空气动力学Aerodynamics 引言: 关于空气动力学的传说: The dream was the subject of great myths and stories such as that of Icarus and his father Daedalus and their escape from King Minos' prison on Crete. Legend has it that they had difficulty with structural materials rather than aerodynamics 梦想的主题是伟大的神话故事:伊卡洛斯和他的父亲代达罗斯逃离克里特岛 米诺斯王的监狱那样,据说,他们在结构材料结构上有困难,而不是在空气动力 学上。(译者注:说明那个时候这对父子已经掌握了空气动力学的基本知识)Legends of people attempting flight are numerous, and it appears that people have been experimenting with aerodynamics for thousands of years. Octave Chanute, quoting from an 1880's book, La Navigation Aerienne, describes how Simon the Magician in about 67 A.D. undertook to rise toward heaven like a bird. The people assembled to view so extraordinary a phenomenon and Simon rose into the air through the assistance of the demons in the presence of an enormous crowd. 人们试图飞行的传说是众多的,而且看来,几千年历来人们一直在试验与空 气动力学的原理。Octave Chanute,引用来自1880的书,La Navigation Aerienne,介绍了在大约公元67年魔术师西蒙如何向一只鸟一样进行了上升到天堂。人们聚 集在一起观看如此特殊的现象,通过了现场恶魔的帮助西蒙上升到了空气中…… 正文

空气动力学与飞行原理基础执照考题

M8空气动力学基础及飞行原理 1、绝对温度的零度是(C) A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为(C) A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是?(B) A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括(C) A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是(A) A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是(D) A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度(C) A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强(B) A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。 D、随高度增加可能增加,也可能减小。9、空气的密度(A) A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: (BC) A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是(B) A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: (C) A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大(B) A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力(D) A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力(D) A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 16、对于露点温度如下说法正确的是: (BC) A、温度升高,露点温度也升高 B、相对湿度达到100%时的温度是露点温度 C、露点温度下降,绝对湿度下降 D、露点温度下降,绝对湿度升高

风机叶片材料 设计与简介

风机叶片材料、设计与工艺简介 核心提示:复合材料风机叶片是风力发电系统的关键动部件,直接影响着整个系统的性能,并要具有长期在户外自然环境条件下使用的耐候性和合理的价格。因此,叶片的材料、设计和制造质量水平十分重要,被视为风力发电系统的关键技术和技术水平代表。 复合材料风机叶片是风力发电系统的关键动部件,直接影响着整个系统的性能,并要具有长期在户外自然环境条件下使用的耐候性和合理的价格。因此,叶片的材料、设计和制造质量水平十分重要,被视为风力发电系统的关键技术和技术水平代表。影响风机叶片相关性能的因素主要有原材料、风机叶片设计及叶片的制造工艺三种。 一风机叶片的原料 目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与E-玻璃纤维、S-玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。 对于同一种基体树脂来讲,采用玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采用碳纤维增强的复合材料制造的叶片的性能。但是,碳纤维的价格目前是玻璃纤维的10左右。由于价格的因素,目前的叶片制造采用的增强材料主要以玻璃纤维为主。随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,玻璃纤维在大型复合材料叶片制造中逐渐出现性能方面的不足。为了保证叶片能够安全的承担风温度等外界载荷,风机叶片可以采用玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维作为增强材料。这样,不仅可以提高叶片的承载能力,由于碳纤维具有导电性,也可以有效地避免雷击对叶片造成的损伤。 风电机组在工作过程中,风机叶片要承受强大的风载荷、气体冲刷、砂石粒子冲击、紫外线照射等外界的作用。为了提高复合材料叶片的承担载荷、耐腐蚀和耐冲刷等性能,必须对树脂基体系统进行精心设计和改进,采用性能优异的环氧树脂代替不饱和聚酯树脂,改善玻璃纤维/树脂界面的粘结性能,提高叶片的承载能力,扩大玻璃纤维在大型叶片中的应用范围。同时,为了提高复合材料叶片在恶劣工作环境中长期使用性能,可以采用耐紫外线辐射的新型环氧树脂系统。 二风机叶片的设技 以最小的叶片重量获得最大的叶片面积,使得叶片具有更高的捕风能力,叶片的优化设计显得十分重要,尤其是符合空气动力学要求的大型复合材料叶片的最佳外形设计和结构优化设计的重要性尤为突出,它是实现叶片的材料/工艺有效结合的软件支撑。另外,计算机

