PE原子吸收光谱仪原理

PE原子吸收光谱仪原理
PE原子吸收光谱仪原理

原子吸收光譜儀原理

一、 背景

現代科技包括自然科學、醫學、生物科技、環境及工業技術等發展,對物質成份分析的需求較之過去有明顯的改變。對於低濃度金屬的分析,除了所使用的分析儀器是否具有足夠的偵測靈敏度外,若無法有效的控制樣品基質所產生的干擾效應,將造成嚴重的分析誤差。本文將針對原子吸收光譜儀基本原理及PerkinElmer AAnalyst 800型單機多功能的設計(含火焰式及石墨爐式),是具高精準性及方便性的分析儀器。 二、 原理

原子吸收的過程是當基態原子吸收某些特定波長的能量由基態到激發態。根據Beer 定律,吸收值與濃度成正比關係,從標準溶液作出校正曲線後,再讀出未知溶液的濃度。而原子吸收光譜儀即是利用原子化器將樣品(A)原子化器後,吸收某一特定波長光,此光來自(B)燈管,再經過(C)光學系統分光經由單光器過濾僅有要測的波長光進入(D)偵測器,原子收光譜儀的基本構造如圖一所示。

A.

原子化器:原子化器有三種設計,有火焰式、石墨爐式及汞蒸氣氫化裝置。

(1) 火焰式燃燒系統之剖示圖,如圖二所示,在預混系

統內,樣品溶液被吸經霧化器霧化成小水滴進入混

合腔與燃料及氧化用氣體混合後,帶入燃燒頭,而樣品原子化即產生。在燃燒系統內有些重要因素須在霧化器部份考慮,為了提供最有效之霧化,以各種不同之樣品溶液,霧化器須為可調式的,而不鏽鋼為最常用的一種材質,但其缺點是樣品若含有高濃度之酸或其它腐蝕性氣體則會被腐蝕,若須為抗腐蝕之材質可用惰性塑料材質或Pt/Ir 之合金為宜。燃燒頭用鈦金屬組成可提供極高之熱阻抗及防腐蝕性。不之火焰或樣品條件須使用不同之燃燒頭,10公分長是用來做空氣乙炔之燃燒,而5公分長的用手作較高溫的笑氣乙炔燃燒。

(2) 石墨爐原子化器其基本構造如圖三所示,基本構造包含有金屬室、石墨爐及石墨管三部份。金屬室的功能在於提供高電流加熱裝置,石墨爐的功能為固定石墨管,而石墨管則為樣品的原子化裝置。石墨材質具有高電阻的特性,當瞬間通入大量電流時,藉由電熱的原理使得石墨管溫度迅速提昇,達到使樣品中待測元素原子化的高溫。為避免原子化器在加熱升溫的過程中,石墨材質與空氣中氧氣起氧化

Monochromator

Detector

Reference Beam Sample Beam

Hollow

Cathode Lamp

Burner

Rotating

Chopper

圖一 原子吸收光譜儀的基本構造 預混式混合腔

霧化器

燃燒頭

Flow Spoiler

Impack Bead

圖二 火焰式燃燒系統

作用,通常均在原子化器內部通入氬氣以作為保護。在進行樣品分析時,利用自動注樣器將樣品溶液注入石墨管的平台上,依石墨爐所設定之溫度程式加溫,樣品即可隨溫度變化依序進行,乾燥、灰化、原子化及清除的反應。

(3) 汞蒸氣氫化原子化器,其基本構造如圖四所示。可

藉強還原劑(NaBH4 or Sncl2)在密閉系統中反應還原或自由汞原子,汞原子即可藉由(氮氣或氬氣)帶至石英管吸收槽中,石英管須稍微加熱以防止冷凝。氫化物系統與汞蒸氣不同的是此產物並非自由原子,而是具揮發性的氫化物,所以必須加熱石英管吸收槽,使其分解為自由原子。

(4) 原子化器之適用性

a. 火焰式原子化器是快速且精密的分析方法,大多數元素在濃度mg/L(ppm)範圍下可以使用,是最常使用的一種儀器,它具有靈敏、操作簡單、較不易受干擾及價格便宜等優點。

b. 石墨爐式原子化器,靈敏度很高,適合於極低濃度樣品的分析,僅須少量樣品體積(≦100μL)即可分析,且可藉由溫度程式的控制,避免干擾問題。

c. 汞蒸氣、氫化原子化器;仍是最具靈敏性及可信賴的分析技術。在室溫下,低溫汞蒸氣技術是最能形成揮發性的自由原子。氫化技術測量的元素(As 、Bi 、Sb 、Se 、Sn 、Te)可以很容易測到μg/L 以下的濃度。 B.

光源

(1) 中空極陰管,陰極是一個空圓柱型之金屬,而

陽極與陰極被密封在一個玻璃做的圓柱體內,充填氖或氬氣,而窗片則封填於圓柱體底,使輻射光穿透出去。

(2) 無電極放電燈管之設計,是將少量要分析元素

或這類元素之鹽類將它們密封在石英球泡內,球泡放在一個陶瓷圓柱體內,以無線電頻產生器之天線纏繞在外,當足夠之能量提供給無線電產生器時,會有相同之能量揮發與激發球泡內之元素而放射出特定光譜。

C.

光學系統

光學系統如圖五所示,雙光束儀器較穩定,不需事

先熱機,可省時間,對基線增加穩定性。光學系統

圖三 石墨爐原子化器基本構造

控制閥

圖四 汞蒸氣氫化原子化器基本構造

中單光器的設計,光來自燈源由入口狹縫進入,由光柵分光作用,被分光後之波長再由出狹縫出去,由光柵角度之調整可選擇燈源所放射之光,使其由出口狹縫到達偵測器,其它的光則被出口狹縫所阻擋,所以一般單光器的設計在光柵的設計,刻劃密度愈大解析度佳,光柵面積大,得到較強光能。

D.

