Langrage和Newton插值法的matlab实现

Langrage和Newton插值法的matlab实现
Langrage和Newton插值法的matlab实现

仅供参考

1.已知数据如下:

(1)用MATLAB语言编写按Langrage插值法和Newton插值法计算插值的程序,对以上数据进行插值;(2)利用MATLAB在第一个图中画出离散数据及插值函数曲线。

(1.1)langrage插值法编程实现

syms x

x0=[0.2,0.4,0.6,0.8,1.0];

y0=[0.98,0.92,0.81,0.64,0.38];

for i=1:5

a=1;

for j=1:5

if j~=i

a=expand(a*(x-x0(j)));

end

end

b=1;

for k=1:5

if k~=i

b=b*(x0(i)-x0(k));

end

end

A(i)=expand(a/b);

end

L=0;

for p=1:5

L=L+y0(p)*A(p);

end

L

L =

-25/48*x^4+5/6*x^3-53/48*x^2+23/120*x+49/50

(1.2)Newton插值程序实现

clear all

clc

syms x

x0=[0.2,0.4,0.6,0.8,1.0];

y0=[0.98,0.92,0.81,0.64,0.38];

for k=1:5

for i=1:k

a=1;

b=0;

for j=1:k

if j~=i

a=a*(x0(i)-x0(j));

end

end

b=b+y0(i)/a;

end

A(k)=b;

end

B=[1,(x-x0(1)),(x-x0(1))*(x-x0(2)),(x-x0(1))*(x-x0(2))*(x-x0(3)),(x-x 0(1))*(x-x0(2))*(x-x0(3))*(x-x0(4))];

L1=A.*B;

l=0;

for m=1:5

l=l+L1(m);

end

L=expand(l)

L =

61/100+13/30*x+383/48*x^2-155/24*x^3+475/48*x^4

(2)画图

x0=[0.2,0.4,0.6,0.8,1.0];

y0=[0.98,0.92,0.81,0.64,0.38];

subplot(1,2,1);

plot(x0(1),y0(1),'+r',x0(2),y0(2),'+r',x0(3),y0(3),'+r',x0(4),y0(4),' +r',x0(5),y0(5),'+r')

x=0:0.05:1;

y=-25/48.*x.^4+5/6.*x.^3-53/48.*x.^2+23/120.*x+49/50;

subplot(1,2,2);

plot(x,y)

2.给定函数

21

(),[1,1]

125f x x x =

?+,利用上题编好的

Langrage 插值

程序(或Newton 插值程序),分别取3个,5个、9个、11个等距节点作多项式插值,分别画出插值函数及原函数()f x 的图形,以验证Runge 现象、分析插值多项式的收敛性。

取三个节点如下

clear clc

x0=0:0.5:1;

y0=1./(1+25.*x0.^2); syms x for i=1:3 a=1; for j=1:3 if j~=i

a=expand(a*(x-x0(j))); end end b=1; for k=1:3 if k~=i

b=b*(x0(i)-x0(k));

end

end

A(i)=expand(a/b);

end

L=0;

for p=1:3

L=L+y0(p)*A(p);

end

L

L =

575/377*x^2-1875/754*x+1

x1=0:0.0001:1;

y1=1./(1+25.*x1.^2);

y2=575/377.*x1.^2-1875/754.*x1+1; plot(x1,y1,'+r')

hold on

plot(x1,y2,'*k')

取五个节点如下

clear

clc

x0=0:0.25:1;

y0=1./(1+25.*x0.^2);

syms x

for i=1:5

a=1;

for j=1:5

if j~=i

a=expand(a*(x-x0(j)));

end

end

b=1;

for k=1:5

if k~=i

b=b*(x0(i)-x0(k));

end

end

A(i)=expand(a/b);

end

L=0;

for p=1:5

L=L+y0(p)*A(p);

end

L

L =

1570000/3725137*x^4-9375000/3725137*x^3+16996575/3725137*x^2-25546875 /7450274*x+1

x1=0:0.0001:1;

y1=1./(1+25.*x1.^2);

y2=1570000/3725137.*x1.^4-9375000/3725137.*x1.^3+16996575/3725137.*x1 .^2-25546875/7450274.*x1+1 ;

plot(x1,y1,'+r')

hold on

plot(x1,y2,'*k')