空气动力学基本概念

第一章 一、大气的物理参数 1、大气的(7个)物理参数的概念 2、理想流体的概念 3、流体粘性随温度变化的规律 4、大气密度随高度变化规律 5、大气压力随高度变化规律 6、影响音速大小的主要因素 二、大气的构造 1、大气的构造(根据热状态的特征) 2、对流层的位置和特点 3、平流层的位置和特点 三、国际标准大气(ISA) 1、国际标准大气(ISA)的概念和基本内容 四、气象对飞行活动的影响 1、阵风分类对飞机飞行的影响(垂直阵风和水平阵风*) 2、什么是稳定风场? 3、低空风切变的概念和对飞行的影响 五、大气状况对飞机机体腐蚀的影响 1、大气湿度对机体有什么影响? 2、临界相对湿度值的概念 3、大气的温度和温差对机体的影响 第二章 1、相对运动原理 2、连续性假设 3、流场、定常流和非定常流 4、流线、流线谱、流管 5、体积流量、质量流量的概念和计算公式。 二、流体流动的基本规律 1、连续方程的含义和几种表达式(注意适用条件) 2、连续方程的结论:对于低速、不可压缩的定常流动,流管变细,流线变密,流速变快;流管变粗,流线变疏,流速变慢。 3、伯努利方程的含义和表达式 4、动压、静压和总压 5、伯努利方程的结论:对于不可压缩的定常流动,流速小的地方,压力大;而流速大的地方压力小。(这里的压力是指静压) 重点伯努利方程的适用条件:1)定常流动。2)研究的是在同一条流线上,或同一条流管上的不同截面。3)流动的空气与外界没有能量交换,即空气是绝热的。4)空气没有粘性,不可压缩——理想流体。 三、机体几何外形和参数 1、什么是机翼翼型; 2、翼型的主要几何参数; 3、翼型的几个基本特征参数 4、表示机翼平面形状的参数(6个) 5、机翼相对机身的角度(3个) 6、表示机身几何形状的参数四、作用在飞机上的空气动力 1、什么是空气动力? 2、升力和阻力的概念 3、应用连续方程和伯努利方程解释机翼产生升力的原理 4、迎角的概念 5、低速飞行中飞机上的废阻力的种类、产生的原因和减少的方法; 6、诱导阻力的概念和产生的原因和减少的方法; 7、附面层的概念、分类和比较;附面层分离的原因 8、低速飞行时,不同速度下两类阻力的比较 9、升力与阻力的计算和影响因素 10、大气密度减小对飞行的影响 11、升力系数和升力系数曲线(会画出升力系数曲线、掌握升力随迎角的变化关系,零升力迎角和失速迎角的概念) 12、阻力系数和阻力系数曲线 13、掌握升阻比的概念 14、改变迎角引起的变化(升力、阻力、机翼的压力中心、失速等) 15、飞机大迎角失速和大迎角失速时的速度 16、机翼的压力中心和焦点概念和区别 六、高速飞行的一些特点 1、什么是空气的可压缩性? 2、飞行马赫数的含义 3、流速、空气密度、流管截面积之间关系 4、对于“超音速流通过流管扩张来加速”的理解 5、小扰动在空气中的传播及其传播速度 6、什么是激波?激波的分类 7、气流通过激波后参数的变化 8、什么是波阻 9、什么是膨胀波?气流通过膨胀波后参数的变化 10、临界马赫数和临界速度的概念 11、激波失速和大迎角失速的区别 12、激波分离 13、亚音速、跨音速和超音速飞行的划分* 14、采用后掠机翼的优缺点比较 第三章 一、飞机重心、机体坐标和飞机在空中运动的自由度 1、机体坐标系的建立 2、飞机在空中运动的6个自由度 二、飞行时作用在飞机上的外载荷及其平衡方程 外载荷组成平衡力系的2个条件*: ①、外载荷的合力等于零(外载荷在三个坐标轴投影之和分别等于零)∑x = 0 ∑Y = 0 ∑Z = 0 ②、外载荷的合力矩等于零(外载荷对三个坐标轴力矩之和分别等于零) ∑Mx=0 ∑My= 0 ∑Mz= 0 1、什么是定常飞行和非定常飞行? 2、定常飞行时,作用在飞机上的载荷平衡条件和平衡方程组