偵測器

固態半導體偵測器,其量子效率高與傳統PMT 光電倍增管比較,如圖六所示。且壽命長。

三、 PerkinElmer AAnalyst 800 設計

AAnalyst 800型是一台可全自動步進馬達切換火焰式及石墨爐式的原子吸收光譜儀,全新的設計,是PerkinElmer 為穩合公元2000年而設計生產的全自動化,新科技的精密儀器。

A. 原子化器,包含火焰式及石墨爐式

(1) 火焰式原子化器,其燃燒頭位置可經由軟體

控制調整至最佳化位置,可節省時間及有效去除干擾問題,如圖七。

(2) 石墨爐式原子化器,採用側向加熱石墨管,

溫度分佈均勻,避免記憶效應,最佳化原子化溫度較傳統式石墨爐低,因此可延長石墨管壽命,如圖八。且含有石墨爐專用的水循

環冷卻系統保持石墨爐信號的穩定性,較傳統式自來水冷卻裝置節省水,並可裝置於無塵室中方便電子產業的需求。且石墨爐之背景較正系統採用Longitudinal AC Zeemen 系統,不用加極化鏡可提高分析感度。

圖五 AA800光學系統

100

90

80

70

60

50

40

30

20

100

200

300

400500600

W a v e l e n g t h (n m )

P M T 928S S D

Q:E

(%)

Wavelength (nm)

圖六 固態半導體偵測器與傳統PMT 管量子效率比較 圖七 經由軟體控制調整燃燒頭至最佳化位置

B.燈源設計,如圖九。

可放八支燈管燈座,內含能量供給系統,除了中空

陰極燈管亦可放置無電極放電燈管。

C.光學系統,如圖十。

(1)高效率雙光速光學設計,Littrow型單光器,

體積小,光能效率高,為目前所有原子吸收

光譜儀之最。

(2)Real Time同時間測量樣品光束與參考光

束,參考光束使用高效率光學纖維,不僅可

避免基線偏移,亦可降低信號雜訊。

D.固態半導體偵測器,如圖十一。量子效率高,

壽命長且雜訊低…等優點。

整體而言,PerkinElmer AAnalyst 800型涵蓋火焰式及石墨爐式原子吸收光譜儀另可加裝氫化裝置,為全方位的微量金屬元素,分析儀器可分析不同濃度的需求,且利用最新的設計技術,迎合各個產業的應用,目前已廣泛地應用於環、食品、特用化學品、電子產業、材料分析及臨床醫學等研究領域。

圖九燈源設計

圖五 AA800光學系統

原子吸收光谱仪技术规格

原装进口原子吸收光谱仪技术规格 1. 工作条件 1.1 电源要求:230V (+5%~-10%),50/60 Hz;5000VA。 1.2 环境温度:+15℃~+35℃。 1.3 相对湿度:20~80%。 *2. 系统描述 台式设计原子吸收光谱仪,火焰、石墨炉一体机,全自动软件切换,切换后燃烧头和石墨管位置保持不变。 3. 光学系统和检测器技术指标 3.1 光学系统:实时双光束,1800线/mm,大面积平面光栅分光系统 *3.2波长范围:184-900nm 3.3狭缝:狭缝的宽度自动选择,狭缝的高度自动选择 *3.4检测器:全谱高灵敏度阵列式多象素点CCD固态检测器,含有内置式低噪声CMOS电荷放大器阵列。样品光束和参比光束同时检测,最大限度消除光学和电子噪声影响。 *3.5灯选择:8灯座,内置两种灯电源,可连接空心阴极灯和无极放电灯;通过软件由计算机控制灯的选择和自动准直,可自动识别灯名称和设定灯电流推荐值。 4. 火焰系统技术指标 *4.1火焰系统安全保护:安全联锁装置与燃烧头,雾化器/端盖,排液系统,废液桶液面高度,气体流量等联锁,防止在任何不当条件下点火,当监测不到火焰或任何锁定功能能激活时,联锁系统会自动关闭燃烧气体,以防万一。突然断电时,仪器会从任何操作方式按预设程序自动关机,确保安全。火焰有八个独立灯座。 4.2燃烧器系统:预混燃烧器可通过软件控制驱动装置自动换入样品室。火焰在光路中的准直,燃烧器的垂直,水平位置的调节完全自动化,并由软件控制自动进行位置最佳化。 4.3点火和熄火: 由计算机软件自动控制点火和熄火. 4.4燃烧系统:可调式通用型雾化器,高强度惰性材料预混室,全钛燃烧头 *4.5排液系统:排液系统前置以利于随时检测。 *4.6火焰AAS的灵敏度,5ppm Cu 吸光度大于0.9。测量方法按照中华人民共和国国家标准GB/T 21187-2007的4.5.2.1试验程序进行。 5. 石墨炉系统技术指标 5.1石墨炉:内、外气流由计算机分别单独控制。管外的保护气流防止石墨管被外部空气氧化。从而延长管子寿命,内部气流则将干燥和灰化步骤气化的基体成份清出管外。石墨炉的开、闭为计算机气动控制以便于石墨管的更换。石墨炉有八个独立灯座。 *5.2电源:石墨炉电源内置,整个仪器为一个整体。 *5.3温度控制:红外探头石墨管温度实时监控,具有电压补偿和石墨管电阻变化补偿功能。 *5.4石墨管:标准配置为一体化平台(STPF)热解涂层石墨管。 *5.5标配石墨炉加氧除碳炉内消解装置:在石墨炉灰化阶段软件可自动控制加氧时间和流量,对环境样品可直接进样。 5.6编程:可设置多达12步分析程序,每步均可按下列参数编程。

原子吸收光谱仪使用操作规程

原子吸收光谱仪使用操作规程 1.打开电脑后和原子吸收主机,然后点击软件点确定后进入初始界面。 2.初次进入界面后要点击软件左上角的系统项,选择通讯设置把正确的COM 口输入,并把波特率设置成19200点击确定待仪器与电脑连接后进行操作,后续做样则无需进行这一步操作。 3.打开灯室,把要测量的元素灯放入灯座上面,并记住灯位置,如果被测的元 素灯本来就在灯座上则记住灯位置以方便下步操作。 4.如果被测元素为第一次所测,按第5~12步操作;如果被测元素之前测量过, 直接点击软件右下角配方法,选择被测元素加入工作池即可。 5.点击软件左上角的建方法选项,选择要测量的元素,并选火焰连续法,点下 一步进行操作,在弹出的界面中点灯位设定选择对应的灯号并保存(如果默认的灯电流不对则把灯电流改下)点击下一步进行操作。 6.当弹出的界面显示是否进行谱线搜索时,点击否。进行下一步操作(如果点 了是则耐心等待两到三分钟待仪器显示谱线搜索完成后)。 7.在弹出的界面中设置,助燃气选择空气,乙炔流量设置2.0 L/min,火焰高度 10mm,点击下一步。 8.在弹出的界面中设置合适的基本信息并输入自己想要的重复测量次数,一般 空白1次,样品3次,采样时间设定成1s,延时时间1s,调零时间1s,然后点击下一步进行操作 9.在弹出的标样信息中输入要测的标准样品个数(一般3个),多了可以删除, 少了可以添加,并依次从低到高输入标准样品的实际浓度值(根据实际所配配标液浓度设定),点击下一步。注:使用对照法,标样信息全部删除。10.选择要测量的未知样品个数并在弹出的未知样品信息中输入自己能理解的 未知样品标识,点击下一步。 11.输入正确的各个因子的准确数据,点击下一步(其中重量因子是指所称量的 未知样品重量,定容因子是指上面所称的未知样品在通过一系列处理后最终定容的体积,稀释因子是指上面溶液最终稀释后的倍数,如果没有稀释则为1,矫正因子是指现在所测得浓度和要测的浓度值的换算关系)。 12.阻尼系数一般默认设置是200,点击确定后加入工作池。

