2020年中国高中数学奥林匹克试题与解答 精品

2020年中国高中数学奥林匹克试题与解答 精品
2020年中国高中数学奥林匹克试题与解答 精品

O

R

Q

N M

F

E

D C

B

A

P

2020年中国数学奥林匹克试题与解答

(2020年1月11日)

一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .

(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?;

(2)若 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,则

11

,22

EQ OB RM MQ OC RF ====,

又OQMR 是平行四边形, 所以OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆, 所以ABD ACD ∠=∠,

于是22EQO ABD ACD FRO ∠=∠=∠=∠,

所以EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 所以 EM =FM , 同理可得 EN =FN ,

所以 EM FN EN FM ?=?. (2)答案是否定的.

当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有

EM FN EN FM ?=?,证明如下:

如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则

11

,22

NS OD EQ OB ==,

所以

NS OD

EQ OB

=. ① 又11

,22

ES OA MQ OC =

=,

所以

ES OA

MQ OC

=. ② 而AD ∥BC ,所以

OA OD

OC OB

=

, ③ 由①,②,③得

NS ES

EQ MQ

=. 因为 2NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠,

()(1802)EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠

(180)2AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠,

所以NSE ?~EQM ?,

EN SE OA

EM QM OC

==(由②). 同理可得, FN OA

FM OC =

, 所以 EN FN

EM FM

=

, 从而 EM FN EN FM ?=?.

二、求所有的素数对(p ,q ),使得q p pq 55+.

解:若pq |2,不妨设2=p ,则q q 55|22+,故255|+q

q .

由Fermat 小定理, 55|-q

q ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.

若pq 为奇数且pq |5,不妨设5=p ,则q

q 55|55

+,故6255

|1

+-q q .

当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1

--q q ,故

626|q .由于q 为奇素数,而626的奇素因子只有313,所以313=q .经检验素数对)

313,5(合乎要求.

若q p ,都不等于2和5,则有11

55

|--+q p pq ,故

S

O R

Q

N

F

E

D

C

B

A P

)(m od 05511p q p ≡+--. ①

由Fermat 小定理,得 )(m od 151

p p ≡- , ②

故由①,②得

)(m od 151p q -≡-. ③

设)12(21-=-r p k

,)12(21-=-s q l

, 其中s r l k ,,,为正整数. 若l k ≤,则由②,③易知

)(mod 1)1()5(5

)5

(1

112121)

12)(12(2)

12(21)

12(2p r r q s r s p s l k l k l -≡-≡==≡=----------,

这与2≠p 矛盾!所以l k >.

同理有l k <,矛盾!即此时不存在合乎要求的),(q p . 综上所述,所有满足题目要求的素数对),(q p 为

)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.

三、设m ,n 是给定的整数,n m <<4,1221+n A A A Λ是一个正2n +1边形,

{}1221,,,+=n A A A P Λ.求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.

解 先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.

事实上,设这个凸m 边形为m P P P Λ21,只考虑至少有一个锐角的情况,此时不妨设

2

21π

<

∠P P P m ,

则)13(2

122-≤≤>∠-=∠m j P P P P P P m m j π

π,

更有)13(2

11-≤≤>

∠+-m j P P P j j j π

而321P P P ∠+11P P P m m -∠>π,故其中至多一个为锐角,这就证明了引理. 由引理知,若凸m 边形中恰有两个内角是锐角,则它们对应的顶点相邻.

在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设

i A 与j A 的劣弧上包含了P 的r 条边(n r ≤≤1),这样的),(j i 在r 固定时恰有12+n 对.

(1) 若凸m 边形的其余2-m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1-r 个P 中的点,此时这2-m 个顶点的取法数为2

1--m r C .

(2) 若凸m 边形的其余2-m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,所以,其余的2-m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,此时这2-m 个顶点的取法数为2

-m r

C .

所以,满足题设的凸m 边形的个数为

))()()(12()12()()12(1

1

1

11111121211

22

1

∑∑∑∑∑==--+---=-=--=----+-+=?

?

?

??++=++n

r n

r m r

m r m r m r n r m r n r m r n

r m r

m r C C C C n C C n C

C

n

))(12(1

11--+++=m n m n C C n .

四、给定整数3≥n ,实数n a a a ,,,21Λ满足 1min 1=-≤<≤j i n

j i a a .求

∑=n

k k a 1

3

的最小值.

解 不妨设n a a a <<<Λ21,则对n k ≤≤1,有

k n a a a a k k n k n k 2111-+≥-≥++-+-,

所以

(

)∑∑=-+=+=n

k k

n k

n

k k

a a a 1

3

13

1

3

21

()()

()

∑=-+-+-+??

? ??++

-+=n k k n k k

n k k n k a a a a a a 12

12

114

1

43

21 ()

∑∑==-+-+≥+≥n k n

k k

n k k n a a 1

3

1

3

1218181. 当n 为奇数时,

22

211

3313

)1(4

12221-=

??=-+∑∑-==n i k n n i n

k . 当n 为偶数时,

32

1

1

3

)12(221∑∑==-=-+n i n

k i k n

?

???

? ??-=∑∑==213

13)2(2n

i n j i j

)2(4

12

2-=

n n . 所以,当n 为奇数时,

22

1

3

)1(32

1-≥

∑=n a n

k k

,当n 为偶数时,)2(321221

3

-≥

∑=n n a n

k k

,等号均在n i n i a i ,,2,1,2

1Λ=+-=时成立. 因此,

∑=n

k k a 1

3

的最小值为

22)1(321-n (n 为奇数),或者)2(32

12

2-n n (n 为偶数)

. 五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.问:对怎样的n ,存在一种染色方式,使得对于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分别被染为这3种颜色?

解 当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。 每3个顶点形成一个三角形,三角形的个数为3

n C 个,而颜色的三三搭配也刚好有3

n C 种,所以本题相当于要求不同的三角形对应于不同的颜色组合,即形成一一对应.