风力机空气动力学

第三章风力机气动力学 §3.1 总论 风力机功率的产生依赖于转子和风的相互作用。 风由平均风和附加于上的强烈的湍流脉动合成。 风力机的平均功率输出和平均载荷等主要性能由平均气流的气动力决定。周期性的气动力是疲劳载荷源和风力机峰值载荷的一个因素。周期性的气动力可以由切变风、偏轴风(off-axis winds)、转子旋转、由空气紊流和动力学影响诱发的随机脉动力引起。 本章首先关注的是稳态运行的空气动力学现象,关于非稳态空气动力学的复杂现象将在本章结尾简要介绍。 本章为读者提供理解翼型产生功率的背景,以计算一个优化的叶片形状作为设计叶片的起点,对已知翼型特性线和叶型的转子分析其气动性能。 本章的大部分内容详细说明了采用古典分析方法分析水平轴风力机。动量理论和基元叶片理论(blade element theory)构成了片条理论(strip theory)或基元叶片动量理论(BEM)。以此计算转子环形截面的特性,然后通过积分就可以获得整个转子的特性。 内容分为:1、理想风力机的分析(Betz极限) 2、翼型的运行和一般气动力概念 3、重点放在水平轴风力机的经典分析方法和一些应用和例子 §3.2 一维动量理论和贝兹极限 控制体积和理想透平如图,气流通过透平只产生压力不连续,并假设 ●气流均匀,不可压缩,定常流 动 ●气流无磨擦阻力 ●透平具有无限多叶片 ●推力均匀作用在转子叶轮旋转 面上

● 尾流无旋转 ● 转子远上游和远下游静压等于无干扰时环境的静压 设T 为风作用于风力机上的力,由动量定理可知,透平对风的作用力为: 4114()()T mU mU m U U ??? =---=- (3.2.2) 对于稳态流动,14()()AU AU m ρρ==,m 是质量流量,这里ρ是空气密度, A 是横截面,U 是空气速度。 此外,还由理想流体伯努利方程可知: 22 11221122 p U p U ρρ+=+ (3.2.3) 22 33441122 p U p U ρρ+=+ (3.2.4) 因为14p p =,且通过透平的前后速度一样(23U U =)。 由实际作用力223()T A p p =- (3.2.5) 利用3.2.3式和3.2.4式求得23()p p -,将其带入3.2.5式,得到: 222141 ()2 T A U U ρ= - (3.2.6) 从式3.2.2和式3.2.6得到推力值,设质量流量是22A U ,得到: 14 22 U U U += (3.2.7) 定义诱导速度(induction factor )a 为: 12 1 U U a U -= (3.2.8) 21(1)U U a =- (3.2.9) 且 41(12)U U a =-

最新空气动力学考试题与答案

(1~6) 一、概念 1、理想流体:忽略粘性的流体。 2、粘性:当流体各流层间发生相对滑移时,流体内部表现出阻碍这种相对滑移的性质。 3、完全气体:忽略气体分子的体积,忽略分子间引力和斥力,忽略碰撞完全弹性。 4、等温压缩系数:在可逆定温过程中,压力每升高一个单位体积的缩小率。 5、绝热压缩系数:在可逆绝热过程中,压力每升高一个单位体积的缩小率。 6、热胀系数:在准平衡等压过程中,温度每升高一个单位体积的膨胀率。 7、功率系数:风(空气)实际绕流风机后,所产生的功率与理论最大值P max=1/2ρV02A之比。 8、贝兹极限:功率系数的最大值,其数值为0.593。 9、弦长:前、后缘点所连接直线段的长度。 10、骨架线(中轴线):风力机叶片截面上内切圆圆心的连线。 11、弯度、最大弯度:中轴线与几何弦长的垂直距离称为弯度;中轴线上各点弯度不同,其中最大值为最大弯度。 12、拱度、最大拱度:截面上弦的垂线与轮廓线有两个交点,这两个交点之间的距离称为拱度;截面上弦的垂线上的拱度不同,其中最大值为最大拱度。13、NACA4412:“NACA”,美国航空总局标志;第一个“4”,表示最大弯度出现在弦上距前缘点4/10弦长处;第二个“4”,表示最大弯度为弦长的4%;“12”表示最大拱度为弦长的12%。 14、简述绕流翼型产生升力的原因。 无穷远处均匀来流,绕流如图所示翼型,在尾部锐缘点处产生一个逆时针的漩涡,均匀来流无涡,因此在翼型表面形成一个与尾涡大小相当,方向相反,顺时针漩涡,使上表面流速加快,下表面流速减慢,由伯努利方程,上表面流速减慢,压力增大,上下表面压差产生升力。 15、写出理想流体的伯努利方程(不计重力),并说明其物理意义。 P+1/2ρV2=常数(P/ρ+1/2=常数) 物理意义:流体压力势能与动能之间相互转化,二者之和守恒。 16、简述风能本身及当前风力发电产业链的优缺点。 风能本身优点:清洁、可再生、无污染、分布广 缺点:过于分散、难于收集、稳定性差 风力发电产业链优点:可再生、分布广 缺点:过于分散、难于集中与控制、稳定性差、使用寿命短、成本高17、风力机叶轮转速是多少?20~50r/min 励磁电机转速是多少?1000r/min、1500r/min、3000r/min 如何实现变速?通过变速齿轮箱来实现 二、图表分析与简答。 1、P27 图4.4 推力系数C T关于a=0.5对称。当a=0.5时,C T取最大值,C Tmax=1;当a=0或1时,C T取最小值C Tmin=0;功率系数C p在a≈0.33时,取最大值,C pmax≈0.59