第四章原子吸收题解

习题 1 试述原子吸收光谱法分析的基本原理,并从原理、仪器基本结构和方法特点上比较原子发射光谱与原子吸收光谱的异同点。 2 试述原子吸收光谱法比原子发射光谱灵敏度高、准确度好的原因。 3 原子吸收光谱法中为什么要用锐线光源?试从空心阴极灯的结构及工作原理方面,简要说明使用空心阴极灯可以得到强度较大、谱线很窄的待测元素共振线的道理。 4 阐述下列术语的含义:灵敏度,检出线,特征浓度和特征质量。它们之间有什么关系,影响它们的因素是什么? 5 通常为何不用原子吸收光谱法进行定性分析?应用原子吸收光谱法进行定量分析的依据是什么? 6 简述光源调制的目的及其方法。 7 解释原子吸收光谱分析工作曲线弯曲的原因。并比较标准曲线法和标准加入法的特点。 8 解释下列名词: (1)原子吸收; (2)吸收线的半宽度; (3)自然宽度; (4)多普勒变宽; (5)压力变宽; (6)积分吸收; (7)峰值吸收; (8)光谱通带。 9 原子吸收光谱分析中存在哪些干扰?如何消除干扰? 10 比较火焰法与石墨炉原子化法的优缺点。 11 原子荧光产生的类型有哪些?各自的特点是什么? 12 比较原子荧光分析仪、原子发射光谱分析仪和原子吸收光谱分析仪三者之间的异同点。 13 已知钠的3p 和3s 间跃迁的两条发射线的平均波长为589.2 nm, 计算在原子化温度为2500K 时,处于 3p 激发态的钠原子数与基态原子数之比。 提示:在3s 和3p 能级分别有2个和6个量子状态,故 32 60 == p p j 解:处于 3p 激发态的钠原子数与基态原子数之比,由玻耳兹曼方程计算: kT E j j e p p N N ?-= kT c h j e p p λ-= 2500 1038.11058921000.31063.623710 343 6??????- ---=e 41069.1-?= 14 原子吸收光谱法测定某元素的灵敏度为0.01g mL -1 /1%A ,为使测量误差最小,需要得到0.436的吸收值,在此情况下待测溶液的浓度应为多少? 解:灵敏度表达式为: %1/0044.01-= gmL A c S μ 100.10044 .0436 .001.00044.0-=?=?= gmL A S c μ 15 原子吸收分光光度计三档狭缝调节,以光谱通带0.19, 0.38和1.9 nm 为标度,其所对应的狭缝宽度分别为0.1, 0.2和1.0 mm ,求该仪器色散元件的线色散率倒数;若单色仪

ZEEnit700 原子吸收光谱仪-特点介绍

ZEEnit700原子吸收光谱仪特点介绍 型号: ZEEnit700 产地: 德国 制造商:德国耶拿分析仪器股份公司 图:ZEEnit? 700 原子吸收光谱仪 应用范围: 可测定近70种金属元素。广泛的应用于地质矿产、环境保护、疾病控制、农牧渔业、食品安全、资源调查、生命科学等各个领域 AAS ZEEnit700显著的特点和优势: 1.原装德国卡尔蔡司光学系统----所有光学元件全部采用全球最为优秀的卡尔蔡司产 品。作为原子吸收分光光度计的核心部件——光通量不仅仅决定于光栅的刻线数,而且决定于光栅的有效面积。AAS ZEEnit700型原子吸收分光光度计的有效光栅面积及总有效刻线数:1800×54=97200条。同时光学系统采用紧凑型设计,全反射石英涂膜光学部件,整个光谱范围内具有最佳的光通量. 2.单光束/双光束微机控制自动切换技术---- ZEEnit700具有单/双光束自动切换技术, 单光束具有光通量大,灵敏度高,信噪比好的特点;而双光束则能克服元素灯引起的漂移,具有重现性好的特点.用户可根据需要选择单光束或双光束测量方式,如测量铜、铅、锰等元素时,由于元素灯较为稳定,而又要求较高的灵敏度,可选择单光束测量方式,当测定锌等元素,由于元素灯不稳定,可采用双光束测量,一台仪器具有两台仪器的特点; 3.独特的双原子化器设计----AAS ZEEnit 700型原子吸收光谱仪采取独特的双原子化器设 计,火焰与石墨炉之间切换无需任何机械移动,避免机械移动后光路重新调整、准直等. 4.全自动分析光谱仪----完全由微机自动控制的,目前市场上最紧凑的原子吸收光谱仪,仪器 可自动设定操作参数,自动调节燃烧头高度,自动调节气体流量和助/燃比, 自动进样,自动样品测量,自动样品稀释、浓缩,自动校正;强大的方法开发扩展能力,多元素序列分析操作,降低分析时间和运行成本。

原子吸收光谱仪

原子吸收光谱仪高效、精确、可靠 Agilent 200 系列原子吸收系统

2Agilent 240Z AA Agilent 240FS AA 原子吸收解决方案系列 –A gilent 240 AA 将灵活性和硬件的可靠性相结合,为预算有限的用户提供高性价比的高性能火焰/石墨炉/氢化物分析原子吸收仪器 –A gilent 240FS/280FS AA 是快速高效的火焰原子吸收系统,其快速序列式操作可将样品通量增加一倍,从而大幅降低运行成本。它们可以轻松地进行多元素分析,是食品与农业或任何高通量实验室的理想选择 –A gilent 240Z/280Z AA 塞曼石墨炉原子吸收 (GFAA) 系统高效而精确,提供优异的石墨炉性能和准确的背景校正 –A gilent Duo系统可以成倍提高您的工作效率,它能够真正实现火焰和石墨炉同时分析,没有转换延时 安捷伦 AA 系列具有高效、易用和极其可靠的特性。该系列产品具有适用于任何分析所需要的高性能,并且同样适用于重视可靠性和易用性的常规实验室。 高效、精确、可靠