我们将多边形的边与对角线都称为线段.对于每一种颜色,其余的颜色形成2

1-n C 种搭配,所以每种颜色的线段(边或对角线)都应出现在2

1-n C 个三角形中,这表明在合乎要求

的染法中,各种颜色的线段条数相等.所以每种颜色的线段都应当有2

1

2

-=n n C n 条. 当n 为偶数时,

2

1

-n 不是整数,所以不可能存在合乎条件的染法.下设12+=m n 为奇数,我们来给出一种染法,并证明它满足题中条件.自某个顶点开始,按顺时针方向将凸

12+m 边形的各个顶点依次记为1221,,,+m A A A Λ.对于}12,,2,1{+?m i Λ,按12mod +m 理解顶点i A .再将12+m 种颜色分别记为颜色12,,2,1+m Λ.

将边1+i i A A 染为颜色i ,其中12,,2,1+=m i Λ.再对每个12,,2,1+=m i Λ,都将线段(对角线)k i k i A A ++-1染为颜色i ,其中1,,2,1-=m k Λ.于是每种颜色的线段都刚好有m 条.注意,在我们的染色方法之下,线段11j i A A 与22j i A A 同色,当且仅当

)12(m od 2211++≡+m j i j i . ①

因此,对任何)12(mod +≠m j i ,任何)12(mod 0+≠m k ,线段j i A A 都不与k

j k i A A ++

同色.换言之,如果

)12(m od 2211+-≡-m j i j i . ②

则线段11j i A A 都不与22j i A A 同色.

任取两个三角形111k j i A A A ?和222k j i A A A ?,如果它们之间至多只有一条边同色,当然它们不对应相同的颜色组合.如果它们之间有两条边分别同色,我们来证明第3条边必不同颜色.为确定起见,不妨设11j i A A 与22j i A A 同色.

情形1:如果11k j A A 与22k j A A 也同色,则由①知

)12(m od 2211++≡+m j i j i , )12(m od 2211++≡+m k j k j ,

将二式相减,得)12(m od 2211+-≡-m k i k i ,故由②知11i k A A 不与22i k A A 同色. 情形2:如果11k i A A 与22k i A A 也同色,则亦由①知

)12(m od 2211++≡+m j i j i , )12(m od 2211++≡+m k i k i ,

将二式相减,亦得)12(m od 2211+-≡-m k j k j ,亦由②知11k j A A 与22k j A A 不同色.总之,111k j i A A A ?与222k j i A A A ?对应不同的颜色组合.

六、给定整数3≥n ,证明:存在n 个互不相同的正整数组成的集合S ,使得对S 的任意两个不同的非空子集A ,B ,数

A

x

A

x ∑∈ 与 B

x

B

x ∑∈

是互素的合数.(这里

∑∈X

x x 与X 分别表示有限数集X 的所有元素之和及元素个数.

) 证 我们用)(X f 表示有限数集X 中元素的算术平均.

第一步,我们证明,正整数的n 元集合{}

n m m S ,,2,1)!1(1Λ=+=具有下述性质:对1S 的任意两个不同的非空子集A ,B ,有)()(B f A f ≠. 证明:对任意1S A ?,?≠A ,设正整数k 满足

)!1()(!+≤

事实上,设)!1(+'k 是A 中最大的数,则由1S A ?,易知A 中至多有k '个元素,即k A '≤,故!)!

1()(k k k A f '>'

+'≥

.又由)(A f 的定义知)(A f ≤)!1(+'k ,故由①知k k '=.特别地有k A ≤.

此外,显然)!1()!1()(+=+'≥k k A f A ,故由l 的定义可知A l ≤.于是我们有

A l ≤k ≤.

若k l =,则l A =;否则有1-≤k l ,则

≥??? ??+=+)(11)()1(A f l l A f l )!1(111+??

? ??

-+k k

!2!)!1(++++>Λk k .

由于)!1(+k 是A 中最大元,故上式表明1+

l B A ==,故)()(B f B A f A =,但这等式两边分别是A ,B 的元素和,利用

!2!)!1(++>+Λm m 易知必须A =B ,矛盾.

第二步,设K 是一个固定的正整数,)(max !11

1A f n K S A ??>,我们证明,对任何正整数x ,

正整数的n 元集合{}

121!!S x n K S ∈+=αα具有下述性质:对2S 的任意两个不同的非空子集A ,B ,数)(A f 与)(B f 是两个互素的整数.

事实上,由2S 的定义易知,有1S 的两个子集11,B A ,满足A A =1,B B =1,且 1)(!!)(,1)(!!)(11+=+=B xf n K B f A xf n K A f . ② 显然)(!1A f n 及)(!1B f n 都是整数,故由上式知)(A f 与)(B f 都是正整数. 现在设正整数d 是)(A f 与)(B f 的一个公约数,则)()(!)()(!11A f B f n B f A f n -是

d 的倍数,

故由②可知)(!)(!11B f n A f n d -,但由K 的选取及1S 的构作可知,)(!)(!11B f n A f n -是小于K 的非零整数,故它是!K 的约数,从而!K d .再结合)(A f d 及②可知d =1,故)(A f 与)(B f 互素.

第三步,我们证明,可选择正整数x ,使得2S 中的数都是合数.由于素数有无穷多个, 故可选择n 个互不相同且均大于K 的素数n p p p ,,,21Λ.将1S 中元素记为

n ααα,,,21Λ,

则())1(1!!,n i n K p i i ≤≤=α,且()

1,2

2=j i p p (对n j i ≤<≤1),

故由中国剩余定理可知,同余方程组

n i p x n K i i ,,2,1),(mod 1!!2Λ=-≡α,

有正整数解.

任取这样一个解x ,则相应的集合2S 中每一项显然都是合数.结合第二步的结果,这一n 元集合满足问题的全部要求.