空气动力学基础要点

空气动力学基础(教学重点) 绪论(1学时) 第一章流体静力学(5学时) 1、掌握连续介质假设的概念、意义和条件; 2、了解掌握流体的基本物理属性,尤其是易流性、粘性、压缩性等属性的物理本质和数学表达; 3、掌握流体力学中作用力的分类和表达、静止流体中压强的定义及其特性; 4、初步掌握静止流体微团的力学分析方法,重点掌握流体平衡微分方程的表达及其物理意义; 5、在流体平衡微分方程的应用方面,掌握重力场静止液体中的压强分布规律,重点掌握标准大气问题。 第二章流体运动学与动力学基础(12学时) 1、了解两种描述流场的方法的区别与特点,重点掌握欧拉法下加速度的表达和意义 2、掌握流体微团的几种变形和运动及其数学表达,掌握流体微团的运动分解与刚体运动的异同; 3、了解系统分析方法与控制体分析方法的区别与联系,了解雷诺输运方程的表达及意义; 4、空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、动量方程和能量方程的表达和意义,并会用它们解决实际工程问题;微分形式方程要重点掌握连续方程、欧拉方程和能量方程的表达和意义;掌握微元控制体分析方法;掌握伯努利方程的表达、意义、条件和应用; 5、重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函数、环量与涡的表达、意义及其相互之间的关系; 第3章低速平面位流(6学时) 3.1 平面不可压位流的基本方程及其边界条件 二维流动 不可压无旋流动的基本方程是位函数满足的拉普拉斯方程 不穿透条件(可滑移条件) 拉普拉斯方程的叠加原理,速度也可叠加,压强不可叠加 流函数也满足拉普拉斯方程 3.2 几种简单的二维位流 各基本解的速度、位函数、流函数 直匀流 源,汇 偶极子,偶极子的形成,轴线,方向 点涡点涡的环量 3.3 一些简单的迭加举例 直匀流加点源 压强系数 直匀流加偶极子 达朗培尔疑题

空气动力学期末复习试题

第一章 一:绪论;1.1大气的重要物理参数 1、最早的飞行器是什么?——风筝 2、绝对温度、摄氏温度和华氏温度之间的关系。——9 5)32(?-T =T F C 15.273+T =T C K 6、摄氏温度、华氏温度和绝对温度的单位分别是什么?——C F K 二:1.1大气的重要物理参数 1、海平面温度为15C 时的大气压力为多少?——29.92inHg 、760mmHg 、 1013.25hPa 。 3、下列不是影响空气粘性的因素是(A) A 、空气的流动位置 B 、气流的流速 C 、空气的粘性系数 D 、与空气的接触面积 4、假设其他条件不变,空气湿度大(B) A 、空气密度大,起飞滑跑距离长 B 、空气密度小,起飞滑跑距离长 C 、空气密度大,起飞滑跑距离短 D 、空气密度小,起飞滑跑距离短 5、对于音速.如下说法正确的是: (C) A 、只要空气密度大,音速就大 B 、只要空气压力大,音速就大 C 、只要空气温度高.音速就大 D 、只要空气密度小.音速就大 6、大气相对湿度达到(100%)时的温度称为露点温度。 三:1.2 大气层的构造;1.3 国际标准大气 1、大气层由内向外依次分为哪几层?——对流层、平流层、中间层、电离层和散逸层。 2、对流层的高度.在地球中纬度地区约为(D) A 、8公里。 B 、16公里。 C 、10公里。 D 、11公里 3、现代民航客机一般巡航的大气层是(对流层顶层和平流层底层)。 4、云、雨、雪、霜等天气现象集中出现于(对流层)。 5、国际标准大气指定的依据是什么?——国际民航组织以北半球中纬度地区大气物理性质的平均值修正建立的。 6、国际标准大气规定海平面的大气参数是(B) A 、P=1013 psi T=15℃ ρ=1、225kg /m3 B 、P=1013 hPA 、T=15℃ ρ=1、225 kg /m3