3 Agilent 280FS AA Agilent 280Z AA 满足您的应用需求 安捷伦始终致力于为您的应用提供有效的解决方案。我们的各种技术、平台和专家指导可帮助您 获得成功。 FS 火焰原子吸收系统 240FS/280FS AA + SIPS 20铁、钾、镁和钠FAME (脂肪酸甲酯) 中的钠和钾(SIPS 配件提供自动校准常量元素 银和铂族元素240Z/280Z AA 纯工艺用水中的钠、钙和硅元素 铅、钴和镍 水和土壤中的有毒元素 (US EPA 方法 200.9)电子产品与塑料产品中的铅、镉和铬 (WEEE/RoHs)

原子吸收光谱仪期间核查作业指导书

原子吸收光谱仪期间核查作业指导书 拟制: 审核: 批准: 万年万拓环境检测有限公司 1、目的 为保持原子吸收光谱仪使用过程中校准状态的可信度,使其满足检测工作的要求,制定

本规程。 2、适用范围 本规程适用于本公司的原子吸收光谱仪的期间核查。 3、依据文件 JJG 694-2009《中华人民共和国国家计量检定规程原子吸收分光光度计》。 4、职责 4.1 核查人员记录期间核查数据。 4.2 质量监督员监督执行情况。 4.3 实验室主任审核期间核查记录。 5、期间核查周期 在两次校准/检定之间进行至少一次的期间核查。 6、环境条件 6.1 环境温度:10~30℃。 6.2 相对湿度:≤80%RH。 7、计量性能要求 原子吸收分光光度计的计量性能要求见表1: 表1 仪器计量性能要求

8、通用技术要求 8.1 仪器应有下列标识: 仪器名称、型号、出厂编号、制造厂名、制造日期、额定工作电压及频率。 8.2 所有紧固件均应安装牢固,连接件应连接良好,各调节旋钮、按键、和开关均能正常工作,无松动现象,电缆的连接插件应接触良好。 8.3 气路连接正确,不得有漏气现象,起源压力应符合出厂说明规定的指标。 8.4 外观不应有影响仪器正常工作的损伤。仪表的所有刻度线应清晰、粗细均匀。指针的宽度不应大于刻度的宽度,并应与刻线平行。 9、期间核查步骤 9.1 标志、标记、外观结构检查 按照第8章的要求,用目视及手动方法逐一进行检查。 9.2 基线稳定性 在0.2nm 光谱带宽条件下,按测铜的最佳火焰条件(波长为324.8nm ),点燃乙炔/空气火焰,吸喷二次蒸馏水或去离子水,10min 后,用“瞬时”测量方式,设置时间常不大于0.5s ,通过观察,记录15min 内零点漂移(以起始点为基准计算)和瞬时噪声(峰-峰值)。 9.3 火焰原子化法测铜的检出限 9.3.1 将仪器各参数调至正常工作状态,用空白溶液调零,根据仪器灵敏度条件,选择系列1:0.0,0.5,1.0,3.0μg/ml 或系列2:0.0,1.0,3.0,5.0μg/ml 铜标准溶液,对每一浓度点分别进行三次吸光度重复测定,取三次测定的平均值后,按线性回归法由仪器换算出工作曲线(i i bc a I +=)及其线性相关系数(r)。

2020年原子吸收光谱仪品牌比较

作者:空青山 作品编号:89964445889663Gd53022257782215002 时间:2020.12.13 原子吸收光谱仪品牌比较 国内市场上常见的原子吸收光谱仪品牌大概有二、三十种。进口厂商方面,包括PE、热电(原UNICAM)、瓦里安、耶拿、GBC(照生公司代理)、日本岛津、日立(天美公司代理)、美国利曼、威格拉斯以及加拿大AURORA(路易公司代理)等;国产厂商方面,主要有北京瑞利(原北二光)、普析通用、东西电子、上海精科(原上分厂)、科创海光、瀚时制作所、上海天美、北京华洋、博晖创新、上海光谱等。基本上涵盖了国内外主流的原子吸收光谱仪生产厂家。 2004年,中国原子吸收光谱仪市场的销售总量接近2000台,其中国产原子吸收光谱仪所占份额在70%以上。从产品性能上看,国产仪器已接近国外中档原子吸收水平,火焰原子吸收基本上已达到进口仪器水平,且价格便宜,具有很强的竞争力。与进口高档原子吸收光谱仪相比,国产仪器主要是在自动进样器、石墨管寿命、综合扣背景能力以及自动化程度等方面还存在着一定的技术差距,有待进一步提高。 就原子吸收市场占有量而言,进口厂商方面,来自美国的三家公司:PE、热电和瓦里安应该是排名在前三位的厂家。 据我们保守估计,这三家公司2004年的原子吸收销售量之和应该占到中国进口原子吸收光谱仪市场的五分之三。此外,德国耶拿和日本日立的原子吸收在中国市场的表现也不错,尤其是在某一行业或地区,如:耶拿在中国的地质行业,日立在中国的华南市场都有着不错的原子吸收市场占有率。国产厂商方面,普析通用已取代了北京瑞利,成为中国国产原子吸收光谱仪的最大供货商,紧随其后的是北京瑞利和另一家民营企业——东西电子。这三家原子吸收2004年的销售台数总和大致在900~1000台左右。此外,上海精科和科创海光在国产原子吸收市场上也占据了不小的份额。就原子吸收光谱仪产品而言,PE的 AA800、耶拿的ZEEnit700、热电的M6、瓦里安的AA280以及GBC的Avanta Ultra Z等可以称得上是进口高档原子吸收光谱仪的杰出代表。 可以说,当今原子吸收光谱仪上几乎所有最先进的技术在这一档次的仪器身上均不同程度地得到了体现。譬如:横向加热石墨炉技术、多功能石墨炉背景校正技术、火焰-石墨炉一体化设计(原子化器无需切换)、石墨炉可视技术、单/双光束自动切换、火焰快速序列式分析模式、固体进样技术、固态检测器等等。当然,这一档次的原子吸收仪器的价格也是比较昂贵的,平均价格大致在五万美金左右。在国产仪器方面,普析通用的TAS-990、东西电子的AA7003、北京瑞利的WFX-210、和瀚时制作所的CAAM—2001代表了国产原子吸收仪器发展的最高水平。这些仪器在一些主要技术指标方面(如:分辨率、基线稳定性、检出限等)已和国外同档次产品非常接近,同时也具有一些各自的特点。 TAS-990/986是国产目前唯一采用横向加热石墨炉技术的商品化原子吸收光谱仪;AA7003则将火焰原子化器和石墨炉原子化器固定在同一个可推拉平台上,通过推拉运动,在瞬间完成火焰/石墨炉的切换;WFX-210采用全新富氧火焰专利技术替代氧化—乙炔火焰分析高温元素,使火焰温度在2300℃-2900℃之间连续可调,对不同元素可选择最佳原子化温度条件;CAAM—2001