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

高中数学奥林匹克竞赛的解题技巧(上中下三篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,? 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?== 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

高中数学奥林匹克训练题

第1页共10页 高中数学高中数学奥林匹克训练题 奥林匹克训练题第一试 一、填空题 1.若集合22{(,)|(20)(12),}P x y x y x Z y Z =?+?≤ ∈∈,则集合P 中的元素个数为____________. 2.已知矩形ABCD 的顶点依次为(1,0)A ?,(1,0)B ,(1,1)C ,(1,1)D ?.若抛物线2y ax =平分矩形ABCD 的面积,则实数a 的值为______. 3.在各边长均为整数的直角三角形中,斜边上的高也是整数的三角形的周长的最小值为______. 4.在四面体ABCD 中,3,1==CD AB ,直线AB 与CD 的距离为2,夹角为°60,则四面体ABCD 的体积为____________. 5.若直线134=+y x 与椭圆19 162 2=+y x 相交于B A ,两点,则在该椭圆上满足PAB ?的面积为3的点P 的个 数为____________. 6.若关于x 的方程sin cos 2x x m =+在[,]2 π π? 内有两个不同实根,则m 的取值范围为____________.7.圆周上有100个等分点,以其中三个点为顶点的钝角三角形的个数为____________.8.若定义在],[b a 上的函数)(x f 满足:对任意的],[,21b a x x ∈,都有))()((2 1 )2( 2121x f x f x x f +≤+,则称函数)(x f 在],[b a 上具有性质P .如果已知函数)(x f 在]3,1[上具有性质P ,那么以下四个命题是真命题的有____________(写出相应命题的序号即可). ①函数)(x f 在]3,1[上的图像是连续(不间断)的;②函数)(2x f 在]3,1[上具有性质P ;③若函数 )(x f 在2=x 处取得最大值1,且1)1(=f ,则1)(=x f ,]3,1[∈x ;④对任意的]3,1[,,,4321∈x x x x ,都有不 等式))()()()((4 1 )4( 43214321x f x f x f x f x x x x f +++≤+++成立. 二、解答题 9.已知F 是椭圆2222x y +=的左焦点,椭圆上的动点,A B 使得ABF ?的内心总在直线1x =?上,求证:直线AB 过定点. 10.数列}{n a 的前4项依次为?,5,8,9,1,且4+i a 是i i a a ++3的个位数字,求证:2 20002198621985|4a a a +++?.

第32届中国数学奥林匹克获奖名单及2017年集训队名单

第32届中国数学奥林匹克获奖名单 一等奖(116人,按省市自治区排列) 编号姓名地区学校 M16001 吴蔚琰安徽合肥一六八 M16002 考图南安徽安师大附中 M16003 徐名宇安徽合肥一中 M16004 吴作凡安徽安师大附中 M16005 周行健北京人大附中 M16006 王阳昇北京北京四中 M16007 陈远洲北京北师大附属实验中学M16008 杨向谦北京人大附中 M16009 夏晨曦北京北师大二附 M16010 谢卓凡北京清华附中 M16011 薛彦钊北京人大附中 M16012 胡宇征北京北京四中 M16013 徐天杨北京北京101中学 M16014 董昕妍北京人大附中 M16015 冯韫禛北京人大附中 M16016 林挺福建福建师范大学附属中学M16017 任秋宇广东华南师大附中 M16018 何天成广东华南师大附中 M16019 戴悦浩广东华南师大附中 M16020 谭健翔广东华南师大附中 M16021 王迩东广东华南师大附中 M16022 程佳文广东深圳中学 M16023 李振广东深圳外国语学校 M16024 张坤隆广东深圳中学 M16025 齐文轩广东深圳中学 M16026 卜辰璟贵州贵阳一中 M16027 顾树锴河北衡水第一中学 M16028 袁铭泽河北衡水第一中学 M16029 卢梓潼河北石家庄二中 M16030 赵振华河南郑州外国语学校 M16031 陈泰杰河南郑州外国语学校

M16032 迟舒乘黑龙江哈尔滨市第三中学 M16033 黄桢黑龙江哈尔滨市第三中学 M16034 姚睿湖北华中师范大学第一附属中学M16035 魏昕湖北武汉二中 M16036 黄楚昊湖北武钢三中 M16037 刘鹏飞湖北武汉二中 M16038 赵子源湖北华中师范大学第一附属中学M16039 徐行知湖北武钢三中 M16040 吴金泽湖北武汉二中 M16041 李弘梓湖北武汉二中 M16042 施奕成湖北华中师范大学第一附属中学M16043 袁睦苏湖北武汉二中 M16044 王子迎湖北武汉二中 M16045 袁昕湖北华中师范大学第一附属中学M16046 陈子瞻湖北湖北省黄冈中学 M16047 詹立宸湖北华中师范大学第一附属中学M16048 严子恒湖北武钢三中 M16049 陈贵显湖北华中师范大学第一附属中学M16050 张騄湖南长沙市长郡中学 M16051 刘哲成湖南长沙市雅礼中学 M16052 仝方舟湖南长沙市长郡中学 M16053 谢添乐湖南长沙市雅礼中学 M16054 尹龙晖湖南长沙市雅礼中学 M16055 黄磊湖南长沙市雅礼中学 M16056 肖煜湖南长沙市长郡中学 M16057 吴雨澄湖南湖南师范大学附属中学M16058 方浩湖南长沙市第一中学 M16059 郭鹏吉林东北师大附中 M16060 丁力煌江苏南京外国语学校 M16061 朱心一江苏南京外国语学校 M16062 高轶寒江苏南京外国语学校 M16063 彭展翔江西高安二中 M16064 刘鸿骏江西江西省吉安市第一中学M16065 孔繁淏辽宁大连二十四中 M16066 孔繁浩辽宁东北育才学校 M16067 孟响辽宁大连24中 M16068 毕梦达辽宁辽宁省实验中学

2012年中国数学奥林匹克(CMO)试题(含答案word)

2012年中国数学奥林匹克(CMO)试题 第一天 1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧 BC 上两点D 、E 分别为弧 ABC 、 ACB 的中点。记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD 相切的圆为2O ,1O 与2O 交于点A 、P 。证明:AP 平分ABC ∠。 2. 给定质数p 。设()ij A a =是一个p p ?的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤= 、。 允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1.若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵”。求好矩阵A 的个数。 3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,,a a : (1) 对每个正整数i ,有i i a M >; (2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈- 使得 1122m m n b a b a b a =+++ .