取九个节点

clear

clc

x0=0:0.125:1;

y0=1./(1+25.*x0.^2);

syms x

for i=1:9

a=1;

for j=1:9

if j~=i

a=expand(a*(x-x0(j))); end

end

b=1;

for k=1:9

if k~=i

b=b*(x0(i)-x0(k));

end

end

A(i)=expand(a/b);

end

L=0;

for p=1:9

L=L+y0(p)*A(p);

end

L

L =

-745631513600000000/6545742033698309*x^8+3419841600000000000/65457420 33698309*x^7-6621592639456000000/6545742033698309*x^6+701929935000000 0000/6545742033698309*x^5-4393156359065510000/6545742033698309*x^4+16 03771386328125000/6545742033698309*x^3-22515465371294825/503518617976 793*x^2+7750485791015625/13091484067396618*x+1

x1=0:0.0001:1;

y1=1./(1+25.*x1.^2);

y2=-745631513600000000/6545742033698309.*x1.^8+3419841600000000000/65 45742033698309.*x1.^7-6621592639456000000/6545742033698309.*x1.^6+701 9299350000000000/6545742033698309.*x1.^5-4393156359065510000/65457420 33698309.*x1.^4+1603771386328125000/6545742033698309.*x1.^3-225154653 71294825/503518617976793.*x1.^2+7750485791015625/13091484067396618.*x 1+1;

plot(x1,y1,'--r')

hold on

plot(x1,y2,'k')

取十一个节点

clear

clc

x0=0:0.1:1;

y0=1./(1+25.*x0.^2);

syms x

for i=1:11

a=1;

for j=1:11

if j~=i

a=expand(a*(x-x0(j)));

end

end

b=1;

for k=1:11

if k~=i

b=b*(x0(i)-x0(k));

end

end

A(i)=expand(a/b);

end

L=0;

for p=1:11

L=L+y0(p)*A(p);

end

L

L =

-34246599899961879527652554108472435783737151791529333342439890764194 138662212746796134934947111446834934981225775592089458363348770912339 65270312991850496/531784334364368541121377512346039689020405192055863 792565017448202828956543207958970636868736188852138716814254794627774 04544150039401268463093187392345*x^10+1210861925034397303974825235208 856641321245395988383400510933809608933943070109804041433585075703890 43992652515804277667665850493797050376702379508889550848/265892167182 184270560688756173019844510202596027931896282508724101414478271603979 485318434368094426069358407127397313887022720750197006342315465936961 725*x^9-1866684313118720862370761857357873725727309899525470177959305 327610184009984336016654604586537474647225602036909009509629462337871 679343044326927998528782336/13294608359109213528034437808650992225510 129801396594814125436205070723913580198974265921718404721303467920356 36986569435113603750985031711577329684808625*x^8+23611807538171574906 011643599849452960817408616824406084205963728265391951073294139482618 65424198108462767092910060184301539989010355832103758391330174140416/ 949614882793515252002459843475070873250723557242613915294674014647908 850970014212447565837028908664533422882597847549596509716964989308365 412378346291875*x^7-4578860481690066161293496219231309353157185777675 911097067240785960218106859531461119980693611241512684683245055928029

44898398657172353734910039192768610304/163726703929916422759044800599 150150560469578834933433671495519766880836374140381456476868453260114 574728083206525439585605123614653329028519375576946875*x^6+1208896240 091227004014649292653180932095752199938547766467634306558831845101356 610875428494980896176123816882698391104104739378941637827301445624516 9422336/5817292837500093432997181104355984276223496430057669169901213 027737741062055955724378619437814926883934224960780737255553232767489 520389398507586046875*x^5-9426742531077361259963874032262920859571499 090962109596557614232718127924658426578037836193059449875770679514969 8078389699551522017848691472848705458783911936/9232366916048064950023 915144896522378826479028747635287587108475743558273319582621018001193 3366120162971669141457400655216222482707293868859536783667265625*x^4+ 337502535313255963451249774988157794349008442554288812868476402072529 386740438292949810847848903190381480351455379945072471021414326937152 58453281704155021312/106527310569785364807968251671882950524920911870 165022549082020873964133922918261011746167615422446341890387470912385 371403333633893031387145619365769921875*x^3-1211158355177464943941661 995806321494372416012729993289144421736931564988847351060533923007000 51676118679651553633528158918481769660983714572459994328070094848/230 809172901201623750597878622413059470661975718690882189677711893588956 832989565525450029833415300407429172853643501638040556206768234672148 8419591681640625*x^2+302715481258614897028208818090865836694936458005 708460532843137494564284294144717946752760785413468650273921187174271 696035438592761935270935490270251188224/32972738985885946250085411231 773294210094567959812983169953958841941279547569937932207147119059328 6296327389790919288054343651723954620960212631370240234375*x+21790216 4370694078464/217902164370694140625

