MEMS各种仿真软件的比较分析

MEMS各种仿真软件的比较分析
MEMS各种仿真软件的比较分析

《MEMS器件、仿真与系统集成》期中测验(三)

(占考试成绩的20%,中英文答题均可,5月30日交电子版。任课教师:陈剑鸣)

研究生:段海军(签字)

学号:

MEMS设计、仿真软件的综合比较。(占本课程的20%)。

具体要求:

1)用表格形式对MEMS常用的软件进行比较。比较的软件四大类:TannerPro

(主要是L-edit),HFSS,CoventorWare,IntelliSense,ANSYS

2)比较的内容:

?公司、厂家;

?软件的总体描述;

?软件的模块关系(模块组成);

?按模块来阐述的主要用途;

?按模块来阐述的性能参数;

?软件所做的实例图(分模块)。

?你对此软件(或者是具体模块)的看法和评价,不少于5个模块。

作业作答如下:由于制作表格不是很方便,每个软件包含的内容非常多,所

以我采用如下形式的方式来分析比较上面五个软件。

一TannerPro(主要是L-edit)

1.1公司、厂家:

TannerResearch公司

1.2软件的总体描述

Tanner集成电路设计软件是由TannerResearch公司开发的基于Windows平台的用于

集成电路设计的工具软件。该软件功能十分强大,易学易用,包括S-Edit,T-Spice,W-Edit,L-Edit与LVS,从电路设计、分析模拟到电路布局一应俱全。其中的L-Edit版图编辑器在国内应用广泛,具有很高知名度。

L-EditPro是TannerEDA软件公司所出品的一个IC设计和验证的高性能软件系统模块,具有高效率,交互式等特点,强大而且完善的功能包括从IC设计到输出,以及最后的加工服务,完全可以媲美百万美元级的IC设计软件。L-EditPro包含IC设计编辑器(LayoutEditor)、自动布线系统(StandardCellPlace&Route)、线上设计规则检查器(DRC)、组件特性提取器(DeviceExtractor)、设计布局与电路netlist的比较器(LVS)、CMOSLibrary、MarcoLibrary,这些模块组成了一个完整的IC设计与验证解决方案。L-EditPro丰富完善的功能为每个IC设计者和生产商提供了快速、易用、精确的设计系统。

TannerToolsPro是一套集成电路设计软件,包含以下几种工具:

S-Edit(编辑电路图)。

T-Spice(电路分析与模拟)。

W-Edit(显示T-Spice模拟结果)。

L-Edit(编辑布局图,自动布局布线,DRC,电路转化)。

LVS(版图和电路图对比)。

1.3软件的模块关系及其主要用途与实例图

S-Edit模块:可以继续在Core模块中继续寻找更低一级的模块,直至到MOS晶体管。

T-Spice模块:是电路仿真与分析的工具,文件内容除了有元件与节点的描述外,还必须加上其他的设定。有包含文件(includefile)、端点电压源设置、分析设定、输出设置。

L-Edit模块:是一个布局图的编辑环境功能包括设计导航、分析图层、截面观察、设计规则检查、转化等。

LVS模块:是用来比较布局图与电路图所描述的电路是否相同的工具,也就是说比较S-Edit绘制的电路图与L-Edit绘制的布局图是否一致。

图1S-Edit模块界面图

图2S-Edit实例图

图3(a)T-Spice模块等效电路图(b)模拟仿真结果

1.4TannerPro软件的设计流程

TannerPro软件的设计流程可用如下图4所示;将要设计的电路先以S-Edit编辑出电路图,再将该电路图输出成SPICE文件。接着利用T-Spice将电路图模拟并输出成SPICE 文件,如果模拟结果有错误,N回S-Edit检查电路图,如果T-Spice模拟结果无误,则以L-Edit进行布局图设计。用L-Edit进行布局图设计后要以DRC功能做设计规则检查,若违反设计规则,再将布局图进行修改直到设计规则检查无误为止。将验证过的布局图转化成SPICE文件,再利用T-Spice模拟,若有错误,再回到L-Edit修改布局图。最后利用

LVS将电路图输出地SPICE文件与布局图转化的SPICE文件进行对比,若对比结果不相等,则回去修改L-Edit或S-Edit的图;直到验证无误后,将L-Edit设计好的布局图输出成GDSII文件类型,再交由工厂去制作半导体过程中需要的光罩。

如下是Tanner数字ASIC设计流程图:

图4Tanner数字ASIC设计流程图

1.5L-Edit模块介绍

(1)L-Edit画图布局详细步骤

1)打开L-Edit程序,保存新文件。

2)取代设定(File-ReplaceSetup)。

3)环境设定(Setup-Design)。

4)选取图层。

5)选择绘图形状绘制布局图。

6)设计规则设定(MOSIS/OPBIT2.OU)和设计规则检查(DRC)。

7)检查错误,修改(移动)对象。

8)再次进行设计规则检查。

(2)使用L-Edit画PMOS布局图

1)用到和图层包括NWell,Active,NSelect,PSelect,Poly,Metal1,Metal2,ActiveContact,Via。

2)绘制NWell图层:L-Edit编辑环境是预设在P型基板上,不需定义P型基板范围,要制作PMOS,首先要作出NWell区域。根据设计规则Well区电最小宽度的要求(10λ),可画出NWell区。

3)绘制Active图层:定义MOS管的范围。PMOS的Active图层要绘制在NWell图层之内。根据设计规则要求,Active的最小宽度为3λ。可在NWell中画出Active图层。

4)绘制PSelect图层:定义要布置P型杂质的范围。绘制前进行DRC可发现相应错误。绘制时注意遵守规则:NotSelectedActive。绘制时注意遵守规则:ActivetoP-SelectEdge最小2λ。同时还要注意pdiff层与NWell层要遵守5λ。

5)绘制Poly图层:定义成长多晶硅,最小宽度2λ。

6)绘制ActiveContact图层:源极、漏极接电极需要。标准宽度2λ。

7)绘制Metal1图层:最底层的金属线。

图5使用L-Edit画PMOS布局图

(3)使用L-Edit编辑标准逻辑元件

1)标准元件库中的标准元件的建立符合某些限制,包括高度、形状与连接端口的位置。标准元件分为逻辑元件与焊垫元件。

2)操作流程:进入L-Edit-建立新文件-环境设定-绘制接合端口-绘制多种图层形状-

设计规则检查-修改对象-设计规则检查

3)绘制接合端口:每一个标准元件一个特殊的端口叫做接合端口,它的范围定交出元件的尺寸及位置即元件的边界。

4)绘制电源与电源接口:典型标准元件的电源线分布在元件的上端和下端。注意标准单元库中的每一个标准元件其电源端口必须有相同的真对高度,且电源端口的宽度必须设定为0,位置必须贴齐Abut范围的两边。

5)绘制NWell层:在P型基板上制作PMOS的第一步流程。横向24格,纵向38格。

6)编辑NWell节点:因为PMOS基板也需要电源,故需要在NWell上建立一个欧姆节点。在Abut端口的上方,绘制出Active,NSelect、ActiveContact这3种图层。

7)编辑P型基板节点:NMOS基板也需要接地,故此需要在Pbase上建立一个欧姆节点。在Abut端口的下方,绘制出Active、PSelect、ActiveContact这3种图层。