第二天 4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。对满足 121n x x x +++= 的非负实数12,,,n x x x ,求1min{(),()}i j i j n F f x f x ≤<≤= ∑ 的最大值。

参考答案 第一天 1. 如图2,联结EP 、BE 、BP 、CD 。 分别记BAC ∠、ABC ∠、ACB ∠为A ∠、B ∠、C ∠,X 、Y 分别为CA 延长线、DA 延长线上的任意一点。 由已知条件易得,AD DC AE EB ==。结合A 、B 、D 、 12p x x x <<< ,这是因为交换i x 与j x 的值相当于交换第i 行和第j 行,既不改变题设也 不改变结论。同样,不妨设12p y y y <<< 。于是,假设数表的每一行从左到右是递增的,每一列从上到下也是递增的。 由上面的讨论知11121,2a a ==或212a =,不妨设122a =。否则,将整个数表关于主对

高中奥林匹克数学竞赛-几个重要定理

竞赛专题讲座-几个重要定理 《定理1》正弦定理 △ABC中,设外接圆半径为R,则 证明概要如图1-1,图1-2 过B作直径BA',则∠A'=∠A,∠BCA'=90°,故 即;同理可 得 当∠A为钝角时,可考虑其补角,π-A. 当∠A为直角时,∵sinA=1,故无论哪种情况正弦定理成立。 《定理2》余弦定理△ABC中,有关系 a2=b2+c2-2bccosA;(*) b2=c2+a2-2cacosB; c2=a2+b2-2abcosC; 有时也用它的等价形式 a=ccosB+bcosC; b=acosC+ccosA;(**) c=acosB+bcosA. 证明简介 余弦定理的证法很多,下面介绍一种复数证法 如图建立复平面,则有 =(bcosA-c2)+(bsinθ)2即 a2=b2+c2-2bccosA,同理可证(*)中另外两式;至于**式,由图3显见。 《定理3》梅涅(Menelaus)劳斯定理(梅氏线)直线截△ABC的边BC,CA,AB或其延长线 于D、E、F. 则本题可以添加平行线来证明,也可不添辅助线,仅用正弦定理来证明。在△FBD、△CDE、△AEF中,由正弦定理,分别有

《定理4》塞瓦定理(Ceva) (塞瓦点) 设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,则 证法简介 (Ⅰ)本题可利用梅内劳斯定理证明: (Ⅱ)也可以利用面积关系证明 同理 ④ ⑤ ③×④×⑤得 《定理5》塞瓦定理逆定理 在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,若则AD 、BE 、CE 平行或共点。 证法简介 (Ⅰ)若AD∥BE(如图画5-1) 则 EA CE BD BC = 代入已知式:1=??FB AF BD BC DC BD 于是 CB DC FB AF = , 故 AD∥CF,从而AD∥BE∥CF (Ⅱ)若AD 、BE 交于O (图5-2),则连CO 交AB 于F’.据塞瓦定理,可得 1='??B F AF EA CE DC BD 而已知1=??FB AF EA CE DC BD 可见FB AF B F F A ='' 则 FB AF AF B F F A F A +='+'' AB FB AF B F F A =+='+'ΘAF F A ='Θ 即F '即F ,可见命题成立 《定理6》斯特瓦尔特定理

全国小学生数学奥林匹克竞赛真题及答案收集

全国小学生数学奥林匹克竞赛真题及答案收集 目录 2006年小学数学奥林匹克预赛试卷及答案 (1) 2006年小学数学奥林匹克决赛试题 (4) 2007年全国小学数学奥林匹克预赛试卷 (7) 2008年小学数学奥林匹克决赛试题 (8) 2008年小学数学奥林匹克预赛试卷 (10) 2006年小学数学奥林匹克预赛试卷及答案 1、计算4567-3456+1456-1567=__________。 2、计算5×4+3÷4=__________。 3、计算12345×12346-12344×12343=__________。 4、三个连续奇数的乘积为1287,则这三个数之和为__________。 5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。 计算(4※5)※(5※6)=__________。 6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着A、B、C、D、E、 F六个字母,其中A与D,B与E,C与F相对。将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是__________。 7、如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75平方 厘米,则三角形ABC面积为__________平方厘米。

8、一个正整数,它与13的和为5的倍数,与13的差为3的倍数。那么这个正整数最小是 __________。 9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S数”,(例: 561,6=5+1),则最大的三位数“S数”与最小的三位数“S数”之差为__________。 10、某校原有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人, 那么该校现有男同学__________人。 11、小李、小王两人骑车同时从甲地出发,向同一方向行进。小李的速度比小王的速 度每小时快4千米,小李比小王早20分钟通过途中乙地。当小王到达乙地时,小李又前进了8千米,那么甲乙两地相距__________千米。 12、下列算式中,不同的汉字代表不同的数字,则:白+衣的可能值的平均数为 __________。 答案: 1、1000 2、22.3 3、49378 4、33 5、1259 6、E 7、2006 8、 7 9、889 10、170 11、40 12、12.25 1.【解】原式=(4567-1567)-(3456-1456)=3000-2000=1000 2.【解】原式==21.5+0.8=22.3 3.【解】原式=12345×(12345+1)-(12343+1)×12343 =+12345--12343 =(12345+12343)×(12345-12343)+2