x1=0:0.0001:1;

y1=1./(1+25.*x1.^2);

y2=-34246599899961879527652554108472435783737151791529333342439890764 194138662212746796134934947111446834934981225775592089458363348770912 33965270312991850496/531784334364368541121377512346039689020405192055 863792565017448202828956543207958970636868736188852138716814254794627 77404544150039401268463093187392345.*x1.^10+1210861925034397303974825 235208856641321245395988383400510933809608933943070109804041433585075 70389043992652515804277667665850493797050376702379508889550848/265892 167182184270560688756173019844510202596027931896282508724101414478271 603979485318434368094426069358407127397313887022720750197006342315465 936961725.*x1.^9-1866684313118720862370761857357873725727309899525470 177959305327610184009984336016654604586537474647225602036909009509629 462337871679343044326927998528782336/13294608359109213528034437808650 992225510129801396594814125436205070723913580198974265921718404721303 46792035636986569435113603750985031711577329684808625.*x1.^8+23611807

538171574906011643599849452960817408616824406084205963728265391951073 294139482618654241981084627670929100601843015399890103558321037583913 30174140416/949614882793515252002459843475070873250723557242613915294 674014647908850970014212447565837028908664533422882597847549596509716 964989308365412378346291875.*x1.^7-4578860481690066161293496219231309 353157185777675911097067240785960218106859531461119980693611241512684 68324505592802944898398657172353734910039192768610304/163726703929916 422759044800599150150560469578834933433671495519766880836374140381456 476868453260114574728083206525439585605123614653329028519375576946875 .*x1.^6+1208896240091227004014649292653180932095752199938547766467634 306558831845101356610875428494980896176123816882698391104104739378941 6378273014456245169422336/5817292837500093432997181104355984276223496 430057669169901213027737741062055955724378619437814926883934224960780 737255553232767489520389398507586046875.*x1.^5-9426742531077361259963 874032262920859571499090962109596557614232718127924658426578037836193 0594498757706795149698078389699551522017848691472848705458783911936/9 232366916048064950023915144896522378826479028747635287587108475743558 273319582621018001193336612016297166914145740065521622248270729386885 9536783667265625.*x1.^4+337502535313255963451249774988157794349008442 554288812868476402072529386740438292949810847848903190381480351455379 94507247102141432693715258453281704155021312/106527310569785364807968 251671882950524920911870165022549082020873964133922918261011746167615 422446341890387470912385371403333633893031387145619365769921875.*x1.^ 3-1211158355177464943941661995806321494372416012729993289144421736931 564988847351060533923007000516761186796515536335281589184817696609837 14572459994328070094848/230809172901201623750597878622413059470661975 718690882189677711893588956832989565525450029833415300407429172853643 5016380405562067682346721488419591681640625.*x1.^2+302715481258614897 028208818090865836694936458005708460532843137494564284294144717946752 760785413468650273921187174271696035438592761935270935490270251188224 /32972738985885946250085411231773294210094567959812983169953958841941 279547569937932207147119059328629632738979091928805434365172395462096 0212631370240234375.*x1+217902164370694078464/217902164370694140625; plot(x1,y1,'+r')

hold on

plot(x1,y2,'*k')