8)绘制PSelect图层。植入P型杂质需要。两部分:一是在NSelect右边加上一块横向11格、纵向10格;一是在下方再加上横向18格,纵向22格。

9)绘制NMOSActive图层:定义MOS的范围,Active以外的地方是厚氧化层区(或称场氧化层)。一是在原上部Active下接一块横向12格,纵向4格的方形Active,一是在其下方再画横向14格、纵向18格的方形Active。

10)绘制NSelect图层:植入N型杂质需要。一是在Abut下部PSelect右边加横向11格,纵向10格;一是在刚上方加横向18格,纵向22格。

11)绘制PMOSActive图层:一是在原下部Active上接一块横向12格,纵向4格的方形Active,一是在其上方再画横向14格、纵向18格的方形Active。

12)绘制Poly层:Poly与Active相交集为栅极所在位置。横向2格,纵向70格。绘制完此步,请先进行DRC无误后再继续。

13)绘制输入信号端口(A):标准元件信号端口(除电源和地)的绕线会通过标准元件的顶端或底部。一个标准元件信号端口要求高度为0,且宽度最好为整数值。自动绕线时用Metal2,故需先将输入端口由Metal2通过Via与Metal1相连,在通过Metal1通过PolyContact与Poly相连。DRC确认无误。

14)绘制PMOS源极接线:需要将PMOS左端P型扩散区与Vdd相连。利用Metal1与Vdd相连,Metal1与Active间通过ActiveContact相接。

15)绘制NMOS源极接线:需要将NMOS左边N型扩散区与Gnd相连。利用Metal1与Gnd相连,Metal1与Active间通过ActiveContact相接。

16)连接PMOS与NMOS的基极:将NMOS的右边扩散区和PMOS的右边扩散区利用Metal1相连,并在Metal1与Active重叠区打上节点。

17)绘制输出信号端口(OUT)。

18)更改元件名称为INV,转化为spice文件(TOOLS-Extract)。

1.6L-Edit的实际范例

L-Edit是一个布局图的编辑环境,在此以TannerToolsPro所附的范例Lights.tdb文件为例,进行L-Edit基本结构的介绍。Lights.tdb文件中有很多组件(cell),Lights 组件、core组件、IPAD组件、OPAD组件等,每一个组件都是一个布局图,一个组件可以应用其他组件而形成层次式结构。Lights.tdb文件是个标准组件组动配置与绕线(SPR)的范例。此范例是利用S-Edit的Lights.tdb文件输出地TRP文件来进行标准组件自动配置与绕线而产生Lights组件的。

图6范例电路图

图7(a)只显示Poly,Active,Nwell图层(b)截面观察

二HFSS

2.1公司、厂家:

美国Ansoft公司

2.2软件的总体描述

AnsoftHFSS(全称HighFrequencyStructureSimulator,高频结构仿真器)是Ansoft 公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,可以对任意的三维模型进行全波分析求解,先进的材料类型,边界条件及求解技术,使其以无以伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术使其成为高频结构设计的首选工具和行业标准,已经广泛地应用于航空、航天、电子、半导体、计算机、通信等多个领域,帮助工程师们高效地设计各种高频结构,包括:射频和微波部件、天线和天线阵及天线罩,高速互连结构、电真空器件,研究目标特性和系统/部件的电磁兼容/电磁干扰特性,从而降低设计成本,减少设计周期,增强竞争力。

2.3软件的模块组成及其主要用途

DESIGNER模块:在DESIGNERTM里结合二维版图,工艺流程,和材料特性,CoventorWareTM可以生成三维模型,进行网格的自动划分。

ANALYZER模块:针对客户所关心的问题,分析人员可以调用ANALYZERTM里专门针对MEMS器件分析开发的多个求解器,对MEMS器件的三维模型进行结构力学、静电学、阻尼、电磁学、多物理场耦合(含压电,,及压阻问题)、微流体(主要涉及Biochip和Inkjet)等物理问题的详细分析。ANALYZERTM还可对边界条件、材料特性、三维模型几何形状等进行参数分析,研究这些参数对器件性能的影响。

INTEGRATOR模块:利用INTEGRATORTM,设计人员可以从三维分析结果提取MEMS器件宏模型,反馈回ARCHITECTTM里进行系统性能的验证,从而完成MEMS的设计。支持的格式包括:Verilog-A(Cadence),MAST(Architect),andMATLAB同时,用户也可以利用

INTEGRATORTM建立自己MEMS产品涉及到的宏模型库,为新产品的开发提供技术储备。2.4AnsoftHFSS的应用领域

2.4.1天线

(1)面天线:贴片天线、喇叭天线、螺旋天线

(2)波导:圆形/矩形波导、喇叭、波导缝隙天线

(3)线天线:偶极子天线、螺旋线天线

(4)天线阵列:有限阵列天线阵、频率选择表面(FSS)、

(5)雷达散射截面(RCS)

2.4.2微波

(1)滤波器:腔体滤波器、微带滤波器、介质滤波器

(2)EMC(ElectromagneticCompatibility)/EMI(ElectromagneticIntergerence):屏蔽罩、近场-远场辐射

(3)连接器:同轴连接器\底板、过渡

(4)波导:波导滤波器、波导谐振器、波导连接器

(5)Silicon/GaAs:螺旋电感器、变压器

2.5HFSS的操作界面和菜单功能介绍

AnsoftHFSS的界面主要包括:菜单栏(Menubar)、工具栏(Toolbars)、工程管理(ProjectManage)窗口、状态栏(Statusbar)、属性窗口(Propertieswindow)、进度窗口(Progresswindow)、信息管理(MessageManage)窗口和3D模型窗口(3DModelerWindow)。

图8AnsoftHFSS的操作界面

菜单栏(Menubar):绘图、3D模型、HFSS、工具和帮助等下拉式菜单组成。

工具栏(Toolbar):对应菜单中常用的各种命令,可以快速方便的执行各种命令。

工程管理(ProjectManage):窗口显示所以打开的HFSS工程的详细信息,包括边界、激励、剖分操作、分析、参数优化、结果、端口场显示、场覆盖图和辐射等。

状态栏(Statusbar):位于HFSS界面底部,显示当前执行命令的信息。

属性窗口(Propertieswindow):显示在工程树、历史树和3D模型窗口中所选条目的特性或属性。

进度窗口(Progresswindow):监视运行进度,以图像方式表示进度完成比例。

信息管理(MessageManage):窗口显示工程设置的错误信息和分析进度信息。

3D模型窗口(3DModelerWindow):是创建几何模型的区域,包括模型视图区域和历史树(记录创建模型的过程)。

三CoventorWare

3.1公司、厂家:

美国Coventor公司

3.2软件的总体描述

CoventorWare是在着名的MEMCAD软件上发展起来的,目前业界公认的功能最强、规模最大的MEMS专用软件。拥有几十个专业模块,功能包含MEMS系统/器件级的设计与仿真,工艺仿真/仿效。其主要用于四大领域:Sensors/Actuators,RFMEMS,Microfluidics,OpticalMEMS。