火焰原子吸收光谱仪操作程规程

1.目的 规范火焰原子吸收光谱仪(AAS)操作方法,保证仪器的正常使用和测试的准确性。2.适用范围 适用于Thermo ICE 3300火焰原子吸收光谱仪(AAS)。 3.职责 3.1 检测人员负责编制火焰原子吸收光谱仪操作规程,按照规程使用仪器; 3.2 部/室负责人负责审核火焰原子吸收光谱仪操作规程,对操作工作进行指导; 3.3 检测部技术负责人负责审批火焰原子吸收光谱仪操作规程; 3.4 质量监督员负责火焰原子吸收光谱仪操作工作的监督。 4.工作程序 4.1操作原理 原子吸收光谱法是基于从锐线光源辐射出具有待测元素特征谱线的光,通过试样原子蒸气时,被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定待测元素的含量。 4.2操作说明 4.2.1辅助系统检查及开机顺序 4.2.1.1打开通风系统。 4.2.1.2打开空气压缩机,出口压力调节到0.25-0.3MPa左右。 4.2.1.3打开乙炔瓶,出口压力调节到0.08-0.1MPa左右。(当乙炔贫燃气火焰在呈黄色火焰 时,标明乙炔 即将耗尽,应更换钢瓶,以防止丙酮溢出。) 4.2.1.4打开仪器电源,打开光谱仪主机电源,观察主机左后侧指示灯,正常只有Stand By闪亮,其它熄灭。 4.2.1.5打开计算机,进入操作系统。 4.3 启动火焰原子吸收光谱仪 4.3.1启动SOLAAR操作软件,如果主机与工作站未建立通讯,则可下拉“动作”菜单,在“通 讯”中先选择 通信口,再选择“连接”来建立通讯。 4.3.2点击,与相对应位置安装空心阴极灯(注:不可使用多于两个脚的其它非编码空心 阴极灯。),将即将使用的空心阴极灯和氘灯预热30min。 4.3.3点击,建立火焰方法,步骤如下: 4.3.3.1点击“新建”按钮,选择需要分析的元素,在“光谱仪”菜单中设定样品测定次数为“3次”, 同时在背景校正中选择“四线氘灯”。

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性围与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

原子吸收光谱仪品牌比较

原子吸收光谱仪品牌比较-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

原子吸收光谱仪品牌比较 国内市场上常见的原子吸收光谱仪品牌大概有二、三十种。进口厂商方面,包括PE、热电(原UNICAM)、瓦里安、耶拿、GBC(照生公司代理)、日本岛津、日立(天美公司代理)、美国利曼、威格拉斯以及加拿大AURORA(路易公司代理)等;国产厂商方面,主要有北京瑞利(原北二光)、普析通用、东西电子、上海精科(原上分厂)、科创海光、瀚时制作所、上海天美、北京华洋、博晖创新、上海光谱等。基本上涵盖了国内外主流的原子吸收光谱仪生产厂家。 2004年,中国原子吸收光谱仪市场的销售总量接近2000台,其中国产原子吸收光谱仪所占份额在70%以上。从产品性能上看,国产仪器已接近国外中档原子吸收水平,火焰原子吸收基本上已达到进口仪器水平,且价格便宜,具有很强的竞争力。与进口高档原子吸收光谱仪相比,国产仪器主要是在自动进样器、石墨管寿命、综合扣背景能力以及自动化程度等方面还存在着一定的技术差距,有待进一步提高。 就原子吸收市场占有量而言,进口厂商方面,来自美国的三家公司:PE、热电和瓦里安应该是排名在前三位的厂家。 据我们保守估计,这三家公司2004年的原子吸收销售量之和应该占到中国进口原子吸收光谱仪市场的五分之三。此外,德国耶拿和日本日立的原子吸收在中国市场的表现也不错,尤其是在某一行业或地区,如:耶拿在中国的地质行业,日立在中国的华南市场都有着不错的原子吸收市场占有率。国产厂商方面,普析通用已取代了北京瑞利,成为中国国产原子吸收光谱仪的最大供货商,紧随其后的是北京瑞利和另一家民营企业——东西电子。这三家原子吸收2004年的销售台数总和大致在900~1000台左右。此外,上海精科和科创海光在国产原子吸收市场上也占据了不小的份额。就原子吸收光谱仪产品而言,PE的 AA800、耶拿的ZEEnit700、热电的M6、瓦里安的AA280以及GBC的Avanta Ultra Z等可以称得上是进口高档原子吸收光谱仪的杰出代表。 可以说,当今原子吸收光谱仪上几乎所有最先进的技术在这一档次的仪器身上均不同程度地得到了体现。譬如:横向加热石墨炉技术、多功能石墨炉背景校正技术、火焰-石墨炉一体化设计(原子化器无需切换)、石墨炉可视技术、单/双光束自动切换、火焰快速序列式分析模式、固体进样技术、固态检测器等等。当然,这一档次的原子吸收仪器的价格也是比较昂贵的,平均价格大致在五万美金左右。在国产仪器方面,普析通用的TAS-990、东西电子的 AA7003、北京瑞利的WFX-210、和瀚时制作所的CAAM—2001代表了国产原子吸收仪器发展的最高水平。这些仪器在一些主要技术指标方面(如:分辨率、基线稳定性、检出限等)已和国外同档次产品非常接近,同时也具有一些各自的特点。 TAS-990/986是国产目前唯一采用横向加热石墨炉技术的商品化原子吸收光谱仪;AA7003则将火焰原子化器和石墨炉原子化器固定在同一个可推拉平台上,通过推拉运动,在瞬间完成火焰/石墨炉的切换;WFX-210采用全新富氧火焰专利技术替代氧化—乙炔火焰分析高温元素,使火焰温度在2300℃-2900℃之间连续可调,对不同元素可选择最佳原子化温度条件;CAAM—2001则是以火焰原子吸收分析法为主、兼有流动注射氢化物原子吸收法(有内置流动注射氢化物发生器)、石墨炉原子吸收法、火焰发射法、可见/紫外溶液分子吸收法、流动注射在线富集法等多种功能的原子吸收光谱仪。价格方面,单火焰的国产原子吸收仪器的成交价格大致在 6~9万人民币,如果再配置石墨炉原子化器的话,成交价格则在10~15万人民币左右。(依具体配置不同而定 2

火焰原子吸收光谱仪操作程规程

火焰原子吸收光谱仪操作程规程

修订记录:

深圳市天鉴检测技术服务有限公司 C-T&E-0001-TP 第1版 生效日期:2009年3月3日 第 1 页 共 6 页

1.目的 规范火焰原子吸收光谱仪(AAS)操作方法,保证仪器的正常使用和测试的准确性。 2.适用范围 适用于Thermo ICE 3300火焰原子吸收光谱仪(AAS)。 3.职责 3.1 检测人员负责编制火焰原子吸收光谱仪操作规程,按照规程使用仪器; 3.2 部/室负责人负责审核火焰原子吸收光谱仪操作规程,对操作工作进行指导; 3.3 检测部技术负责人负责审批火焰原子吸收光谱仪操作规程; 3.4 质量监督员负责火焰原子吸收光谱仪操作工作的监督。 4.工作程序 4.1操作原理 原子吸收光谱法是基于从锐线光源辐射出具有待测元素特征谱线的光,通过试样原子蒸气时,被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定待测元素的含量。 4.2操作说明 4.2.1辅助系统检查及开机顺序 4.2.1.1打开通风系统。 4.2.1.2打开空气压缩机,出口压力调节到0.25-0.3MPa 左右。 4.2.1.3打开乙炔瓶,出口压力调节到0.08-0.1MPa左右。 (当乙炔贫燃气火焰在呈黄色火焰时,标明乙 炔 即将耗尽,应更换钢瓶,以防止丙酮溢出。)4.2.1.4打开仪器电源,打开光谱仪主机电源,观察主机左后侧指示灯,正常只有Stand By闪亮,其它熄灭。 4.2.1.5打开计算机,进入操作系统。

4.3 启动火焰原子吸收光谱仪 4.3.1启动SOLAAR操作软件,如果主机与工作站未建 立通讯,则可下拉“动作”菜单,在“通讯”中先 选择 通信口,再选择“连接”来建立通讯。 4.3.2点击,与相对应位置安装空心阴极灯(注:不可 使用多于两个脚的其它非编码空心阴极灯。),将即 将使用的空心阴极灯和氘灯预热30min。 4.3.3点击,建立火焰方法,步骤如下: 4.3.3.1点击“新建”按钮,选择需要分析的元素,在“光谱 仪”菜单中设定样品测定次数为“3次”, 同时在背景校正中选择“四线氘灯”。4.3.3.2 在“火焰”菜单中选择“空气-乙炔”选项,乙炔流 量按照仪器推荐的流量即可。 4.3.3.3 在“校正”菜单中选择“方法”中的“一般:线性最 小二乘法拟合”,单位浓度设置为 “mg/L”,“标准”中数值一般设置为“5”, 在“标准浓度”中输入标准曲线工作液的 浓度,在“校准曲线检查”中设置可接受 的的拟合数值为“0.999”。 4.3.3.4 在“QC”菜单中设置QC溶液的浓度,并设置允 许的偏移范围,一般设置偏移范围在 “90~110%”之间。 4.3.3.5在“序列”菜单中输入需要分析的样品数量及其名 称、QC。完毕后命名方法并保存。 4.3.4点击,调整光路,完毕后要求电压小于500V,吸光度漂移小于0.010。 4.3.5观察光谱仪左侧的点火准备灯闪烁,在软件中<火 焰状态>窗口,确认火焰系统各部分均正常,则可 准备点火。 4.3.6按住点火按钮(前左侧白色按钮),直至火焰点燃。 稳定数分钟。 4.3.7将吸液毛细管放入去离子水中,调用已保存的分析

原子吸收光谱仪简介

SOLAAR 969原子吸收光谱仪简介工作原理:当特征辐射通过原子蒸气时,基态原子就从入射辐射中吸收能量,由基态跃迁到激发态,发生共振吸收,产生原子吸收光谱。在一定的实验条件下,吸光度和试液中待测成分的浓度成正比。利用被测元素已知浓度的标准溶液对光的吸光度作比较,从而求得试样中被测元素的含量。本机配有两种原子化器:火焰(空气-乙炔焰)原子化、石墨炉原子化。原子吸收光谱仪主要用于碱金属、碱土金属、有色金属和黑色金属元素的定量分析。 仪器结构:原子吸收光谱仪主要包括5个部分:光源、原子化器、光学系统、信号检测与数据处理系统、背景校正系统,系统图如下:

目前大量用于煤样、废弃物、生物质以及燃烧过程中的排放物包括颗粒排放物(如飞灰、底灰)和烟气中Pb、Cr、Cd、Ni、Cu、Zn、K、Na、Ca、Mg、Fe、Mn等的测量。仪器灵敏度在ppm级以上,对少数元素可达ppb级。 应用领域: 1.不同粒径对痕量重金属分布的影响

<0.410 .67~0.410.67~1.31.3~2.32.3~3.43.4~4.74.7~6.46.4~9.39.3~15>15 --0 100200300400500600700800900100011001200130014001500 重金属含量(μ g / g ) 粒径分布(μ m) 上图为循环流化床燃煤电站排放烟气中不同粒径颗粒物吸附的痕量金属含量对比 该图是将燃用石煤的循环流化床电站电除尘器前烟尘用冲击式分级装置收集,经酸溶消解后在原子吸收光谱仪得到的重金属含量分布图,可知重金属元素含量按递减规律依次为Cr 、Ni 、Cu 、Cd 。其中Cr 为难挥发金属,在粗颗粒中的含量较高Ni 、Cu 、Cd 为半挥发性金属元素,均有虽粒径减小而相对富集的趋势。

原子吸收光谱仪操作

1. 仪器名称 火焰原子吸收光谱仪 2.操作的环境条件 室温:10-35℃, 相对湿度:20-80%℃. 3. 操作步骤 3.1外观检查 掀去仪器罩,观察仪器外表有无异常. 3.2开机前准备 3.2.1打开排风开关,检查通风是否良好. 3.2.2查看电线插座、气路管道连接是否正常. 3.2.3 检查水封是否充满了水. 3.3开机步骤 3.3.1在仪器上按装一只待测元素的空心阴极灯. 3.3.2开启电源总开关,开启仪器开关. 3.3.3调整波长,点亮空心阴极灯,设置工作参数. 对于Cu、Mg等谱线简单的元素可选择较大的通带宽度;Fe、Mn 等谱线复杂的元素通带宽度应较小。 3.3.4仪器及空心阴极灯预热30分钟以上,使仪器各部件及灯的能量进入稳定状态. 灯预热时间不够,结果漂移 3.4稳定性检查相对标准偏差RST<5%. 3.5技术性能检查标准曲线的相关系数要达到3个9. 3.6测定步骤 测定cu、N i、Ag等不易原子化的元素及碱土金属时,使用贫燃火焰;