By 疑似天人

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

牛顿插值法matlab程序解析

牛顿插值法在MATLAB 中的实现 经过n+1个不同的插值点12n+1,,x x x …,,构造牛顿插值公式 1211231212n+112n =[,]()[,,]()()[,,]()()()N f x x x x f x x x x x x x f x x x x x x x x x -+--++---(x )……… 注:牛顿插值法中,用到了插值公式 %我们以二次牛顿插值公式为例解析牛顿插值法的matlab 程序 function[c,d]=newpoly(x,y) %这里x 为3个节点的横坐标组成的向量,即()123,,x x x x =,y 为纵坐标的组成向量,即()()()()123,,y f x f x f x = %c 为所得的牛顿插值多项式的系数组成的向量 n=length(x); %测量向量x 的长度,即向量x 中元素i x 的个数,赋值给n ,所以n=3,注:这里的“n ”仅为变量,和公式中的次数n 不一样 d=zeros(n,n); d=zeros(3,3) %把变量d 定义为一个n 行,n 列的零矩阵,此矩阵用来储存各阶差商,格式完全等同于书中21页的表 d(:,1)=y ’; %此句是把向量y 的转置,即123()()()f x y f x f x ?? ?= ? ?? ?,赋值给零矩阵d 的第一列 %下面运用两个for 循环来构造书中21页的差商表 %第一个循环(父循环),循环变量为k for k=2:n %用来表示零矩阵d 中的第几行 %第二个循环(父循环),循环变量为k for j=k:n %用来表示零矩阵d 中的第几列 d(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1)); %差商公式,其中d(k,j)表示零矩阵d 中的第k 行,第j 列的元素,d(k,j-1),d(k-1,j-1)等也类似,它们代表的元素随着双循环而变化,x(k-1)表示1k x -,这种计算差商的方法是根据差商表的排列位置而得来,具体解释见下面。 end end %下面以二次牛顿插值公式为例解析双循环构造差商表,让我们先来看看构造好的差商表 121232312333 () () [,] ()[,][,,]X f x d f x f x x f x f x x f x x x ????=??????

matlab实现数值分析报告插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要求是计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

三次样条插值---matlab实现

计算方法实验—三次样条插值 机电学院075094-19 苏建加 20091002764 题目:求压紧三次样条曲线,经过点(-3,2),(-2,0),(1,3),(4,1),而且一阶导 数边界条件S'(-3)=-1;S'(4)=1。 解:首先计算下面的值: 记 1--=j j j x x h ; 1++=j j j j h h h u ;1=+j j u λ ; ?? ????????---+=-++++-j j j j j j j j j j j h y y h y y h h x x x f 1111 111],,[ ;M j =)(''j x s ;],,[611+-=j j j j x x x f d ; h1=-2-(-3)=1;h2=1-(-2)=3;h3=4-1=3; u1=1/4;u2=3/6; d1=6/4*(3/3-(-2)/1)=4.5;d2=6/6*(-2/3-3/3)=-5/3; 由于边界条件S'(-3)=-1;S'(4)=1,得到如下 式子: d0=6/1*(-2/1-(-1))=-6; d3=6/3*(1-(-2)/3)=10/3; 所以得到4个含参数m0~m3 的线性代数方程组为: 2.0000 1.0000 0 0 m0 0.2500 2.0000 0.7500 0 m1 0 0.5000 2.0000 0.5000 m2 0 0 1.0000 2.0000 m3 利用matlab 求解方程得: m = -4.9032 3.8065 -2.5161 2.9247 所以 S1(x)=-0.8172*(-2-x)^3+ 0.6344*(x+3)^3+2.8172*(-2-x)-0.6344*(x+3) x ∈[-3,-2] S2(x)=0.2115*(1-x)^3 -0.1398*(x+2)^3- 1.9032*(1-x)+ 2.2581*(x+2) x ∈[-2,1] S3(x)=-0.1398*(4-x)^3+0.1625(x-1)^3+ 2.2581*(4-x)-1.1290*(x-1) x ∈[1,4] 化简后得:S1(x)=1.4516*x^3 + 10.6128*x^2 + 23.4836*x + 16.1288 x ∈[-3,-2] S2(x)=-0.3513x^3-0.2043x^2+1.8492x+1.7061 x ∈[-2,1] S3(x)=0.3023x^3-2.1651x^2+3.8108x+1.0517 x ∈[1,4] 画图验证:

MAAB牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα(1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)=f (0x )+f[10x x ,](0x -x ) f[x,0x ]=f[10x x ,]+f[x,10x x ,](1x -x ) …… f[x,0x ,…x 1-n ]=f[x,0x ,…x n ]+f[x,0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )+f[x,0x ,…x n ,x ])(x 1n +ω=N n (x )+) (x n R 其中 N n (x )=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )(2) )(x n R =f(x)-N n (x )=f[x,0x ,…x n ,x ]) (x 1n +ω(3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,](k=0,1,2,……,n )(4)

MATLAB三次样条插值之三弯矩法

MATLAB三次样条插值之三弯矩法 首先说这个程序并不完善,为了实现通用(1,2,…,n)格式解题,以及为调用追赶法程序,没有针对节点数在三个以下的情况进行分类讨论。希望能有朋友给出更好的方法。 首先,通过函数 sanwanj得到方程的系数矩阵,即追赶法方程的四个向量参数,接下来调用 追赶法(在intersanwj函数中),得到三次样条分段函数系数因子,然后进行多项式合并得 到分段函数的解析式,程序最后部分通过判断输入值的区间自动选择对应的分段函数并计算改 点的值。附:追赶法程序 chase %%%%%%%%%%%%%% function [newv,w,newu,newd]=sanwj(x,y,x0,y0,y1a,y1b) % 三弯矩样条插值 % 将插值点分两次输入,x0 y0 单独输入 % 边值条件a的二阶导数 y1a 和b的二阶导数 y1b,这里建议将y1a和y1b换成y2a和 y2b,以便于和三转角代码相区别 n=length(x);m=length(y); if m~=n error('x or y 输入有误,再来'); end v=ones(n-1,1);u=ones(n-1,1);d=zeros(n-1,1); w=2*ones(n+1); h0=x(1)-x0; h=zeros(n-1,1); for k=1:n-1 h(k)=x(k+1)-x(k); end v(1)=h0/(h0+h(1)); u(1)=1-v(1); d(1)=6*((y(2)-y(1))/h(1)-(y(1)-y0)/h0)/(h0+h(1)); % for k=2:n-1 v(k)=h(k-1)/(h(k-1)+h(k)); u(k)=1-v(k); d(k)=6*((y(k+1)-y(k))/h(k)-(y(k)-y(k-1))/h(k-1))/(h(k-1)+h(k)); end newv=[v;1]; newu=[1;u]; d0=6*((y(1)-y0)/h0-y1a)/h0;

拉格朗日插值、牛顿插值的matlab代码

实验五多项式插值逼近 信息与计算科学金融崔振威201002034031 一、实验目的: 拉格朗日插值和牛顿插值的数值实现 二、实验内容:p171.1、p178.1、龙格现象数值实现 三、实验要求: 1、根据所给题目构造相应的插值多项式, 2、编程实现两类插值多项式的计算 3、试分析多项式插值造成龙格现象的原因 主程序 1、拉格朗日 function [c,l]=lagran(x,y) %c为多项式函数输出的系数 %l为矩阵的系数多项式 %x为横坐标上的坐标向量 %y为纵坐标上的坐标向量 w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if k~=j v=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算end end l(k,:)=v; end c=y*l; 牛顿插值多项式主程序 function [p2,z]=newTon(x,y,t) %输入参数中x,y为元素个数相等的向量 %t为插入的定点 %p2为所求得的牛顿插值多项式 %z为利用多项式所得的t的函数值。 n=length(x); chaS(1)=y(1); for i=2:n x1=x;y1=y; x1(i+1:n)=[];

y1(i+1:n)=[]; n1=length(x1); s1=0; for j=1:n1 t1=1; for k=1:n1 if k==j %如果相等则跳出循环 continue; else t1=t1*(x1(j)-x1(k)); end end s1=s1+y1(j)/t1; end chaS(i)=s1; end b(1,:)=[zeros(1,n-1) chaS(1)]; cl=cell(1,n-1); %cell定义了一个矩阵 for i=2:n u1=1; for j=1:i-1 u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法 cl{i-1}=u1; end cl{i-1}=chaS(i)*cl{i-1}; b(i,:)=[zeros(1,n-i),cl{i-1}]; end p2=b(1,:); for j=2:n p2=p2+b(j,:); end if length(t)==1 rm=0; for i=1:n rm=rm+p2(i)*t^(n-i); end z=rm; else k1=length(t); rm=zeros(1,k1); for j=1:k1 for i=1:n rm(j)=rm(j)+p2(i)*t(j)^(n-i); end