CoventorWare具有系统级、器件级的功能的MEMS专用软件,其功能覆盖设计、工艺、器件级有限元及边界元分析仿真、微流体分析、多物理场耦合分析、MEMS系统级仿真等各个领域。CoventorWare因其强大的软件模块功能、丰富的材料及工艺数据库、易于使用的软件操作并与各着名EDA软件均有完美数据接口等特点给工程设计人员带来极大的方便。

3.3软件的模块组成及其主要用途

CoventorWare软件主要包括四个模块:ARCHITECT,DESIGNER,ANALYZER,INTEGRATOR。

ARCHITECT模块:提供了独有的PEM(机电)、OPTICAL(光学)、FLUIDIC(流体)库元件,可快速描述出MEMS器件的结构,并结合周围的电路进行系统级的机、电、光、液、热、磁等能量域的分析,找到最优的结构、尺寸、材料等设计参数,从而生成器件的版图和工艺文件。

DESIGNER模块:可进行版图设计、生成器件三维模型、划分网络单元。

ANALYZER模块:可采用FEM(有限元法)、BEM(边界元法)、BPM(光速传播法)、FDM(有限差分法)、VOF(体积函数法)等分析方法进行结构分析、电磁场分析、压电分析、热分析、微流体分析、光学分析及多物理场的全耦合分析等。

INTEGRATOR模块:最后从三维分析结果中提取MEMS器件的宏模型,反馈回ARCHITECT 进行系统或器件性能的验证,完成整个设计。

3.4CoventorWare的基本内容

CoventorWare由可单独使用以补充现有的设计流程,或者共同使用以提供一个完整的MEMS设计流程的4个主要部分组成。其中包括Architect,Designer,Analyzer和Integrator。该工具套件的完整性和模块间高度的一体化程度提高了整体效率和易用性,使用户摆脱了在多个独立工具设计间手工传递数据的负担。

图9CoventorWare工作流程图

3.5CoventorWare分析的基本步骤

CoventorWare分析的基本步骤包括:①定义材料属性;②生成工艺流程;③生成二维版图;④通过二维版图生成三维模型;⑤划分网格生成有限元模型;⑥设定边界条件、加载;⑦求解;⑧提取、查看结果。

以下我们以实例介绍该软件的整个仿真过程:悬臂梁与硅基底间电容的计算和悬臂梁的受力分析

3.5.1工艺过程

(1)在硅基底上沉积一层氮化物(绝缘层)

(2)再在其上沉积一层硼磷硅玻璃(BPSG)作为牺牲层(用于沉积铝)

(3)刻蚀出支座(anchor)将要沉积的位置

(4)采用等边沉积法沉积铝层

(5)留下支座(anchor)和悬臂梁(beam)部分,刻蚀其余的铝层

(6)释放BPSG牺牲层

3.5.2具体设计过程

(1)启动CoventorWare2003,在用户设置中设定Directory(目录),包括WorkDirectory、ScratchDirectory、SharedDirectory。只需设定工作目录,下面两个目录是默认的,系统会自动将它设定到相应的工作路径下,CoventorWare所有运行生成的文件都会写在该目录下(该目录必须是已经存在的目录,在启动时是无法新建工作目录的)。许可文件的位置,包括CoventorLicense、CFDlicense、Saberlicense,在安装时就已设定,默认即可。

(2)单击OK后,系统进入ProjectsDialogWindow(工程对话窗口),新建工程名称为BeamDesign的文件夹,单击Open进入FunctionManager(功能管理器)界面。

(3)进入DESIGNER模块,在Materials中定义材料属性,选择Aluminum(film),根据题设修改其参数;再选择Silicon,方法相同。单击Close,就可编辑工艺过程。

(4)进入ProcessEditor(工艺编辑器),新建一个工艺文件beam.proc,根据上述工艺过程在工艺编辑器中设计整个流程,如图7所示。设计完后,单击Close,就可进行版图设计。

图10工艺过程

(5)进入LayoutEditor(版图编辑器),新建beam.cat文件,根据预先设计的形状设计整个模型的二维版图,如图11所示。设计完后,单击Close即可。

图11二维工艺版图

(6)在model/mesh下拉栏里选择上步设计的二维版图文件beam.cat,单击BuildaNew3DModel。通过工艺文件beam.proc设定的厚度和模型在二维版图文件beam.cat 中的形状,就可生成三维实体模型,如图12所示。

(a)在牺牲层上沉积铝层(b)释放牺牲层得到模型

图12三位实体模型

(7)然后选取悬臂梁和基底,划分网络单元。因为要使用有限元求解器,必须将选择的实体模型划分网格使生成若干单元体,这与ANSYS的处理过程相同。

(8)再次回到FunctionManager(功能管理器)界面?,进入ANALYZER模块,选择MemElectro求解器,点击Analysis运行后,就可以选择提取所需的电容和电量值及电量密度的彩云图;同样要求解悬臂梁的应力和变形,选择MemMech求解器,同样可以提取悬臂梁的变形和应力值及彩云图。

(9)提取、查看结果。所求得的电量和电容值如图13(a)、(b);所示所求得的应力和变形值如图14(a)、(b)所示。

图13(a)电荷密度(b)电容值

图14(a)Z向最大位移为0.16μm(b)悬臂梁所受最大等效应力值为39MPa

图14悬臂梁变形和应力图

四ANSYS

4.1公司、厂家:

美国ANSYS公司

4.2软件的总体描述

ANSYS是由美国ANSYS公司开发的、功能强大的有限元工程设计分析及优化软件包,是迄今为止唯一通过ISO9001质量认证的分析设计类软件。该软件是美国机械工程师协会(ASME)、美国核安全局(NQA)及近二十种专业技术协会认证的标准软件。与当前流行的其他有限元软件相比,ANSYS有明显的优势及突破。

ANSYS具有能实现多场及多场耦合分析的功能,是唯一能够实现前后处理、分析求解及多场分析统一数据库的大型有限元软件,和其他有限元软件相比,ANSYS的非线性分析功能更加强大,网格划分更加方便,并具有更加快速的求解器。同时,ANSYS是最早采用并行计算技术的有限元软件,它支持从微机、工作站、大型机直至巨型机等所有硬件平台,

并可与大多数的CAD软件集成并有交换数据的接口,ANSYS模拟分析问题的最小尺寸可在微米量级,同时,国际上也公认其适于MEMS器件的模拟分析,这是其他有限元分析软件所无法比拟的。

ANSYS有限元软件是融结构、热、流体、电磁、声学于一体的大型通用有限元分析软件,可广泛用于核工业、机械制造、电子、土木工程、国防军工、日用家电等一般工业及科学研究领域。ANSYS是国际公认的适用于MEMS模拟分析的软件工具。其主要分析功能包括以下几个方面。

(1)结构分析包括线性、非线性结构静力分析,结构动力分析(包括模态和瞬态),断裂力学分析,复合材料分析,疲劳及寿命估算分析,超弹性材料的分析等。

(2)热分析包括稳态温度场分析,瞬态温度场分析,相变分析,辐射分析等。

(3)高度非线性结构动力分析包括接触分析,金属成形分析,整车碰撞分析,焊接模拟分析,多动力学分析等。

(4)流体动力学分析包括层流分析,湍流分析,管流分析,牛顿流与非牛顿流分析,内流与外流分析等。

(5)电磁场分析包括电路分析,静磁场分析,变磁场分析,高频电磁场分析等。

(6)声学分析包括水下结构的动力分析,声波分析,声波在固体介质中的传播分析,声波在容器内的流体介质中传播分析等。

(7)多场耦合分析包括电场-结构分析,热-应力分析,磁-热分析,流体-结构分析,流体流动-热分析,电-磁-热-流体-应力分析等。

(8)其他如设计灵敏度及优化分析,子模型及子结构分析等。

图15结构分析

图16热分析的温度分布

17线圈

周围磁

场的分

布图

4.3软件的模块组成及其主要用途

前处理模块:实体建模,网格划分,加载。前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;