【高中教育】最新高中数学奥林匹克竞赛训练题(206)

——教学资料参考参考范本——【高中教育】最新高中数学奥林匹克竞赛训练题(206) ______年______月______日 ____________________部门

第一试 一、填空题(每小题8分,共64分) 1。已知正整数组成等比数列,且则的最大值为 。 ()a b c a b c <<、、201620162016log log log 3,a b c ++=a b c ++ 2。关于实数的方程的解集为 。x 2 12sin 2222log (1sin )x x -=+- 3。曲线围成的封闭图形的面积为 。 2224x y y +≤ 4。对于所有满足的复数均有,对所有正整数,有,若 。 z i ≠z ()z i F z z i -= +n 1()n n z F z -=020162016,z i z =+=则 5。已知P 为正方体棱AB 上的一点,满足直线A1B 与平面B1CP 所成角 为,则二面角的正切值为 。1111ABCD A B C D -0 6011A B P C -- 6。已知函数,集合则A= 。 22 ()224,()2f x x x g x x x =+-=-+()()f x A x Z g x +?? =∈?? ?? 7。在平面直角坐标系中,P 为椭圆在第三象限内的动点,过点P 引圆的两条切线PA 、PB ,切点分别为A 、B ,直线AB 与轴、轴分别交于点M 、 N ,则面积的最小值为 。 xOy 22 12516x y +=22 9x y +=x y OMN ? 8。有一枚质地均匀的硬币,现进行连续抛硬币游戏,规则如下:在抛掷的过程中,无论何时,连续出现奇数次正面后出现一次反面,则游戏停止;否则游戏继续进行,最多抛掷10次,则该游戏抛掷次数的数学期望为 。 二、解答题(共56分)

2013中国数学奥林匹克成绩

2013中国数学奥林匹克成绩 名次姓名性别学校总分1张灵夫男四川绵阳中学126 2宋杰傲男上海中学126 3刘宇韬男上海中学126 4肖非依男华中师范大学一附中126 5夏剑桥男郑州外国语学校126 6陈嘉杰男华南师范大学附属中学126 7高奕博男人大附中126 8胥晓宇男人大附中126 9柳何园男上海中学123 10杨赛超男石家庄二中南校123 11孟 涛男北京四中123 12刘驰洲男乐清市乐成公立寄宿学校120 13李大为男复旦大学附属中学120 14郝晨杰男江苏省启东中学120 15马玉聪男武汉二中120 16余张逸航男华中师范大学一附中120 17王 翔男深圳中学120 18刘 潇男乐清市乐成公立寄宿学校117 19宋一凡男石家庄二中117 20饶家鼎男深圳市第三高级中学117 21段柏延男人大附中117 22陈凯文男鄞州中学114 23顾 超男格致中学114 24沈 澈男人大附中114 25金 辉男镇海中学111 26涂瀚宇男四川南充高中108 27李辰星男郑州一中108 28周韫坤男深圳中学108 29陈 成男镇海中学105 30朱晶泽男华东师范大学第二附属中学105 31邓杨肯迪男湖南师大附中105 32廖宇轩男郑州外国语学校105 33任卓涵男郑州一中105 34李 爽男育才中学105 35高继杨男上海华育中学102 36李 笑男湖南师大附中102 37颜公望男武汉六中102 38黄 开男华中师范大学一附中102 39田方泽男中山纪念中学102 40占 玮男合肥一中102 41黄 迪男四川自贡蜀光中学99 42杨卓熠男成都七中99 43杨承业男成都七中99 44丁允梓男上海中学99

2019年度高一数学奥林匹克竞赛决赛试题及答案解析

2019年**一中高一数学竞赛奥赛班试题(决赛) 及答案 (时间:5月16日18:40~20:40) 满分:120分 一、 选择题(本大题共6小题,每小题5分,满分30分) 1.已知 M =},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且 P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( ) A. M B. N C. P D.P M 2.函数()1 42-+ =x x x x f 是( ) A 是偶函数但不是奇函数 B 是奇函数但不是偶函数 C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数 3.已知不等式m 2 +(cos 2 θ-5)m +4sin 2 θ≥0恒成立,则实数m 的取值范围是( ) A . 0≤m ≤4 B . 1≤m ≤4 C . m ≥4或x ≤0 D . m ≥1或m ≤0 4.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若 0sin cos 2sin cos =+- +B B A A ,则 c b a +的值是( ) A.1 B.2 C.3 C.2 5. 设 0a b >>, 那么 2 1 () a b a b + - 的最小值是 A. 2 B. 3 C. 4 D. 5 6.设ABC ?的内角A B C ,,所对的边,,a b c 成等比数列,则B C B A C A cos tan sin cos tan sin ++的取值范围是 ( ) A. (0,)+∞ B. C. D. )+∞. 二、填空题(本大题共10小题,每小题5分,满分50分) 7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数| cos sin |2sin )(x x e x x f ++=的最大值与最小值之差等于 。