空气动力学

空气动力学 科技名词定义 中文名称:空气动力学 英文名称:acerodynamics;aerodynamics 定义1:流体力学的分支学科,主要研究空气运动以及空气与物体相对运动时相互作用的规律,特别是飞行器在大气中飞行的原理。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义2:研究空气和其他气体的运动以及它们与物体相对运动时相互作用规律的科学。 所属学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片

同名书籍 空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。 目录

编辑本段 1.动量理论 推导出作用在风机叶轮上的功率P和推力T(忽略摩擦阻力)。 由于受到风轮的影响,上游自由风速V0逐渐减小,在风轮平面内速度减小为U1。上游大气压力为P0,随着向叶轮的推进,压力逐渐增加,通过叶轮后,压力降低了ΔP,然后有又逐渐增加到P0(当速度为U1时)。 根据伯努力方程 H=1/2(ρv2)+P (1) ρ—空气密度 H—总压 根据公式(1), ρV02/2+P0=ρu2/2+p1 ρu12/2+P0=ρu2/2+p2 P1-p2=ΔP 由上式可得ΔP=ρ(V02- u12)/2 (2) 运用动量方程,可得作用在风轮上的推力为: T=m(V1-V2) 式中m=ρSV,是单位时间内的质量流量 所以:T=ρSu(V0-u1) 所以:压力差ΔP=T/S=ρu(V0-u1) 由(2)和(3)式可得: u=1/2[(V0-u1)] (4) 由(4)式可见叶轮平面内的风速u是上游风速和下游风速的平均值,因此,如果我们用下式来表示u。 u=(1-a)*V0 (5) a 称为轴向诱导因子,则u1可表示为: u1=(1-2a)*V0 (6)

泵与风机的部件结构

泵的部件结构 一、离心泵的主要部件 (一心泵的主要部件 尽管离心泵的类型繁多,但由于作用原理基本相同,因而它们的主要部件大体类同。现在分别介绍如下: 出液口 叶以挡水圈 養位套泵轴 轴承盖 B型离心泵分解动画 1、叶轮(imp eller) 叶轮是将原动机输入的机械能传递给液体,提高液体能量的核心部件。叶轮有开式(open impeller)、半开式(semi-open impeller) 及闭式叶轮(closed impeller) 三种,如图所示。开式叶轮没有前盘和后盘而只有叶片,多用于输送含有杂质的液体,如污水泵的叶轮就是采用开式叶轮的。半开式叶轮只设后盘。闭式叶轮既有前盘也有后盘。清水泵的叶轮都是闭式叶轮。离心式泵的叶轮都采用后向叶型。(左:开式叶轮;中:半开式;右:全封闭)

2、轴和轴承(shaftbearing) 轴是传递扭矩的主要部件。轴径按强度、刚度及临界转速定。中小型泵刚度和临 界转速确定多采用水平轴,叶轮滑配在轴上,叶轮间距离用轴套定位。近代大型 泵则采用阶梯轴,不等孔径的叶轮用热套法装在轴上,并利用渐开线花键代替过 去的短 键。此种方法,叶轮与轴之间没有间隙,不致使轴间窜水和冲刷,但拆装 困难。 叶轮的运行方式:(以开式为例) 敞式叶址

轴承一般包括两种形式:滑动轴承(Sleeve bearing)和滚动轴承(Ball bearing)。滑动轴承用油润滑。一种润滑系统包括一个贮油池和一个油环,后者在轴转动时在轴表面形成一个油层使油和油层不直接接触。另一种系统就是利用浸满油的填料包来润滑。大功率的泵通常要用专门的油泵来给轴承送油。(如图所示)。 滚动轴承通常用冷冻油润滑,有些电机轴承是密封而不能获得润滑的。滚动轴承通常用于小型泵。较大型泵可能即有滑动轴承又有滚动轴承。而滑动轴承由于运行噪音低而被推荐用于大型泵。