三次样条插值的Matlab实现(自然边界和第一边界条件)

(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x)_____________(1) %第一类边界条件下三次样条插值; %xi所求点; %yi所求点函数值; %x已知插值点; %y已知插值点函数值; %f_0左端点一次导数值; %f_n右端点一次导数值; n = length(x0); z = length(y0); h = zeros(n-1,1); k=zeros(n-2,1); l=zeros(n-2,1); S=2*eye(n); fori=1:n-1 h(i)= x0(i+1)-x0(i); end fori=1:n-2 k(i)= h(i+1)/(h(i+1)+h(i)); l(i)= 1-k(i);

end %对于第一种边界条件: k = [1;k];_______________________(2) l = [l;1];_______________________(3) %构建系数矩阵S: fori = 1:n-1 S(i,i+1) = k(i); S(i+1,i) = l(i); end %建立均差表: F=zeros(n-1,2); fori = 1:n-1 F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i)); end D = zeros(n-2,1); fori = 1:n-2 F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i)); D(i,1) = 6 * F(i,2); end %构建函数D: d0 = 6*(F(1,2)-f_0)/h(1);___________(4)

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

牛顿插值MATLAB算法

MATLAB程序设计期中作业 ——编程实现牛顿插值 成员:刘川(P091712797)签名_____ 汤意(P091712817)签名_____ 王功贺(P091712799)签名_____ 班级:2009信息与计算科学 学院:数学与计算机科学学院 日期:2012年05月02日

牛顿插值的算法描述及程序实现 一:问题说明 在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 二:算法分析 newton 插值多项式的表达式如下: 010011()()()()()n n n N x c c x x c x x x x x x -=+-+???+--???- 其中每一项的系数c i 的表达式如下: 12011010 [,,,][,,,] [,,,]i i i i i f x x x f x x x c f x x x x x -???-???=???= - 即为f (x)在点01,,,i x x x ???处的i 阶差商,([]()i i f x f x =,1,2,,i n = ),由差商01[,,,]i f x x x ???的性质可知: () 010 1 [,,,]()i i i j j k j k k j f x x x f x x x ==≠???=-∑∏ 牛顿插值的程序实现方法: 第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、 、。 第二步:计算牛顿插值多项式中01[,,,]i f x x x ???011()()()i x x x x x x ---???-,1,2,,i n = ,得到n 个多项式。

三次样条插值的Matlab实现(自然边界和第一边界条件)(精)

(第一边界条件源代码: function y=yt1(x0,y0,f_0,f_n,x _____________(1 %第一类边界条件下三次样条插值; %xi 所求点; %yi所求点函数值; %x 已知插值点; %y 已知插值点函数值; %f_0左端点一次导数值; %f_n右端点一次导数值; n = length(x0; z = length(y0; h = zeros(n-1,1; k=zeros(n-2,1; l=zeros(n-2,1; S=2*eye(n; fori=1:n-1 h(i= x0(i+1-x0(i; end fori=1:n-2

k(i= h(i+1/(h(i+1+h(i; l(i= 1-k(i; end %对于第一种边界条件: k = [1;k]; _______________________(2 l = [l;1]; _______________________(3 %构建系数矩阵 S : fori = 1:n-1 S(i,i+1 = k(i; S(i+1,i = l(i; end %建立均差表: F=zeros(n-1,2; fori = 1:n-1 F(i,1 = (y0(i+1-y0(i/(x0(i+1-x0(i; end D = zeros(n-2,1; fori = 1:n-2 F(i,2 = (F(i+1,1-F(i,1/(x0(i+2-x0(i; D(i,1 = 6 * F(i,2;

end %构建函数 D : d0 = 6*(F(1,2-f_0/h(1; ___________(4 dn = 6*(f_n-F(n-1,2/h(n-1; ___________(5 D = [d0;D;dn]; ______________(6 m= S\D; %寻找 x 所在位置,并求出对应插值: fori = 1:length(x for j = 1:n-1 if (x(i<=x0(j+1&(x(i>=x0(j y(i =( m(j*(x0(j+1-x(i^3/(6*h(j+... (m(j+1*(x(i-x0(j^3/(6*h(j+... (y0(j-(m(j*h(j^2/6*(x0(j+1-x(i/h(j+... (y0(j+1-(m(j+1*h(j^2/6*(x(i-x0(j/h(j ; break; else continue; end end end (2 (自然边界条件源代码: 仅仅需要对上面部分标注的位置做如下修改 :