对于测定较易形成难熔氧化物的元素如cr、Al、及稀土金属等则适用富燃火焰。 多数元素使用中性,即化学计量型火焰,燃助比为1:4。 合适的燃助比应通过实验确定。固定助燃气流量,改变燃气流量,观察所测吸光度值与燃气流量之间的关系选择最佳的燃助比。 3.6.1先打开空气缸瓶开关,再开乙炔缸瓶开关. 3.6.2点火.火焰稳定10分钟. 如果结果漂移,燃烧器预热不够,应加长预热3—5分钟 配制标准系列和制备试样应注意加酸,以免低浓度元素在器壁发生吸附作用,导低浓度范围线性变差。 3.6.3 依次测定空白、标准溶液、样品溶液,记录结果. 一般元素都有多条共振线可供选择,应根据试液中待测浓度范围选择最适宜的波长。 若待测元素的浓度很低,应选择灵敏度最高的波长;若待测元素浓度很高,为了避免过分稀释引入的误差,则应选用灵敏度较低的波长。亦可采用偏转燃烧器降低吸光度,使标准系列及试样吸光度值不高于0.6,否则,标准曲线弯曲严重,误差增大。 最佳吸光度应在0.1—0.5之间 在测定过程中,每测定5—10个待测试样就应冲洗雾化系统,调节零点,同时测定一个适当的标准,以监视仪器的重现性和稳定性。 测定的空白偏高不下 应吸入3%HCL或3%HNO,充分冲洗后再用水洗净。 3.7关机步骤 3.7.1测定完毕后,熄火,熄灯,关机,关电源总开关. 3.7.2取下空心阴极灯,放入盒内. 3.7.3关闭乙炔缸瓶开关,关闭空气缸瓶开关.

原子吸收光谱仪技术参数

原子吸收光谱仪技术参数 一、仪器系统 原子吸收光谱分析系统,包括火焰分析系统和石墨炉分析系统,可进行火焰发射、火焰吸收光谱分析和石墨炉原子吸收光谱分析。 二、操作环境 电源:AC 220V +/- 10%, 50/60Hz 环境温度:10-35℃ 环境湿度:20% - 80% 三、光谱仪主机系统 1、主机 ※火焰-塞曼石墨炉一体机,火焰-石墨炉无需机械切换,切换时无需拆卸自动进样器。 2、光学系统 1) ※光路结构:单光束/双光束自动切换,通过软件自动切换; 2) 波长范围:190-900nm; 3) ※光栅刻线密度:≥1800条/mm; 4) 光栅有效刻线面积:≥50×50 mm2; 5) 狭缝:0.2,0.5,0.8,1.2nm可调; 6) 波长设定:全自动检索,自动波长扫描; 7) 焦距:≥350mm; 8) 波长重复性:≤ +/- 0.3nm; 9) 仪器光谱分辨能力:Mn 279.5 –279.8之间峰谷与279.5nm 峰高之比≤30%; 10) 灯座:≥ 6灯座(全自动切换); 11) 灯电流设置:0-30mA,计算机自动设定;有下一灯预热和自动关灯功能; 12) 检测器:宽范围光电倍增管。 3、火焰分析系统 1) 燃烧头:10cm缝长,全钛金属材料,耐高盐耐腐蚀,带识别密码; 2) 燃烧头位置调整:高度自动调整,可旋转; 3) ※雾化器:撞击球外部可调,Pt/Rh中心管,耐腐蚀(可使用氢氟酸); 4) 气体控制:全自动计算机控制,流量自动优化; 5) 撞击球:可在点火状态下进行外部调节和优化最佳位置;

6) 安全系统:有完善的安全连锁系统,包括废液瓶液面传感器控制; 7) 点火方式:自动点火; 8) 代表元素检测指标: Cu:特征浓度≤ 0.035 mg/L 检出限≤ 0.005 mg/L RSD ≤ 0.5%。 4、火焰背景校正 1) ※背景校正方法:氘空心阴极灯,电子调谐; 2) 校正频率:300Hz; 3) 背景校正能力:优于2.5Abs。 5、石墨炉分析系统 1) 可升级为直接固体进样分析系统; 2) 系统配置:必须配备石墨炉自动进样器; 3) ※石墨炉加热方式:横向加热方式; 4) ※石墨炉工作温度:室温至3000℃;最大升温速率:≥2900℃/秒,可调; 5) 加热控温方式:全自动,自动温度校正; 6) 升温方式:阶梯升温、斜坡升温; 7) 石墨管:普通管、热解管、平台管和固体分析专用管多种可选; 8) 测定方式:峰高,峰面积任意选择和互换; 9) 代表元素检测指标: Cd:检出限≤ 0.01 ug/L (2ppb)RSD ≤ 2% 10) 保护气控制:计算机自动控制,内外气流分别单独控制; 11) 操作软件:可自动优化最佳灰化和原子化温度; 全自动仪器及附件控制,数据采集和 分析,多重任务,鼠标操作,自动设定菜单数据和校正方法,自动优化石墨炉操作参数,自检和自诊断功能。 6、石墨炉背景校正 1) 石墨炉背景校正方法:两种,交流塞曼效应与氘空心阴极灯背景校正,可切换; 2) ※磁场强度:0.1~1.0T连续可调,步进:0.1T; 3) 校正模式:2-磁场和3-磁场两种模式任意切换。 7、石墨炉自动进样器

原子吸收光谱仪参数

原子吸收光谱仪配置及参数指标(约66万) 厂家:美国PE公司 型号:900T 1. 系统描述 火焰、石墨炉一体机原子吸收光谱仪,无须切换。 2. 光学系统和检测器 2.1实时双光束系统,全光纤光路;自动选择波长和峰值定位; 2.2波长范围:190-900nm ; 2.3光栅刻线密度:≥1800条/mm ; *2.4双闪耀波长:236nm及597nm;在整个紫外/可见区都有高的光强度; *2.5光栅有效刻线面积:≥60mm×60mm; 2.6光谱带宽:0.2、0.7、2.0nm,软件控制狭缝宽度和高度均可自动选择; 2.7灯架数:≥8灯灯架,无需转动灯,可连接空心阴极灯、无极放电灯,自动选 灯,自动准直,自动识别灯名称和设定灯电流推荐值; *2.8检测器:阵列式多象素点固态检测器,在紫外区和可见区都有最大的灵敏度,样品光束和参比光束同时检测。 3. 火焰系统 3.1气体控制:三路气体控制,全计算机控制和监视燃气、助燃气; 3.2安全保护:燃烧头识别,燃烧头安装,端盖安装,雾化器安装,水封,水位监控,火焰监控,高温监控,突然断电仪器会从任何操作方式按预设程序自动关机; 3.3燃烧器系统:全钛燃烧头,火焰在光路中自动准直,燃烧器的垂直、水平位置自动调节,任意角度转动,自动位置最佳化。 3.4燃烧系统:可调式通用型雾化器,耐腐蚀,带宝石喷嘴,Ryton材料预混室; 3.5点火方式:计算机控制自动点火; 3.6排液系统:排液系统前置以利于随时检测,确保安全。 4. 石墨炉系统 4.1气体控制:内、外气流由计算机单独控制,绝对分开,氩气消耗量<0.7L/min; 4.2电源:石墨炉电源内置,直流电加热。 *4.3温度控制:TTC真实温度控制,实时功率补偿;石墨炉温度准确度≤±10℃; 4.4石墨管:一体化弧型平台石墨管,可50uL大体积进样。