分析计算模块:分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;

后处理模块:通用后处理模块:显示计算结果(等直线,剃度,矢量,透明,动画效果等),输出计算结果(图表,曲线);时间历程响应检查在一个时间段或子步历程中结果。

4.4ANSYS使用中几个应注意的问题

(1)单位制

ANSYS软件使用的单位制包括国际单位制(SI),厘米?克?秒制(cgs)、英寸制(bin)、英尺制(bft)、自定义单位制(user)。在使用软件分析问题时,要保证输入的所有数据都是使用同一单位制里的单位。单位制的定义只能通过命令方式实现,缺省为国际单位制。(2)材料库

ANSYS软件提供了一些材料参数,建议不使用,主要由于单位制选用和标准不同,这是一点使用经验。可以建立自己的材料库,这将使分析更加方便,但要注意单位制的问题。(3)坐标系

总体和局部坐标系,用来定位几何形状参数的空间位置,包括笛卡儿坐标系、柱坐标系和球坐标系。显示坐标系用于几何形状的列表和显示。节点坐标系用于定义每个节点的自由度和节点结果数据。单元坐标系用于确定材料数据主轴和单元结果数据。结果坐标系用来列表、显示或在通用后处理器操作中将节点或单元结果转换到一个特定的坐标系中。此外,ANSYS可以定义工作面,工作面的功能较强,利用好工作面将方便建模。

(4)文件类型db文件

数据文件包括模型尺寸、材料特性及载荷等数据文件。emat文件为单元矩阵文件,err 文件为错误和警告信息文件,log文件为命令输入历史文件,rst文件为结构分析结果文件,rfl文件为FLOTRAN结果文件,rmg文件为电磁场分析结果文件,rth文件为热分析结果文件,grph文件为图形文件。由于有限元分析的数据量较大,经常要删除一些文件,但db文件和结果文件一般不要删除。

4.5ANSYS的分析步骤

ANSYS分析过程中三个主要的分析步骤:

(1)创建有限元模型,包括创建或读入几何模型、定义材料属性、划分单元。

(2)施加载荷进行求解,包括施加载荷及载荷选项、求解。

(3)查看结果,包括察看分析结果、检验结果(分析是否正确)。

图18ANSYS软件界面

五?IntelliSuite

5.1公司、厂家:

美国IntelliSense公司

5.2软件的总体描述

IntelliSuite是由美国IntelliSense公司创造的全球第一个MEMS专业设计与模拟仿真软件。软件模块包括版图建模、材料特性、工艺、各向同性和各向异性腐蚀模拟仿真、多物理场量(电、机械、热、磁等)耦合分析(包括线性、非线性分析,静态、动态分析等)以及系统级分析。提供从概念设计到产品制造的MEMS解决方案。可进行多物理量的分析,其模拟和分析模块使用户无须进入实际生产即可评估所设计器件的工艺可行性和工作性能。它的突出特点是将着名的开发工具与先进的流水相结合,使MEMS产品迅速走向市场。具有多项领先技术和首要发明创新。软件可广泛运用于MEMS各个环节,是设计、分析、模拟仿真传感器、加速度计、激励器、生物微流体芯片、射频开关以及光学MEMS 器件的强大工具。

5.3软件的模块组成及其主要用途与实例图

?IntelliSuite软件是由如下八个基本模块组成:3DBuilder、AnisE、IntelliFab、IntelliMask、MEMaterial、MicroFluidic、ThermoElectroMechnical、synple。

3DBuilder模块:Intellisuite中的建模模块,采用堆积的方式一步一步地将模型建立起来。

AnisE模块:各向异性蚀刻仿真软件,可即进观看蚀刻过程的图案变化,将其存储成动画档,并测量图案上的距离深度。

IntelliFab模块:工艺过程仿真软件,用工艺仿真的方式建模,并可观看每个工艺步骤的三维立体图及剖面图,供设计者参考。

IntelliMask模块:针对MEMS的版图绘制软件。

MEMaterial模块:内含强大的材料数据库,可观察材料中参数与性质之间的图形,并可以使用自己所获得的量测资料。

MicroFluidic模块:微流分析模块,可以分析流体的流速,电场,电压,并可做泳由渗透分析。

ThermoElectroMechnical模块:分析组件有关机械静电和机电耦合性质,采用强大的切割算法,可更快速并更精确地得到想要的结果。

synple模块:可用于电路仿真。

图193DBuilder模块图

图20AnisE模块图

图21Intellifab模块图

图22IntelliMask模块图

图23MEMaterial模块图

图24MicroFluidic模块

图25ThermoElectroMechnical模块图

图26synple模块

5.4IntelliSuite软件的优势与特点

(1)在建模上,有两种途径,一个是自身模块自带的3Dbuilding模块,不过该模块操作界面在Intellisuite8.5依然没有得到多大改善,另外一种就是利用IntelliMask版图模块以及IntelliFAB工艺模块,生成3D模型,利用工艺生成模型,这也是Coventorware 能做到的;但是Intellisuite不能导入CAE/CAD模型,接口能力较差。

(2)在仿真模块中,Intellisuite优势明显的就是热机电分析模(ThermoElectroMechanicalModule),其电磁模块EMagAnalysis,没有听说业界有利用Intellisuite做电磁仿真的案例;利用热机电模块进行MEMS微变形镜的仿真,其Mesh划分上较为简单,都是面上四面体网格,其材料库的材料参数也大多是从文献中查找的。

(3)Intellisuite还提供了压电分析模块PiezoMEMS,不过我当时的版本中这个模块的算法就是个bug,并不能进行运算,现在打了补丁,

(4)工艺模块,Intellisuite提供湿法、干法的简单模块;这个并不强大,大部分情况下需要的是监控整个fabricationprocessflow,Intellisuite商业化成都目前不高,在一个没有经过检验的工艺分析,可信度大打折扣;所以Intellisuite现在也开始进行工艺验证。

(5)系统级分析模块,Intellisuite有Synple模块,但是相比于Coventor来说,并不能做混合IC仿真。

总结

上面介绍的五钟软件都是常用的MEMS的仿真软件,由于自己只是间接地收集资料和整理各种软件资料,没有亲自使用上面的五钟软件,因此对软件实质的应用以及心得体会不是很多,但是通过看资料大概清楚上面五种软件的优缺点。同时本身软件就有各自优点与缺点,再加上主要的仿真用途有些不太一样,力学仿真:ANSYS软件;设计仿真:COVENTOR 软件;热机电设计仿真:IntelliSuite软件;电磁微波仿真:HFSS软件;根据各种软件的不同用途,对电路进行不同的仿真,会得到不同的精确度。