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序 求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序 function [y,R,A,C,L]=newdscg(X,Y,x,M) n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1;L(k,:)=poly2sym(C); 例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差. 解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序 >> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345; [y,R,A,C,P]=newdscg(X,Y,x,M) 运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下 y = 22.3211 R = 65133/562949953421312*M (即R =2.3503*M ) A= 27.0000 0 0 0 1.0000 -6.5000 0 0 2.0000 1.0000 1.5000 0 17.0000 15.0000 7.0000 0.9167 C = 0.9167 4.2500 -4.1667 1.0000 P = 11/12*x^3+17/4*x^2-25/6*x+1

matlab_牛顿插值法_三次样条插值法

(){} 2 1 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x = -≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两 种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

matlab计算拉格朗日牛顿及分段线性插值的程序

《工程常用算法》综合实践作业二 完成日期: 2013年 4月 14 日 班级 学号 姓名 主要工作说明 自评成绩 0718 2010071826 崔洪亮 算式与程序的编写 18 0718 2010071815 侯闰上 流程图的编辑,程序的审查 0718 2010071809 赵化川 报告的整理汇总 一.作业题目:三次样条插值与分段插值 已知飞机下轮廓线数据如下: x 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 飞机下轮廓线形状大致如下图所示: 要求分别用拉格朗日插值法、Newton 插值法、分段线性插值法和三次样条插值法计算x 每改变0.5时y 的值,即x 取 0.5, 1, 1.5, … , 14.5 时对应的y 值。比较采用不同方法的计算工作量、计算结果和优缺点。 二.程序流程图及图形 1.拉格朗日插值法 开始 x,y,x0 Length (x)==l Ength (y)? n=length (x) i=1:n,l=1。 j=1:i-1&j=i+1:n l=l.*(x0-x(j)/x(i)-x(j) f=f+l*y(i) 结束 否 是 机翼 下轮廓线

2.牛顿插值法 开始 x,y,xi Length(x)==l ength(y)? n=length(x)Y=zeros (n),Y (:1)=y,f=0 a=1:n-1,b=1:n-a,Y(b,a+1)=(Y (b+1,a)-Y(b,a))/(x (b+a)-x(b)) i=1:n,z=1 结束 j=1:i-1,z=z.*(xi-x(j)) f=f+Y(1,i)*z 否 是 3.分段线性插值法 开始 x ,y ,x0 length (x )==length(y)? k=1:n-1 x(k)<=x0&x0《=x(k+1) temp=x(k)-x(k+1) f=(x0-x(k+1))/temp*y(k)+(x0-x(k))/(-temp)*y(k+1) 结束 否否 是 是 三.matlab 程序及简要的注释(m 文件) 1.拉格朗日插值法 2.牛顿插值法 function f=newdun(x,y,xi) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量 function f=lang(x,y,x0) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量

均差牛顿插值MATLAB,M文件

%均差牛顿插值 function [ f y f0 ] = newton1( X,Y,x0 ) if nargin<3 error('Requires at least three input arguments.'); end if length(X)==length(Y) n=length(X); else error('length must equal') end syms x s=Y(1); l=1.0; y=zeros(n); y(1:n,1)=Y'; for i=2:n for j=2:i y(i,j)=(y(i,j-1)-y(j-1,j-1))/(X(i)-X(j-1)); if i==j l=l*(x-X(i-1)); s=s+y(i,i)*l; end end end f=simple(s); f0=subs(f,x0); function [ f f0 y] = newton2( X,Y,x0 ) if nargin<3 error('Requires at least three input arguments.'); end if length(X)==length(Y) n=length(X); else error('length must equal') end syms x s=Y(1); l=1.0; y=zeros(n) y(1:n,1)=Y'; for i=2:n for j=2:i y(i,j)=(y(i,j-1)-y(i-1,j-1))/(X(i)-X(i-j+1)); if i==j l=l*(x-X(i-1)); s=s+y(i,i)*l; end end end f=simple(s); f0=subs(f,x0);

matlab 牛顿插值法 三次样条插值法

(){} 21 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x =-≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。 已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