首届中国东南地区高中数学奥林匹克

首届中国东南地区数学奥林匹克 第一天 一、设实数a 、b 、c 满足2 2 2 3232 a b c ++= ,求证:39271a b c ---++≥ 二、设D 是ABC ?的边BC 上的一点,点P 在线段AD 上,过点D 作一直线分别与线段AB 、 PB 交于点M 、E ,与线段AC 、PC 的延长线交于点F 、N 。如果DE=DF , 求证:DM=DN 三、(1)是否存在正整数的无穷数列{}n a ,使得对任意的正整数n 都有2 122n n n a a a ++≥。 (2)是否存在正无理数的无穷数列{}n a ,使得对任意的正整数n 都有2 122n n n a a a ++≥。 四、给定大于2004的正整数n ,将1、2、3、…、2 n 分别填入n ×n 棋盘(由n 行n 列方格构成)的方格中,使每个方格恰有一个数。如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”。求棋盘中“优格”个数的最大值。 第二天 (2004年7月11日 8:00 — 12:00 温州) 五、已知不等式63)cos()2sin 2364 sin cos a a π θθθθ+- + -<++对于0,2πθ?? ∈?? ?? 恒成立,求a 的取值范围。 六、设点D 为等腰ABC ?的底边BC 上一点,F 为过A 、D 、C 三点的圆在ABC ?内的弧上一点,过B 、D 、F 三点的圆与边AB 交于点E 。求证:CD EF DF AE BD AF ?+?=? 七、n 支球队要举行主客场双循环比赛(每两支球队比赛两场,各有一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进行多场客场比赛。但如果某周内该球队有主场比赛,在这一周内不能安排该球队的客场比赛。如果4周内能够完成全部比赛,球n 的最大值。 注:A 、B 两队在A 方场地举行的比赛,称为A 的主场比赛,B 的客场比赛。 八、求满足 0x y y z z u x y y z z u ---++>+++,且110x y z u ≤≤、、、的所有四元有序整数组(,,,x y z u )的个数。 首届中国东南地区数学奥林匹克(答案)

2003中国数学奥林匹克竞赛获奖名单

2003中国数学奥林匹克竞赛获奖名单 一等奖(19名) 姓名学校姓名学校 方家聪华南师大附属中学高峰南通启东中学 沈欣华南师大附属中学王伟湖南师大附中 陈晨湖北黄冈中学何忆捷上海延安中学 黄皓华南师大附属中学邢硕博北京清华附中 向振长沙市第一中学王国桢甘肃兰州一中 万昕成都彭州中学贾敬非东北师大附中 刘一峰华东师大第二附中祁涵华中师大一附中 林嵩华南师大附属中学孙洪宾耀华中学 姜龙石家庄二中周清人大附中 梁宏宇北师大实验中学 二等奖:(43名) 姓名学校姓名学校 张凌人上海中学戴午阳东北育才中学 周游武钢三中孙婷妮华东师大二附中 李杜湖南师大附中张志强华中师大一附中 朱庆三华南师大附中齐治雅礼中学 刘熠华南师大附中吴昊哈尔滨三中 李大州石家庄二中陈苏南洋模范中学 沈旭凯杭州二中袁放上海中学 陈超河南师大附中洪晓波东北育才中学 李先颖湖南师大附中李晓东东北育才中学 吴天同淮阴中学马力华东师大二附中 张宇北大附中赵亮山东省实验中学 王磊武钢三中孙嘉睿深圳高级中学 周思慎长沙市一中邹鹏北京汇文中学 王晨兰州一中金哲晖延边市一中 李春雷东北师大附中石磊河南师大附中 范翔江西师大附中苟江涛陕西西北工大附中 韩斐华罗庚中学唐培重庆市育才中学 金坚诸暨中学王加白镇海中学 杜杰北大附中蔡雄伟仙游一中 杨龙长沙市一中余学斌圣公会白约翰会督中学林运成上海中学萧子衡顺德联谊总会梁銶琚中学罗海丰华南师大附中

三等奖:(69名) 姓名学校姓名学校 王蓉蓉实验中学张翼飞河南师大附中 张伟安庆一中梁举潼南中学 张晓光高安中学蔡煊挺诸暨中学 郭城威南通启东中学吴博舟山中学 曹志敏华罗庚中学陈淞黄冈中学 资坤长沙市一中马俊达福州三中 刘奇航哈尔滨三中杨启声喇沙书院 吴乐秦中山市一中邓昭辉香港道教联合会邓显纪念 中学 欧觉钧中山市一中张荣华滁州中学 黄宇浩桂林中学周云临川一中 张鹏程西安交大附中龚伟松盐城中学 王崇理镇海中学皇甫秉超河南师大附中 袁景瑞唐山一中惠鑫西安交大附中 巴蜀中学李君太原外国语学校 王晶晶诸暨中学王奇凡南昌十中 冯捷成都七中周泽吉武汉二中 孔令凯南菁高级中学潘无穷大庆一中 郭珩洛阳第一高中李欣鹏实验中学 郝征西北工大附中王小靖重庆一中 刘伟顺荃湾公立何传耀纪念中学钟达智伊利沙伯中学 戚善翔上海复旦大学附中路亨山西大学附中 杜金宝鞍山一中祝江威北海中学 崔庸非东北育才中学康振宁攀枝花三中 杨丹大连育明中学张乐西北师大附中 曹晖东北师大附中黄海珍海南中学 魏崟泷蚌埠二中王海屹大庆一中 张帆河南师大附中苏李丹泉州五中 李冬来西南附属中学吴天淋教业中学 白雪宁乌鲁木齐一中杜昭南宁三中 郭子超元朗商会中学陈虹宇秦皇岛一中 刘喆南开中学张尧实验中学 贺淳天津一中魏均侨濠江中学 程稷人大附中高堃南开中学 黄铂东北师大附中齐轶福建师大附中 彭闽昱鹰潭市一中