空气动力学基础知识及飞行基础原理笔试题

空气动力学基础及飞行原理笔试题 1绝对温度的零度是:C A -273℉ B -273K C -273℃ D 32℉ 2 空气的组成为C A 78%氮,20%氢和2%其他气体 B 90%氧,6%氮和4%其他气体 C78%氮,21%氧和1%其他气体 D 21%氮,78%氧和1%其他气体 3 流体的粘性系数与温度之间的关系是? B A液体的粘性系数随温度的升高而增大。 B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。 D气体的粘性系数随温度的升高而降低。 4 在大气层内,大气密度:C A在同温层内随高度增加保持不变。B随高度增加而增加。 C随高度增加而减小。D随高度增加可能增加,也可能减小。 5 在大气层内,大气压强:B A随高度增加而增加。B随高度增加而减小。 C在同温层内随高度增加保持不变。C随高度增加可能增加,也可能减小。 6 增出影响空气粘性力的主要因素 B C A空气清洁度B速度梯度C空气温度D相对湿度 7 对于空气密度如下说法正确的是B A空气密度正比于压力和绝对温度B空气密度正比于压力,反比于绝对温度C空气密度反比于压力,正比于绝对温度D空气密度反比于压力和绝对温度 8 “对于音速.如下说法正确的是”C A只要空气密度大,音速就大”B“只要空气压力大,音速就大“ C”只要空气温度高.音速就大”D“只要空气密度小.音速就大” 9 假设其他条件不变,空气湿度大:B A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短D空气密度小,起飞滑跑距离短 10一定体积的容器中。空气压力D A与空气密度和空气温度乘积成正比B与空气密度和空气温度乘积成反比

1第一章 空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

离心风机的选型与设计

摘要 离心式通风机的设计包括气动设计计算,结构设计和强度计算等内容。离心式通风机 的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。 而理论设讲方法用于设计新系列的通风机。本文在了解离心通风机的基本组成,工作原理以 及设计的一般方法的基础上,设计了一种离心通风机。 关键字:离心式通风机工作原理设计方法 ABSTRACT The design of Centrifugal fan includes the calculation of aerodynamic and the structure etc. The aerodynamic design of Centrifugal fan has two kinds of methods: one is the likeness designs, the other is theoretical designs. Based on above, this article designed a Centrifugal fan based on above. Key words: Centrifugal fan; working principle; design method

1.引言…………………………………………………………………… .(1) 2.离心式通风机的结构及原理 (3) 2.1离心式风机的基本组成 (3) 2.2离心式风机的原理 (3) 2.3离心式风机的主要结构参数 (4) 2.4离心式风机的传动方式 (5) 3离心风机的选型的一般步骤 (5) 4.离心式通风机的设计 (5) 4.1通风机设计的要求 (5) 4.2设计步骤 (6) 4.2.1叶轮尺寸的决定 (6) 4.2.2离心通风机的进气装置 (13) 4.2.3蜗壳设计 (14) 4.2.4参数计算 (20) 4.3离心风机设计时几个重要方案的选择 (24) 5.结论 (25) 附录 (25)

空气动力学复习资料

空气动力学复习 一、基本概念 1 粘性 施加于流体的应力和由此产生的变形速率以一定的关系联系起来的流体的一种宏观属性,表现为流体的内摩擦。 以气体为例,气体分子的速度是由平均速度和热运动速度两部分叠加而成,前者是气体团的宏观速度,后者决定气体的温度。若相邻两部分气体团以不同的宏观速度运动,由于它们之间有许多分子相互交换,从而带来动量的交换,使气体团的速度有平均化的趋势,这便是气体粘性的由来。 2 压缩性 流体的压缩性是流体质点在一定压力差或温度差的条件下,其体积或密度可以改变的性质。其物理意义是:单位体积流体的体积对压强的变化率。 气体流速变化时,会引起气体的压强和密度发生变化。在低速气流中,由于气流速度变化而引起的气体密度的相对变化量很小,可以把气体看作不可压缩流体来处理;高速气流压缩性的影响不能忽略,必须按可压流体来处理。一般0.3Ma作为气体是否可压的分界点。 3 理想气体 忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,即不计分子势能,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。这种气体称为理想气体。 严格遵从气体状态方程的气体,叫做理想气体(Ideal gas.有些书上,指严格符合气体三大定律的气体。)从微观角度来看是指:气体分子本身的体积和气体分子间的作用力都可以忽略不计,不计分子势能的气体称为是理想气体。 4 焓 热力学中表征物质系统能量的一个重要状态参量,焓的物理意义是体系中热学能(内能)再附加上PV(压能)这部分能量的一种能量。 5理想流体 不可压缩、不计粘性(粘度为零)的流体。欧拉在忽略粘性的假定下,建立了描述理想流体运动的基本方程。理想流体和理想气体是两个不同的概念,前者指流体没有粘性,后者指气体状态参量满足气体状态方程的气体。 6 音速 音速是介质中弱扰动的传播速度,其大小因媒质的性质和状态而异。在流动的气体中,相对于气流而言,微弱扰动的传播速度也是声速。在温度T不为常数的流场中,各点的声速是不一样的,与某一点的温度相当的声速称为该点的“当