电磁场仿真软件简介

电磁场仿真软件简介 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS(HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST 的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS(定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell 方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进行仿真。 虽然,Zeland公司的Fidelity和IMST GmbH公司的EMPIRE也可以仿真三维结构。

电力系统软件介绍

电力系统软件介绍 电力系统分析软件介绍 一、PSAPAC 简介:由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能: DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient Midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和

电力系统仿真软件介绍讲解学习

电力系统仿真软件 电力系统仿真软件简介 一、PSAPAC 简介: 由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能:DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和运算结果精确等优点,对于电网的稳态和暂态都可做仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。 ATP(The alternative Transients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本, 它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP程序正式诞生于1984年,由

电力系统分析报告仿真实验报告材料

实用文档 电力系统分析仿真 实验报告 ****

目录 实验一电力系统分析综合程序PSASP概述 (3) 一、实验目的 (3) 二、PSASP简介 (3) 三、实验内容 (5) 实验二基于PSASP的电力系统潮流计算实验 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验步骤 (14) 四、实验结果及分析 (15) 1、常规方式 (15) 2、规划方式 (23) 五、实验注意事项 (32) 六、实验报告要求 (32) 实验三一个复杂电力系统的短路计算 (34) 一、实验目的 (34) 二、实验内容 (34) 三、实验步骤 (35) 四、实验结果及分析 (36) 1、三相短路 (36) 2、单相接地短路 (36) 3、两相短路 (37) 4、复杂故障短路 (37) 5、等值阻抗计算 (38) 五、实验注意事项 (39) 六、实验报告要求 (39) 实验五基于PSASP的电力系统暂态稳定计算实验 (40) 一、实验目的 (40)

二、实验内容 (40) 三、实验步骤 (41) 四、实验结果级分析 (41) 1、瞬时故障暂态稳定计算 (41) 2、冲击负荷扰动计算 (45) 五、实验注意事项 (74) 六、实验结果检查 (74)

实验一电力系统分析综合程序PSASP概述 一、实验目的 了解用PSASP进行电力系统各种计算的方法。 二、PSASP简介 1.PSASP是一套功能强大,使用方便的电力系统分析综合程序,是具有我国自主知识产权的大型软件包。 2.PSASP的体系结构: 第一层是:公用数据和模型资源库,第二层是应用程序包,第三层是计算结果和分析工具。 3.PSASP的使用方法:(以短路计算为例) 1).输入电网数据,形成电网基础数据库及元件公用参数数据库,(后者含励磁调节器,调速器,PSS等的固定模型),也可使用用户自定义模型UD。在此,可将数据合理组织成若干数据组,以便下一步形成不同的计算方案。 文本支持环境: 点击“数据”菜单项,执行“基础数据”和“公用参数”命令,可依次

基于MATLAB的电力系统仿真

《电力系统设计》报告题目: 基于MATLAB的电力系统仿 学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 日期:2015年12月6日 基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来 越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB 电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真 目录 一.前言.............................................. 二.无穷大功率电源供电系统仿真模型构建............... 1.总电路图的设计......................................

PSS在电力系统稳定性中的应用仿真开题报告

一、选题的目的及研究意义 电力系统的发展,互联电力网络变得越来越大。如此的发展趋势在给电力系统以巨大的技术和经济效益的同时,也使得稳定性破坏事故所波及的范围更加广泛,电力市场的日益开放会使运行方式更加灵活多变,对稳定性的实时性判断要求更高。与此同时,由于受到环境和经济等因素的制约,区域间联网和远距离大容量输电系统的不断出现,系统运行更加接近极限状态,这使得电力系统稳定性问题日趋严重,电力系统一旦失去稳定,往往造成大范围、较长时间停电,在最严重的情况下,则可能使电力系统崩溃和瓦解,因此,准确、快速地分析电力系统在扰动下的稳定性行为,必要时采取适当的控制措施,以保证系统稳定性的要求,是电力系统设计及运行人员最重要也是最复杂的任务之一。 从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题依据电网用电供电系统电路模型要求。因此,利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网在其可能遇到的多种故障方面运行的需要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 实际上, 如何保证和提高电力系统的稳定性是从多个方面进行考虑的。在系统规划阶段应合理选择发电厂厂址, 采用合理的输电方案以及配置相应的保护和自动装置等。在运行管理方面, 控制中心对运行方式的良好安排也有助于保证电力系统的安全稳定运行。当系统遭受扰动后,施加控制是改善和提高电力系统稳定性最经济有效的方法之一, 而严重故障后的紧急控制措施可将由于安全性破坏而对系统造成的影响减小到最低程度。 目前暂态稳定分析的基本方法可分为两类:数值解法和直接法。 数值解法(时域仿真法)是暂态稳定分析基本方法,它以稳态工况或潮流解为初值,对上述方程组联立求解或交替求解,逐步求得状态量和代数量,并根据发电机的转子摇摆曲线来判定系统在扰动下能否保持同步。 目前时域仿真法主要采用的数值计算方法包括显式积分法和隐式积分法。前者包括欧拉法、龙格-库塔法和线形多步法等。后者包括改进的欧拉法和隐式积分法。欧拉法的精度低,数值稳定性较差,一般适用于简单模型和较短的暂态持续时间。龙格-库塔法拟合了泰勒级数的高阶项,具有比较高的精度,数值稳定性好。它的缺点是计算量大,计算速度慢。线形多步法精度高,运算量比龙格一库塔法小,但计算结果受初始值的影响较大,需要选择适当的起步算法来保证其精度。改进的欧拉法用隐式积分校正欧拉法的结果,精度比欧拉法有所提高。隐式梯形积分法在联立求解微分一代数方程时可以消除交接误差,具有较好的数值稳定性,可以采用较大的步长。虽然时域仿真法可以考虑电机的详细模型,而且能够得到足够准确的结果,但是随着网络规模的扩大,时域仿真法的计算量将很大,计算速度不能满足在线监测和控制的要求,并且其不能定量给出系统的稳定裕度。所以对电力系统暂态稳定研究致力于寻找一种快速、准确、实用的暂态分析算法。我国电力科学界对稳定分析的直接法与快速算法的研究大致始于80年代,其中最早发表的一篇是夏道止与Heydt等人关于分解-聚合法在线稳定的研究。随后有电力部电力科学研究院傅书逷等人关于PEBS法的研究:清华大学倪以信与美国Fouad等人对UEP法的直流输电模型与励磁系统模型的研究:1988年我国学者南京电力自动化研究院薛禹胜与比利时Pavella教授等人提出了扩展等面积法(EEAC法),将多机系统变成等值两机系统,利用等面积准则和泰勒展开式导出临界切除时间和稳定裕度的解析式,根据这一解析在注入空间定义稳态稳定域,推算联络潮流的稳定极限。近年来该法经不断完善,已扩展到动态EEAC法,使得计算精度大大提高。到了90年代,直接法与快速算法的研究尤为活跃,如哈尔滨工业大学郭志忠,柳焯等人用高阶Taylor 级数研究快速暂稳计算问题,上海交通大学刘笙等人关于PEBS法复杂模型的研究,东北电力