高中数学奥林匹克竞赛中的不变量技巧

数学奥林匹克竞赛中的不变量技巧 在一个变化的数学过程中常常有个别的不变元素或特殊的不变状态,表现出相对稳定的较好性质,选择这些不变性作为解题的突破口是一个好主意。 例1.从数集{}3,4,12开始,每一次从其中任选两个数,a b ,用345 5 a b -和435 5 a b +代替它们,能否通过有限多次代替得到数集{}4,6,12。 解:对于数集{},,a b c ,经过一次替代后,得出3 443,,5 5 5 5a b a b c ??-+???? , 有2222223443()()5555 a b a b c a b c -+++=++ 即每一次替代后,保持3个元素的平方和不变(不变量)。 由22222234124612++≠++知,不能由{}3,4,12替换为{}4,6,12。 例2.设21n +个整数1221,,,n a a a +…具有性质p ;从其中任意去掉一个,剩下的2n 个数可以分成个数相等的两组,其和相等。证明这2n+1个整数全相等。 证明:分三步进行,每一步都有“不变量”的想法: 第一步 先证明这2n+1个数的奇偶性是相同的 因为任意去掉一个数后,剩下的数可分成两组,其和相等,故剩下的2n 个数的和都是偶数,因此,任一个数都与这2n+1个数的总和具有相同的奇偶性; 第二步 如果1221,,,n a a a +…具有性质P ,则每个数都减去整数c 之后,仍具有性质P ,特别地取1c a =,得21312110,,,,n a a a a a a +---… 也具有性质P ,由第一步的结论知,2131211,,,n a a a a a a +---…都是偶数; 第三步 由21312110,,,,n a a a a a a +---…为偶数且具有性质P ,可得 31 211210, ,,,222 n a a a a a a +---… 都是整数,且仍具有性质P ,再由第一步知,这21n +个数的奇偶性相同,为偶数,所以都除以2后,仍是整数且具有性质P ,余此类推,对任意的正整数k ,均有 31 211210, ,,,222n k k k a a a a a a +---…为整数,且具有性质P ,因k 可以任意大,这就推得 21312110n a a a a a a +-=-==-=…即 1221n a a a +===…。

高中数学奥林匹克基础教程1.21

高中数学奥林匹克基础教程 江苏沛县孙统权 前言 2007年7月15日至24日,江苏省高中数学奥林匹克夏令营在靖江举办,由省数学学会组织专家学者亲自授课。编者作为夏令营中的受训教练,亲身体会到与会专家博大精深的知识厚度和深入浅出的教学风格,并做了课堂笔记,对相关教学资料进行了整理。夏令营结束后,从自身实践出发,编成本教程。 教程共8讲,每讲4学时,共32学时。指导思想为“领略奥赛风采,拓展数学视野,训练数学思维,启迪数学方法”,内容选取原则为“参照竞赛数学知识体系,根据学生接受能力,与当前中学数学教学内容协调互补”。 对本教程建议采用“探索-讨论-启发-再探索-直至完成”的教学模式,使学生思维密度大,所受局限少,能充分的体会数学智慧和创造的乐趣,较直接的感受竞赛数学。在各知识点章节讲授时,宜通过具体解题展示数学体系,淡化数学术语而突出数学思想,选择、补充题目时注意结合实际情况,减少复杂度,使学生负担轻,进步感强,在领略数学美的同时达到训练目的。 本教程参考了2007年省夏令营专家的授课内容,使用了部分原题。同时,参考了华师大版《数学奥林匹克小丛书》,安徽少儿版《初中应用数学知识竞赛辅导训练》和其他若干书籍。在此予以感谢,并在补注中注明各题的直接来源。 本教程可以作为高中奥林匹克训练的起始教材,或供学生选修的一个模块。将它整理出来,意在抛砖引玉,为我们江苏乃至全国的数学奥林匹克的发展作一点贡献。虽力求严谨,由于个人能力经验所限,其中错误和不完善之处仍在所不少,恳请广大专家、教练、数学奥林匹克爱好者不吝指教。 本版版本号1.2。编者电子信箱:suntrain@https://www.360docs.net/doc/6715123869.html,。

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

中国数学奥林匹克(cmo)试题(含答案word)

2012年中国数学奥林匹克(CM O)试题 第一天 1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧BC 上两点D 、E 分别为弧 ABC 、ACB 的中点。记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD 相切的圆为 2O ,1O 与2O 交于点A 、P 。证明:AP 平分ABC ∠。 2. 给定质数p 。设()ij A a =是一个p p ?的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤=、。 允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1。若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵"。求好矩阵A 的个数. 3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,, a a : (1) 对每个正整数i ,有i i a M >; (2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈-使得 1122m m n b a b a b a =+++.

第二天 4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。对满足 121n x x x ++ +=的非负实数12,,,n x x x ,求1min{(),()}i j i j n F f x f x ≤<≤=∑的最大值. 5.设n 为无平方因子的正偶数,k 为整数,p 为质数,满足 |p p <2,|()n p n k +。 证明:n 可以表示为ab bc ca ++,其中,,,a b c 为互不相同的正整数。 6.求满足下面条件的最小正整数k :对集合{1,2,,2012}S =的任意一个k 元子集A ,都存在S 中的三个互不相同的元素a 、b 、c ,使得a b +、b c +、c a +均在集合A 中.

高中数学奥林匹克竞赛全真试题

1 2003年全国高中数学联合竞赛试题 一、选择题(本题满分36分,每小题6分) 1、删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个新数列的第2003项是( ) A .2046 B .2047 C .2048 D .2049 2、设a ,b ∈R ,ab ≠0,那么,直线ax -y +b =0和曲线bx 2+ay 2=ab 的图形是( ) 3、过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线.若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于( ) A . 163 B .8 3 C D . 4、若5[,]123 x ππ ∈--,则2tan()tan()cos()366y x x x πππ=+-+++的最大值是( ). A B C D 5、已知x 、y 都在区间(-2,2)内,且xy =-1,则函数2 2 4949u x y = + --的最小值是( ) A . 85 B .2411 C .127 D .125 6、在四面体ABCD 中,设AB =1,CD AB 与CD 的距离为2,夹角为3 π ,则四 面体ABCD 的体积等于( ) A B .12 C .1 3 D 二、填空题(本题满分54分,每小题9分) 7、不等式|x |3-2x 2-4|x |+3<0的解集是__________. 8、设F 1,F 2是椭圆22 194 x y +=的两个焦点,P 是椭圆上的点,且|PF 1|:|PF 2|=2:1,则△PF 1F 2的面积等于__________. 9、已知A ={x |x 2-4x +3<0,x ∈R },B ={ x |21- x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R }.若A B ?,则实数a 的取值范围是__________. 10、已知a ,b ,c ,d 均为正整数,且35 log ,log 24 a c b d ==,若a - c =9,b - d =__________. 11、将八个半径都为1的球分两层放置在一个圆柱内,并使得每个球和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于__________. 12、设M n ={(十进制)n 位纯小数0.12 |n i a a a a 只取0或1(i =1,2,…,n -1) ,a n =1},