原子吸收光谱仪使用规范

原子吸收光谱仪操作规范 1 型号及参数 1.1型号 PerkinElmer PinAAcle 900T 1.2参数 环境温度:20±2℃ 乙炔输出压力:0.1MPa 循环泵压力:0.25MPa 正空泵压力:0.4MPa 氩气压力:0.4MPa 2 操作规范 2.1 测量前的准备 把原子吸收所在屋子里的风机打开,接着将所要测试水样准备好,把所要测试元素灯装好,关好仪器门。 2.2 操作步骤 2.2.1火焰法操作步骤 2.2.1.1开机 2.2.1.1.1确保分光光度仪及其其他附件安装正确。 2.2.1.1.2确认环境温度要求正常,20±2℃。 2.2.1.1.3接通乙炔及其氩气气源,将乙炔及氩气气源调整到给出的推荐值。 2.2.1.1.4接通循环冷却水系统。

2.2.1.1.5接通计算机。 2.2.1.1.6装灯。 2.2.1.1.7打开面板上电源开关。 2.2.1.1.8双击电脑桌面上WinLab32 for AA软件进入工作界面。 2.2.1.2安装样品托盘 样品托盘可安装在仪器前方。如已经安装连接石墨炉自动进样器,请先将自动进样器移到仪器左侧。样品托盘有上、下两档可放置的位置。取出样品托盘,将废液管留在托盘凹槽里,将托盘支架装入位置;样品托盘安装到位,确保没有挤压到废液管。 2.2.1.3新方法建立 以铜为例建方法:点File、 New、 Method,进入New Method 对话框,选择Element CU点击OK。 2.2.1. 3.1在 Method Editor中设置测量参数。 2.2.1. 3.2设置积分时间和重复次数。 2.2.1. 3.3选择气体流量。 2.2.1. 3.4选择小数位数、有效数字和浓度单位。 2.2.1. 3.5设置空白Blank、校准浓度Standard、试剂空白Reagent blank. 2.2.1. 3.6保存新方法。File、Save As、Method. 2.2.1. 3.7建立样品信息文件。点File、New、Sample info file,进入Sample information editor对话框。 2.2.1. 3.8在Sample information editor对话框中,设置样品参数。如原溶液样品稀释10倍,在Aliquot Volume栏中输入1,在Diluted to Vol中

石墨炉原子吸收光谱仪

原子吸收光谱法 Atomic absorption spectrometry 各种元素的原子结构不同,不同元素的原子从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原子吸收光谱的频率ν或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hν=hc/λ 原理:利用物质的气态原子对特定波长的光的吸收来进行分析的方法。 原子吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、相当窄的频率或波长围,即谱线实际具有一定的宽度,具有一定的轮廓。 I0为入射光强 I为透射光强 ν0为中心频率 产生谱线宽度的因素 1.自然宽度:与原子发生能级间跃迁时激发态原子的有限寿命有关,其宽度约在10-5nm数量级; 2.多普勒变宽(热变宽) 3.压力变宽通常认为两个主要因素是多普勒变宽和压力变宽。

原子吸收光谱的测量 理论上:积分吸收与原子蒸气中吸收辐射的基态原子数成正比。 吸收系数Kν将随光源的辐射频率ν而改变,这是由于物质的原子对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。 长期以来无法解决的难题! 在频率O 处,吸收系数有一极大值K 0称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度围,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。因为当采用锐线光源进行测量,则Δνe<Δνa ,由图可见,在辐射线宽度围,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度围,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。 2 00πd v e K v N f KN mc +∞-∞ ==?

Thermo SOLAAR原子吸收光谱仪操作及软件应用126181110

SOLAAR原子吸收光谱仪基本操作及软件应用 1.SOLAAR 软件及启动 1.1.概要 SOLAAR 数据工作站应用于SOLAAR系列原子吸收光谱仪及其附件,用于执行原子吸收分析并产生样品分析结果。 1.2.启动软件 打开光谱仪电源(热电的技术工程师已在安装时连接好光谱仪和计算机)、计算机电源,进入WINDOWS桌面,双击WINDOWS桌面的SOLAAR图标,即出现SOLAAR-登录对话框。 用户名键入:ADMINISTRATOR,口令键入:SOLAAR。点击确定即进入SOLAAR软件。用户名和口令可根据用户需要进行更改,详见附录6.3.安全设置。 进入软件后,出现SOLAAR AA 系统操作界面,并会立即出现启动向导平台对话框。 启动向导平台对话框提供了包括建立一个新的方法、运行分析、运行PQ分析等等操作的逐

步的向导,提示你怎样逐步的来完成每项工作。怎样进行操作,该向导给出了详细逐步的指导说明,请按向导提示进行操作。 点击关闭,关闭启动向导平台对话框,即出现SOLAAR AA 系统操作界面,所有的编辑、操作、应用都在该操作界面下展开和完成。 SOLAAR AA 系统操作界面主菜单包括文件、编辑、浏览、校正、安全、停止、窗口和帮助等,这些菜单中仪器常用的操作都以快捷方式列出,其功能分别为: 自动调零 自动光路调整,自动波长选择 火焰法燃烧头参数设定/自动优化火焰参数,燃气比高/低, 燃烧头位置高/低 空心阴极灯自动准直,灯位置左/右/前/后自动调整 石墨炉自动进样器进样针清洗/毛细管清洗 石墨管高温清洗/自动进样器进样针头位置调整 执行分析/暂停分析/继续分析/插入单个样品分析 设置运行双分析时火焰/石墨炉自动切换 GFTV可视系统开关

相关文档
最新文档