风机叶片原理和结构

风机叶片得原理、结构与运行维护 潘东浩 第一章风机叶片报涉及得原理 第一节风力机获得得能量 一.气流得动能 E=mv2=ρSv3 式中m—--———气体得质量 S-—-—--—风轮得扫风面积,单位为m2 v--—---—气体得速度,单位就是m/s ρ------空气密度,单位就是kg/m3 E—-———-—-—-气体得动能,单位就是W 二、风力机实际获得得轴功率 P=ρSv3C p 式中P--—----—风力机实际获得得轴功率,单位为W; ρ-———-—空气密度,单位为kg/m3; S————-—--风轮得扫风面积,单位为m2; v------——上游风速,单位为m/s、 Cp -—----—-—风能利用系数 三。风机从风能中获得得能量就是有限得,风机得理论最大效率 η≈0。593 即为贝兹(Betz)理论得极限值。 第二节叶片得受力分析 一。作用在桨叶上得气动力 上图就是风轮叶片剖面叶素不考虑诱导 速度情况下得受力分析。在叶片局部剖面 上,W就是来流速度V与局部线速度U得矢量 与。速度W在叶片局部剖面上产生升力dL 与阻力dD,通过把dL与dD分解到平行与垂直风轮旋转平面上,即为风轮得轴向推力dFn与旋转切向力dFt。轴向推力作用在风力发电机组塔架上,旋转切向力产生有用得旋转力矩,驱动风轮转动。 上图中得几何关系式如下: Φ=θ+α

dFn=dDsinΦ+dLcosΦ dFt=dLsinΦ-dDcosΦ dM=rdFt=r(dLsinΦ-dDcosΦ) 其中,Φ为相对速度W与局部线速度U(旋转平面)得夹角,称为倾斜角; θ为弦线与局部线速度U(旋转平面)得夹角,称为安装角或节距角; α为弦线与相对速度W得夹角,称为攻角。 二。桨叶角度得调整(安装角)对功率得影响。(定桨距) 改变桨叶节距角得设定会影响额定功率得输出,根据定桨距风力机得特点,应当尽量提高低风速时得功率系数与考虑高风速时得失速性能、定桨距风力发电机组在额定风速以下运行时,在低风速区,不同得节距角所对应得功率曲线几乎就是重合得。但在高风速区,节距角得变化,对其最大输出功率(额定功率点)得影响就是十分明显得。事实上,调整桨叶得节距角,只就是改变了桨叶对气流得失速点。根据实验结果,节距角越小,气流对桨叶得失速点越高,其最大输出功率也越高。这就就是定桨距风力机可以在不同得空气密度下调整桨叶安装角得根据、 不同安装角得功率曲线如下图所示: 第三节 叶片得基本概念 1、叶片长度:叶片径向方向上得最大长度,如图1所示。 图1 叶片长度 2、叶片面积