高中奥林匹克数学竞赛讲座三角恒等式和三角不等式

高中奥林匹克数学竞赛讲座 三角恒等式和三角不等式 知识、方法、技能 三角恒等变形,既要遵循代数式恒等变形的一般法则,又有三角所特有的规律. 三角恒等式包括绝对恒等式和条件恒等式两类。证明三角恒等式时,首先要观察已知与求证或所证恒等式等号两边三角式的繁简程度,以决定恒等变形的方向;其次要观察已知与求证或所证恒等式等号两边三角式的角、函数名称、次数以及结构的差别与联系,抓住其主要差异,选择恰当的公式对其进行恒等变形,从而逐步消除差异,统一形式,完成证明.“和差化积”、“积化和差”、“切割化弦”、“降次”等是我们常用的变形技巧。当然有时也可以利用万能公式“弦化切割”,将题目转化为一个关于2 tan x t =的代数恒等式的证明问题. 要快捷地完成三角恒等式的证明,必须选择恰当的三角公式. 为此,同学们要熟练掌握 上图为三角公式脉络图,由图可见两角和差的三角函数的公式是所有三角公式的核心和基础. 此外,三角是代数与几何联系的“桥梁”,与复数也有紧密的联系,因而许多三角问题往往可以从几何或复数角度获得巧妙的解法. 三角不等式首先是不等式,因此,要掌握证明不等式的常用方法:配方法、比较法、放缩法、基本不等式法、数学归纳法等. 其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图象特征等都是处理三角不等式的锐利武器. 三角形中有关问题也是数学竞赛和高考的常见题型. 解决这类问题,要充分利用好三角

形内角和等于180°这一结论及其变形形式. 如果问题中同时涉及边和角,则应尽量利用正弦定理、余弦定理、面积公式等进行转化,实现边角统一. 求三角形面积的海伦公式 )](2 1 [))()((c b a p c p b p a p p S ++= ---=其中,大家往往不甚熟悉,但十分有用. 赛题精讲 例1:已知.cos sin )tan(:,1||),sin(sin A A A -= +>+=ββ βαβαα求证 【思路分析】条件涉及到角α、βα+,而结论涉及到角βα+,β.故可利用 αβαβββαα-+=-+=)()(或消除条件与结论间角的差异,当然亦可从式中的“A ” 入手. 【证法1】 ),sin(sin βαα+=A ),sin()sin(βαββα+=-+∴A ), cos(sin ))(cos sin(), sin(sin )cos(cos )sin(βαβββαβαββαββα+=-++=+-+A A . cos sin )tan(, 0)cos(, 0cos ,1||A A A -= +≠+≠-∴>ββ βαβαβ从而 【证法2】 αβαβββαβααββββ sin )sin(cos sin )sin() sin(sin cos sin sin sin -++= +- = -A ). tan(sin )cos(sin )sin(])sin[()sin(cos sin )sin(βαββαβ βαββαβαββ βα+=++=-+-++= 例2:证明:.cos 64cos 353215cos 77cos 7x x x ocs x x =+++ 【思路分析】等号左边涉及角7x 、5x 、3x 、x 右边仅涉及角x ,可将左边各项逐步转化为x sin 、 x cos 的表达式,但相对较繁. 观察到右边的次数较高,可尝试降次. 【证明】因为,cos 33cos cos 4,cos 3cos 43cos 3 3 x x x x x x +=-=所以 从而有x x x x x 226cos 9cos 3cos 63cos cos 16++= = )2cos 1(2 9 )2cos 4(cos 326cos 1x x x x +++++

第五届中国数学奥林匹克 (1990年)

第五届中国数学奥林匹克(1990年) 1.如下图,在凸四边形ABCD中,AB与CD不平行,圆O1过A、B且与 边CD相切于P,圆O2过C,D且与边AB相切于Q,圆O1与O2相交于 E、F。求证:EF平分线段PQ的充要条件是BC//AD。 2.设x是一个自然数,若一串自然数x0=1,x2, ... , x n=x满足x i-10有定义,且满足条件: i.对任何x、y≧0,f(x)f(y)≦x2 f(x/2) +y2 f(y/x); ii.存在常数M>0,当0≦x≦1时,| f(x) | ≦M。 求证:f(x)≦x2。 4.设a是给定的正整数,A和B是两个实数,试确定方程组: x2 +y2 +z2 =(13a)2,x2(Ax2+By2)+y2(Ay2+Bz2)+z2(Az2+Bx2)=(2A+B)(13a)4/3 有整数解的充份必要条件(用A、B的关系式表示,并予以证明)。 5.设X是一个有限集合,法则f使的X的每一个偶子集E(偶数个元素组成 的子集)都对应一个实数f(E),满足条件:

a.存在一个偶子集D,使得f(D)>1990; b.对于X的任意两个示相交的偶子集A、B,有f(A∪ B)=f(A)+f(B)-1990。 求证:存在X的子集P、Q,满足 iii.P∩Q是空集,P∪Q=X; iv.对P的任何非空偶子集S,有f(S)>1990 v.对Q的任何偶子集T,有f(T)≦1990。 6.凸n边形及n-3条在n边形内不相交的对角线组成的图形称为一个剖分 图。求证:当且仅当3|n时,存在一个剖分图是可以一笔划的圈(即可以从一个顶点出发,经过图中各线段恰一次,最后回到出发点)。

相关文档
最新文档