插值MATLAB程序-数值分析

插值MATLAB程序(可以输出多项式)—数值分析 1.拉格朗日多项式逼近 function [C,L,y]=lagran(X,Y) %拉格朗日多项式逼近 w=length(X); L=zeros(w,w); for k=1:w V=1; for j=1:w if k~=j V=conv(V,poly(X(j)))/(X(k)-X(j)); end end L(k,:)=V; end C=Y*L; y=poly2sym(C,'x'); 2.牛顿插值多项式 function [C,D,y]=newpoly(X,Y) %牛顿插值多项式 n=length(X); D=zeros(n,n); D(:,1)=Y'; for j=2:n for k=j:n D(k,j)=(D(k,j-1)-D(k-1,j-1))/(X(k)-X(k-j+1)); end end C=D(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); m=length(C); C(m)=C(m)+D(k,k); end y=poly2sym(C,'x'); 3.切比雪夫逼近 function [C,X,Y]=cheby(fun,n,a,b) %切比雪夫逼近 if nargin==2 a=-1;b=1; end

d=pi/(2*n+2); C=zeros(1,n+1); for k=1:n+1 X(k)=cos((2*k-1)*d); end X=(b-a)*X/2+(a+b)/2; x=X; Y=eval(fun); for k=1:n+1 z=(2*k-1)*d; for j=1:n+1 C(j)=C(j)+Y(k)*cos((j-1)*z); end end C=2*C/(n+1); C(1)=C(1)/2;

MATLAB拉格郎日插值法与牛顿插值法构造插值多项式

姓名:樊元君学号:2012200902 日期:2012.10.25 1.实验目的: 掌握拉格郎日插值法与牛顿插值法构造插值多项式。 2.实验内容: 分别写出拉格郎日插值法与牛顿插值法的算法,编写程序上机调试出结果,要求所编程序适用于任何一组插值节点,即能解决这一类问题,而不是某一个问题。实验中以下列数据验证程序的正确性。 已知下列函数表 求x=0.5635时的函数值。

3.程序流程图: ●拉格朗日插值法流程图:

●牛顿插值法流程图:

4.源程序: ●拉格朗日插值法:function [] = LGLR(x,y,v) x=input('X数组=:'); y=input('Y数组='); v=input('插值点数值=:'); n=length(x); u=0; for k=1:n t=1; for j=1:n if j~=k t=t*(v-x(j))/(x(k)-x(j)); end end u=u+t*y(k); end disp('插值结果=');disp(u); end

●牛顿插值法: function [] = Newton(x,y,v) x=input('X数组=:'); y=input('Y数组=:'); v=input('插值点数值=:'); n=length(x); t=zeros(n,n); u=0; for i=1:n t(i,1)=y(i); end for j=2:n for i=2:n if i>=j t(i,j)=(t(i,j-1)-t(i-1,j-1))/(x(i)-x(i-j+1)); end end end for k=1:n s=1; m=1; for j=1:k if j

ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数: VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes) VI=interp3(V,XI,YI,ZI) VI=interp3(…, method) Interpn函数: VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …) VI=interpn(V, ntimes) VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method) Spline函数: yi=spline(x,y,xi) pp=spline(x,y) meshgrid函数: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x) [X,Y,Z]=meshgrid(x,y,z) Ndgrid函数: [X1, X2, X3, …]=ndgrid(x1, x2, x3, …) [X1, X2, X3, …]=ndgrid(x) Griddata函数: ZI=griddata(x, y, z, XI, YI) [XI, YI, ZI]=griddata(x, y, z, xi, yi) […]=griddata(… method) 二、自编函数插值 1、拉格朗日插值法: 建立M 文件: function f = Language(x,y,x0) syms t l; if(length(x) == length(y)) n = length(x); else disp('x和y的维数不相等!'); return; %检错

相关文档
最新文档