离心通风机叶轮的设计方法简述

离心通风机叶轮的设计方法简述 如何设计高效、工艺简单的离心通风机一直是科研人员研究的主要问题,设计高效叶轮叶片是解决这一问题的主要途径。 叶轮是风机的核心气动部件,叶轮内部流诱导风机动的好坏直接决定着整机的性能和效率。因此国内外学者为了了解叶轮内部的真实流动状况,改进叶轮设计以提高叶轮的性能和效率,作了大量的工作。 为了设计出高效的离心叶轮, 科研工作者们从各种角度来研究气体在叶轮内的流动规律, 寻求最佳的叶轮设计方法。最早使用的是一元设计方法[1] ,通过大量的统计数据和一定的理论分析,获得离心通风机各个关键截面气动和结构参数的选择规律。在一元方法使用的初期,可以简单地通过对风机各个关键截面的平均速度计算,确定离心叶轮和蜗壳的关键参数,而且一般叶片型线采用简单的单圆弧成型。这种方法非常粗糙,设计的风机性能需要设计人员有非常丰富的经验,有时可以获得性能不错的风机,但是,大部分情况下,设计的通风机效率低下。为了改进,研究人员对叶轮轮盖的子午面型线采用过流断面的概念进行设计[2-3] ,如此设计出来的离心叶轮的轮盖为两段或多段圆弧,这种方法设计的叶轮虽然比前一种一元设计方法效率略有提高,但是该方法设计的风机轮盖加工难度大,成本高,很难用于大型风机和非标风机的生产。另外一个重要方面就是改进叶片设计,对于二元叶片的改进方法主要为采用等减速方法和等扩张度方法等[4] ,还有采用给定叶轮内相对速度W 沿平均流线m 分布[5] 的方法。等减速方法从损失的角度考虑,气流相对速度在叶轮流道内的流动过程中以同一速率均匀变化,能减少流动损失,进而提高叶轮效率;等扩张度方法是为了避免局部地区过大的扩张角而提出的方法。给定的叶轮内相对速度W 沿平均流线m 的分布是柜式风机通过控制相对平均流速沿流线m 的变化规律,通过简单几何关系,就可以得到叶片型线沿半径的分布。以上方法虽然简单,但也需要比较复杂的数值计算。 随着数值计算以及电子计算机的高速发展,可以采用更加复杂的方法设计离心通风机叶片。苗水淼等运用“全可控涡”概念[6] , 建立了一种采用流线曲率法在叶轮流道的子午面上进行叶轮设计的设计方法, 该方法目前已经推广至工程界, 并已经取得了显著效果[7] 。但是此方法中决定叶轮设计成功与否的关键, 即如何给出子午流面上叶片涡的合理分布。这一方面需要具有较丰富的设计经验;另一方面也需要在设计过程中对设计结果不断改进以消防风机符合叶片涡的分布规律, 以期最终设计出高效率的叶轮机械。对于整个子午面上可控涡的确定,可以采用rCu 沿轮盘、轮盖的给定,可以通过线性插值的方法确定rCu 在整个子午面上的分布[8-9] ,也可以通过经验公式确定可控涡的分布[10] ,也有利用给定叶片载荷法[11] 设计离心通风机的叶片。以上方法都是采用流线曲率法,设计出的是三元离心叶片,对于二元离心通风机叶片还不能直接应用。但数值计算显示,离心通风机的二元叶片内部流动的结构是更复杂的三维流动。因此,如何利用三维流场计算方法进一步来设计高效二元离心叶轮是提高离心通风机设计技术的关键。 随着计算技术的不断发展,三维粘性流场计算获得了非常大的进步,据此,有一些研究

叶片的空气动力学基础

叶片的空气动力学基础 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力机基础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型 由于平板叶片攻角略大就易产生气流分离,阻力增大;平板的强度也很低,所以正式的叶片截面都就是流线型的,即使有一定厚度阻力也很小。图1就是一幅常见翼型的几何参数图,该翼型的中弧线就是一条向上弯曲的弧线,称这种翼型为不对称翼型或带弯度翼型,比较典型的带弯度翼型为美国的NACA4412。 图1--翼型的几何参数 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,图2就是一个对称翼型,比较典型的对称翼型为美国的NACA0012。

图2--对称翼型的几何参数 图3就是一个性能较好的适合风力机的低阻翼型,就是带弯度翼型,在水平轴风力机中应用较多。 图3--带弯度的低阻翼型 翼型的升力原理 有关翼型的升力原理解释有多种,归纳起来主要依据就是基于牛顿定律的气流偏转产生反作用力与基于伯努利原理的气流速度不同产生压差两个原理,我们结合这两个原理对翼型的升力作通俗的解释。

带弯度翼型在攻角为0度时的升力与阻力 图4就是一个带弯度翼型在攻角为0度时的流线图与压强分布图,左图就是该翼型的流线图,由于翼型上下面不对称,气流在上下面的流动状态也不同。翼型上表面就是凸起的,通道截面减小,气流的流速会加快,另一个原因就是凸起的表面使翼型后面的气压有所减小,前后的压差使得气流速度加快,特别就是翼型上表面前端流速较快。翼型下表面较平,多数气流基本就是平稳流过,由于由于上表面前端高速气流产生低压的吸引,翼型前端气流都向上表面流去,造成靠下表面的气流通道加宽,导致靠近下表面的气流速度有所下降。这样流过上表面的气流速度要比下表面快,根据伯努利原理,流速快的地方压力比流速慢的地方压力小,也就就是说翼型下方压力大于上方,压力差使翼型获得一个向上的力Fl,所以说带弯度翼型在攻角为0度时也会有升力。 图4--翼型在攻角为0度时的流线图与压强分布图图4右图就是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线就是上表面的压力分布,箭头线的长短与方向表示该点的压

相关文档
最新文档