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

PSCAD电力系统仿真软件介绍

PSCAD电力系统仿真软件介绍 只要您能想得到,就能模拟得出 随着电力系统的发展,对精确的、直观的仿真工具的需求变得越发重要了。用PSCAD,您能够 创建、仿真、并能轻易地模拟您的系统,给电力系统仿真提供了无限可能。PSCAD包括一个完 整的系统模型库,系统模型从简单的无源元件和控制功能,到电机和其他复杂的设备。 PSCAD得益于30多年的不断研究和开发。我们从全球用户群的想法和反馈中得到启发。这个哲理使得PSCAD成为当今最受欢迎的电力系统暂态仿真软件。 提供知识、专业技术和解决方案 我们的专家在电力系统行业为我们的客户提供一系列全面的技术服务。我们为全球的电力行业提 供专业的知识、技术和解决方案,包括电力系统研究和项目管理服务。作为加拿大最大公共事业 公司之一的子公司Manitoba HVDC Research Centre ,将多年的经验和独特的视角跟技术研究结合到一起,是公认的应用电力系统分析和建模的世界领导者。 Man itoba HVDC Research Centre 所能提供的项目研究以及给世界各地的公司提供过的服务。 电力系统研究 作为世界知名的PSCAD仿真软件的开发者,我们有独特的优势和对仿真研究的深刻理解,这是很多其他技术服务提供商所不具备的。在电力系统规划和业务研究方面,我们对使用各种软件工 具有着丰富的经验,比如PSCAD, PSS/E, DSA Power Tools, ETAP , CYME, Risk_A 等等。我们 给公用事业,顾问公司,工业客户,设备制造商和行业领导者等提供过服务,并与研究学术机构, 运营商以及监管机构有着密切的合作。

几种常用电力系统仿真软件的比较分析

几种常用电力系统仿真软件的比较分析 电力系统仿真软件的分类较为复杂,按照不同标准可分为:实时与非实时,短时与长时间等不同种类,而各个仿真软件在功能上都具有综合性,只是侧重点有所不同,在报告的最后有各类仿真软件功能的比较,以下为较著名的仿真软件的介绍。 1 RTDS RTDS由加拿大RTDS公司出品,一个CPU模拟一个电力系统元器件,CPU间的通讯,采用并行-串行-并行的方式。RTDS具有仿真的实时性,主要用于电磁暂态仿真。目前RTDS应用规模最大的是韩国电力公司(KEPCO)的装置, 有26个RACK,可以模拟400多个三相结点。RTDS仿真的规模受到用户所购买设备(RACK)数的限制。这种开发模式不利于硬件的升级换代,与其它全数字实时仿真装置相比可扩展性较差。由于每个RACK的造价很高, 超过30万美元, 因此仿真规模一般不大。基于上述原因,RTDS目前主要用于继电保护试验和小系统实时仿真。 2 EMTDC/PSCAD EMTDC是一种世界各国广泛使用的电力系统仿真软件, PSCAD是其用户界面,一般直接将其称为PSCAD。使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能。PSCAD/EMTDC基于dommel电磁暂态计算理论,适用于电力系统电磁暂态仿真。EMTDC(Electro Magnetic Transient in DC System)即

可以研究交直流电力系统问题,又能完成电力电子仿真及其非线性控制的多功能工具。

PSCAD由Manitoba HVDC research center开发。 3 PSASP PSASP由中国电力科学研究院开发。PSASP的功能主要有稳态分析、故障分析和机电暂态分析。稳态分析包括潮流分析、网损分析、最优潮流和无功优化、静态安全分析、谐波分析和静态等值等。 故障分析包括短路计算、复杂故障计算及继电保护整定计算。机电暂态分析包括暂态稳定计算、电压稳定计算、控制参数优化等。 4 ARENE 法国电力公司(EDF)开发的全数字仿真系统ARENE, 有实时仿真和非实时仿真版本。实时版本有: (1)RTP版本,硬件为HP公司基于HP-CONVE工作站的多CPU 并行处理计算机,该并行处理计算机的最大CPU数量已达32个,可以用于较大规模系统电磁暂态实时仿真; (2)URT版本,HP-Unix工作站,用于中小规模系统电磁暂态实时仿真; (3)PCRT版本,PC-Linux工作站,用于中小规模系统电磁暂态实时仿真。 ARENE实时仿真器可以进行如下物理装置测试:继电保护,自动装置,HVDC和FACTS控制器,可以用50微秒步长进行闭环电磁暂态实时仿真。ARENE不作机电暂态仿真。采用基于HP工作站的并行处理计算机,其软硬件扩展也受到计算机型号的制约。

国内电力系统自动化综述-大连理工大学远程与继续教育学院

网络教育学院本科生毕业论文(设计) 题目:国内电力系统自动化综述 学习中心: 层次:专科起点本科 专业: 年级:年春/秋季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 电力系统具有分布范围广、实时性强、自动化程度高等特点,电力系统自动化是一门科技含量高、涉及专业范围广、技术性较强,对制造、安装、运行和管理工作要求标准非常高的专业。电力系统自动化主要包括电网调度自动化和电厂自动化(包括火电厂自动化、水电厂自动化、变电站综合自动化等)两大部分。 本文主要针对我国电力系统中的电网调度、火电厂、水电厂和变电站综合等四个部分在自动化发展过程、发展现状、问题与措施、新技术新工艺以及发展趋势等方面进行了综合评述。 关键词:电网调度;火电厂;水电厂;变电站

目录 内容摘要............................................................................................................................I 引言.. (1) 1电网调度自动化 (2) 1.1发展过程 (2) 1.2发展现状 (2) 1.3发展趋势 (3) 2火电厂自动化 (4) 2.1发展过程 (4) 2.2新技术新工艺的应用 (4) 2.2.1自动检测技术 (4) 2.2.2自动控制技术 (5) 2.3发展趋势 (6) 3水电厂自动化 (7) 3.1发展过程 (7) 3.2自动化系统 (7) 3.2.1 (7) 3.2.2 (7) 3.3发展趋势 (7) 4变电站综合自动化 (8) 4.1发展过程 (8) 4.2存在的问题与改进措施 (8) 4.3发展趋势 (8) 结论 (9) 参考文献 (11)

电力系统仿真计算软件介绍

电力系统仿真计算软件介绍 钱鑫,李琥,施围 (西安交通大学电气工程学院,陕西西安710049) 摘要:以电力系统仿真软件EMTP为例对其历史、计算原理及程序的功能做了较为全面的描述,另外,文中列举当前几种较为流行的电力系统仿真软件及其特点,对于提高电力工作者的工作效率有一定帮助。 关键词: 仿真软件;EMTP 1引言 电力系统仿真就是通过建立适当的数学模型来模拟实际电路的一种研究方法,随着电力系统的不断扩大和网络化,实际电力网络拓扑系统变得越来越复杂,而这时候掌握高效的模拟仿真计算软件也变得越来越重要,随着计算机技术的不断发展,电力系统仿真软件已成为电力系统工作者进行电力系统规划、保护、调度及故障研究的重要工具。为使读者对于电力系统仿真软件有一个全面、清晰的了解,下面以在电力系统应用最为广泛的EMTP为例,介绍其历史、计算原理及程序功能,并介绍当今流行仿真软件的各自特点。 2EMTP介绍 2.1EMTP的历史与现状 电力系统分析程序EMTP是目前国际通用的一种数字程序。它规模大、功能强,最初由加拿大不列颠哥伦比亚大学(UBC)的H.W.Dommel教授创立,又经过很多专家的共同努力而不断完善。美国邦纳维尔电力局(BPA)对程序的开发做了很大的贡献。近年来成立的包括美国、加拿大、日本及欧洲一些国家在内的EMTP联合发展中心(DCG)和在欧洲成立的另一个EMTP用户协会(LEC),都还在为该程序的改进提高和推广进行着大量的工作。EMTP 的UBC版本、BPA版本、DCG版本分别为以上机构各自开发的产品[1]。 EMTP发展经历了几十年时间才日趋完整。首先,1960~1963年H.W.Dommel在德国慕尼黑进行电磁暂态分析程序的研究工作,并对单相回路,含元件R、L、C无损线路,一个开关,一个电源,集中参数用梯形积分法,输电线路采用贝杰龙法(即特性线法)等建立相应模型算法。而后到1969年,一些组织和个人的不断介入使程序功能不断得到完善,又建立了多相π输电线路、多相分布参数(包括不同换位情况)和随频率变化特性模型。 1969年4月IEEE PASH.W.Dommel的一篇文章标志着EMTP雏形的完全建立,当时有十多种计算机版本。此后到1973年出现了不少使用组织,除了北美外,还有南美(巴西),欧洲,日本,澳大利亚,印度等,中国台湾大约1980年引入,中国大陆1982年初引入。同时出现了微机版本。大约在1984年,美国EPRI(电力科学研究院)成立了DCG,改用OS/2系统。形成了DCGEM TP。 欧洲一些公司、大学,在欧洲成立了A TPEMTP(微机版本)一直发展到现在,在世界范围内有许多用户,特别是最近开发了A TPdraw,通过绘电路图,在界面上输入数据,借助微机建立数据文件,使用非常方便。但获得A TPEMTP表面上不要费用,但必须买他们的使用手册及相关资料并要写保证书(不做商业目的),才能给你口令,从网上下载。 2.2EMTP的模型与算法原理 电力系统包含有电机、变压器、输电线路、电缆、断路器、电抗器、电容器组、逆变器组、互感器、避雷器等设备,它们结构与功能、特性上千差万别,但从电路的角度来讲,除电源外,总可以用R,L,C(单个或组合,常量或变量)来表征它们的这些功能、特征。如果该

电子电路仿真设计与制版软件综述

电子电路仿真设计与制版软件综述 提到电子设计自动化,还得从上世纪80年代,世界上许多公司相继推出用于微机系统的电子CAD(Computer Aided Design,计算机辅助设计)软件说起。世界上许多公司为了自己的CAD软件能在激烈的市场竞争中占有一席之地,纷纷推出具有自己公司特色的CAD软件,经过多年的实践检验、不断修改和完善,或优存劣汰,或收购兼并,或强强联合,CAD技术已日臻成熟。CAD是一种通用技术,除了在机械、建筑等其它许多行业得到广泛应用之外,借助美国加洲大学伯克利分校的SPICE3.5/XSPICE作为仿真引擎,世界上许多公司还推出各种用于电子行业的优秀EDA软件;从另一个角度讲,CAD(计算机辅助设计)是电子设计的物理级初级阶段;CAE(计算机辅助工程)是电路级设计阶段;EDA(电子设计自动化)是高级的电子系统设计阶段。衡量一个软件的优劣,其中一个很现实的标准就是看它的市场占有率,也就是它的普及和流行程度。正如鲁迅先生所说:“其实地上本没有路,走的人多了,也便成了路。” 说到EDA软件,美国Cadence公司的OrCAD、加拿大Interactive Image Technologies公司的EWB、澳大利亚Altium公司的PROTEL、美国Mentor Graphics公司的PADS都是其中有代表性的佼佼者。 一美国Cadence公司的OrCAD软件 Cadence公司的OrCAD 软件,是世界上应用最广的EDA软件之一,是EDA 软件中一个比较突出的代表。OrCAD软件功能强大,而且它的界面友好、直观,在国外使用广泛,欧美地区有相当数量的电子工程师都在使用它。由于OrCAD 软件进入我国时间比较晚,但随着我国电子行业飞速发展,使用OrCAD软件的用户呈逐年增长的趋势。从早期版本工作于DOS环境的OrCAD 4.0,发展到现在最新的OrCAD 10.5,OrCAD软件集成了电原理图绘制、印制电路板设计、数字/模拟电路仿真、可编程逻辑器件设计等等功能,它的元器件库也是所有EDA软件中最丰富的,在世界上它一直是EDA软件的首选。Cadence公司已成为世界上最强大的开发EDA软件的公司之一。 OrCAD软件系统中主要包括:OrCAD /Capture CIS (电路图设计);OrCAD /PspiceA/D(数/模混合模拟);OrCAD /Layout Plus(PCB 设计)等,其中每一个部分可以根据需要单独使用,又可以共同组成完整的EDA 系统。 OrCAD软件系统的几个主要软件的功能及特点: 1.OrCAD /Capture CIS:它是OrCAD软件包中的共用软件,也是其它两个软件的基 础。它是一个功能强大的电路原理图设计软件。除了可以生成各类电路原理图外,与其它电路图绘制软件相比,Capture CIS软件中还有明显特点的元器件信息系统模块CIS(Component Information System)。该信息系统模块除了可以对元件库中4万多种元器件实施高效的管理以外,还具有ICA(Internet Component Assistant)功能,可以在设计电路图的过程中,通过Internet网上其它元器件数据库中查阅到百万多种元器件,并可以根据绘图需要将它们调入电路图或添加到自己的库文件中;用Capture 软件绘制的电路图完成成后,还可以直接调用OrCAD /Pspice软件进行仿真,也可以进入OrCAD /Layout Plus软件进行制板设计;OrCAD /Capture CIS操作界面友好、直观形象、使用方便;操作功能强大、灵活,项目管理科学有效,适应性很强,支持国际上多种标准。

MEMS设计、仿真软件的综合比较

《MEMS 器件、仿真与系统集成》期中测验(三)(占考试成绩的20%,中英文答题均可,5月30日交电子版。任课教师:陈剑鸣) 研究生:(签字) 学号: MEMS设计、仿真软件的综合比较。(占本课程的20%)。 具体要求: 1)用表格形式对MEMS常用的软件进行比较。比较的软件四大类:TannerPro(主要是L-edit),HFSS, CoventorWare,IntelliSense,ANSYS 2)比较的内容: ?公司、厂家; ?软件的总体描述; ?软件的模块关系(模块组成); ?按模块来阐述的主要用途; ?按模块来阐述的性能参数; ?软件所做的实例图(分模块)。 ?你对此软件(或者是具体模块)的看法和评价,不少于5个模块。 作业作答如下:

一. TannerPro(主要是L-edit) 1.1 公司、厂家: Tanner Research公司 1.2 软件的总体描述 Tanner集成电路设计软件是由Tanner Research 公司开发的基 于Windows平台的用于集成电路设计的工具软件。该软件功能十分强大,易学易用,包括S-Edit,T-Spice,W-Edit,L-Edit与LVS,从 电路设计、分析模拟到电路布局一应俱全。其中的L-Edit版图编辑 器在国内应用广泛,具有很高知名度。 L-Edit Pro是Tanner EDA软件公司所出品的一个IC设计和验 证的高性能软件系统模块,具有高效率,交互式等特点,强大而且完 善的功能包括从IC设计到输出,以及最后的加工服务,完全可以媲 美百万美元级的IC设计软件。L-Edit Pro包含IC设计编辑器(Layout Editor)、自动布线系统(Standard Cell Place & Route)、线上设计 规则检查器(DRC)、组件特性提取器(Device Extractor)、设计布 局与电路netlist的比较器(LVS)、CMOS Library、Marco Library, 这些模块组成了一个完整的IC设计与验证解决方案。L-Edit Pro丰 富完善的功能为每个IC设计者和生产商提供了快速、易用、精确的 设计系统。 Tanner Tools Pro是一套集成电路设计软件,包含以下几种工具:S-Edit (编辑电路图)

MEMS传感器项目规划设计方案 (1)

MEMS传感器项目规划设计方案 规划设计/投资分析/产业运营

摘要说明— 纵观全球MEMS传感器市场,美、日、德一直占据着主导地位。然而近 年来,亚太地区(含日本)受到智能手机、平板电脑、可穿戴产品等市场 需求持续增长、且全球电子整机产业不断向中国转移等因素影响,增长速 度较快,2017年MEMS市场占比达到46.8%,反超美国、欧洲等区域。 该MEMS传感器项目计划总投资11442.14万元,其中:固定资产投资9291.00万元,占项目总投资的81.20%;流动资金2151.14万元,占项目 总投资的18.80%。 达产年营业收入14909.00万元,总成本费用11826.08万元,税金及 附加179.36万元,利润总额3082.92万元,利税总额3687.51万元,税后 净利润2312.19万元,达产年纳税总额1375.32万元;达产年投资利润率26.94%,投资利税率32.23%,投资回报率20.21%,全部投资回收期6.45年,提供就业职位249个。 报告内容:概论、项目建设背景、项目市场空间分析、产品规划方案、项目选址规划、工程设计说明、工艺概述、清洁生产和环境保护、项目安 全卫生、项目风险、项目节能方案分析、项目实施进度计划、项目投资方案、项目经营效益分析、项目评价等。 规划设计/投资分析/产业运营

MEMS传感器项目规划设计方案目录 第一章概论 第二章项目建设背景 第三章产品规划方案 第四章项目选址规划 第五章工程设计说明 第六章工艺概述 第七章清洁生产和环境保护 第八章项目安全卫生 第九章项目风险 第十章项目节能方案分析 第十一章项目实施进度计划 第十二章项目投资方案 第十三章项目经营效益分析 第十四章招标方案 第十五章项目评价

电力系统仿真软件介绍

电力系统仿真软件的分类较为复杂,按照不同标准可分为:实时与非实时,短时与长时间等不同种类,而各个仿真软件在功能上都具有综合性,只是侧重点有所不同,在报告的最后有各类仿真软件功能的比较,以下为较著名的仿真软件的介绍。 1 EMTDC/PSCAD EMTDC是一种世界各国广泛使用的电力系统仿真软件,PSCAD是其用户界面,一般直接将其称为PSCAD。使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能。 PSCAD/EMTDC基于dommel电磁暂态计算理论,适用于电力系统电磁暂态仿真。EMTDC(Electro Magnetic Transient in DC System)即可以研究交直流电力系统问题,又能完成电力电子仿真及其非线性控制的多功能工具。 PSCAD由Manitoba HVDC research center开发。 2 PSAPAC PSAPAC由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。其包含多个模块,其中部分模块可以单独使用。 模块和功能如下: DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient Midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi 方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 3 PSASP

MEMS的计算机辅助设计方法与技术综述

MEMS的计算机辅助设计方法与技术综述 霍鹏飞 (中国兵器工业集团第212研究所 西安 710065) 摘 要:MEMS作为一个多能量域耦合、多学科交叉的复杂系统,一个成功MEMS设计必须借助 于计算机辅助设计。本文结合国际MEMS计算机辅助设计的最新成果,对MEMS的设计、建模与 仿真方法及其技术进行了详细的论述。对MEMS器件或系统设计以及MEMS CAD研究具有参考价 值。 关键词: MEMS CAD;建模与仿真;结构化设计 0 引言 微机电系统(MicroElectroMechanical Systems,MEMS)指的是可以批量制作的将微传感器、微执行器以及接口电路和控制电路、通讯接口和电源等集成于一体的微系统。MEMS作为一门多学科交叉的新兴学科,涉及精密机械、微电子材料科学、微细加工、系统与控制等技术和物理、化学、生物学等基础学科,现已成为一个新兴强大的科学领域。世界各国科研机构大力投资MEMS及其相关技术的研究,它正在对世界科技、经济发展和国防建设带来深远的影响和革命性的变革。 随着MEMS制作工艺的长足发展,目前MEMS由具有单一功能的微器件向由微机械结构、接口电路和控制电路等构成复杂功能系统的集成化方向发展,如芯片系统(System on a Chip)、芯片实验室(Lab on a Chip),因此针对单个微器件的bottom-up设计方法[0-0]已不能满足MEMS发展需求,结构化设计(structured design)[0-0]成为当前MEMS设计的主流方法。结构化设计方法是以超大规模集成电路设计为参照对象来研究MEMS的设计,其主要思想是MEMS设计分阶层,通过在不同设计阶层关注相对独立的设计问题来降低对各阶层设计人员的知识要求;同时因为不同设计阶层都是针对同一MEMS 器件,故结构化方法还强调不同设计阶层之间的数据交换、信息共享。 目前,国内外已出现了一些基于结构化设计方法的MEMS计算机辅助设计(Computer aided design,CAD)软件,如美国Coventor公司的CoventorWare[0]软件,MEMS CAP公司的MEMS Pro软件[0]等,在国内的软件有西北工业大学的MEMSGarden[0],北京大学的IMEE[0],但随着MEMS技术的发展,这些设计软件也在进一步研究和发展之中。 美国麻省理工学院(MIT)的S.D. Senturia [0,0] 教授是MEMS CAD的鼻祖,曾多次展望了MEMS CAD 的发展前景和面临的挑战,根据他的观点,MEMS的设计分为四个阶层:工艺级 (process level) 、物理级 (physical level) 、器件级 (device level) 和系统级 (system level) ,如图1所示,这也是当前国际上关于MEMS设计的一种主流分级方法。工艺级设计关注的焦点是MEMS的几何形状的可加工制造性;与工艺级所关注的焦点不同,物理级、器件级和系统级这三个设计阶层是从不同的角度或不同的抽象阶层来研究MEMS的行为特性。物理级是从物理场的角度研究分析器件内的能量与信息转换机理;相对于物理级,器件级是从更高阶层的角度研究MEMS器件内的能量与信息的转换,在该阶层只关注MEMS器件主要的行为特性,即关注主要矛盾,忽略次要因素,以便对器件行为进行快速的设计、评估;而在系统级设计中研究分析由更多微器件(如微传感器、微致动器、接口电路等)构成微系统的整体性能,以寻求相对合理的系统整体设计方案。

相关文档
最新文档