三相桥式整流电路课设解析

三相桥式整流电路课设解析
三相桥式整流电路课设解析

1 绪论

电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术都属于信息电子技术。电力电子技术是应用于电力领域的电子技术。具体的说,就是使用电力电子器件对电能进行变换和控制的技术。所用的电力电子器件均用半导体制成,故也称为电力半导体器件。电力电子技术所变换的“电力”,功率可以大到数百MW甚至GW,也可以小到数W甚至1W以下。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。

电力电子涉及由半导体开关启动装置进行电源的控制与转换领域。半导体整流控制、半导体硅整的小型化等的出现,产生一个新的电力电子应用领域。半导体硅整流、汞弧整流器应用于控制电源,但是这样的整流回路只是工业电子的一部分,对于汞弧整流器应用范围而言是有局限的。半导体硅整流的应用涉及很多领域,如汽车、电站、航空电子、高频变频器等。

整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。整流电路由主电路、滤波器和变压器组成。

随着科学技术的日益发展人们对电路的要求越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可方便得到大、中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。在电能的生产和传输上,目前以交流电为主。电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。要得到直流电,除了直流发电机外最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电性的器件,把方向和大小交变的电流变换为直流电。本设计主要是对三相桥式全控整流电路(带反电动势的负载)的研究。

三相桥式全控整流电路与三相半波电路相比,输出整流电压提高一倍,输出电压的脉动率高,基波频率为300HZ,在负载要求相同的直流电压下,晶闸管承受的最大正方向电压将比三相半波减少一半,变压器的容量也比较小,同时三相电流平衡,无须中线。所以,三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

2 课程设计的方案

2.1 概述

本设计是三相全控桥式整流电路的设计。而三相桥式整流电路作用是给直流电动机供电,可以知道这是一个交流到直流的变换电路,即整流电路。直流电动机负载可以看成是三相全控桥式电路接一个反电动势负载,由此可以得出此设计的重点在于设计三相全控桥式晶闸管整流电路实现交流到直流的转换,且保证输出的直流电压和电流能使电动机工作在电动状态即可。然后分别对主电路及触发电路进行设计。

2.2 系统组成总体结构

本设计是三相全控桥式整流电路的设计。主要由主电路、触发电路、保护电路三部分组成,主电路主要完成对交流电到直流电的整流过程,触发电路控制晶闸管的导通和关断控制输出电压的大小,保护电路保护主电路中的元器件。

图2-1 系统总框图

3 三相桥式全控整流电路的设计

3.1 主电路设计及原理

将阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。习惯上我们希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与U、V、W三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与U、V、W三相电源相接的3个晶闸管分别为VT4、VT6、VT2,。又后面的分析可知,晶闸管的导通顺序为

VT1-VT2-VT3-VT4-VT5-VT6。

图3-1 晶闸管顺序标号

3.2 主电路设计的原理

整流电路的负载为带反电动势的阻感性负载。当晶闸管触发角α=0°时,此时,对于共阴极组的3个晶闸管,阴极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低的一个导通。这样任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。α=0°时,各晶闸管均在自然换相点处换相。

图3-2 α=0°波形

3.3 输出参数计算

三相桥式全控整流电路中,整流输出电压Ud 的波形在一个周期内脉动6次,且每次脉动的波形相同,因此在计算平均值时,只需要一个脉动进行计算即可。应为0°≤α≤90°时输出电流波形是连续的,以线电压的过零点为时间坐标的零点,可得到整流输出电压的平均值。

2323

1

6sin ()3

d u U td t π

απ

α

ωωπ

++=

?

22.34cos U α= (3-1)

把030α= 和U 2=220V 代入式(3-1)计算有把 22.34cos d u U α= 02.34220cos30=?? 445.8V = 输出电流平均值为: d d U E

I R

-=

(3-2)

把E=300V,R=10Ω, 445.8d u V =代入式(3-2)计算有。 d d U E

I R

-=

14.5A = 变压器二次侧电流Ia 为。

a d I I =

(3-3) 代入数值计算得

a d I I =

11.83A = 同理把090α=和U 2=220V 代入式(3-1)计算有

22.34cos d u U α=0V =

输出电流平均值为: d d U E

I R

-=

(3-2) 把E=300V,R=10Ω, 0d u V =代入式(3-2)计算有。 d d U E

I R

-=

30A =- 变压器二次侧电流Ia 为。

a d I I =

(3-3) 代入数值计算得

a d I I =

24.5A =-

4 外围电路设计及元件选择

4.1 触发电路的设计

4.1.1 电路图的选择

晶闸管具有硅整流器件的特性,能在高压。大电流下工作,且工作过程可以控制。被广泛应用与可控整流、交流调压、无触点电子开光、逆变变频等电子电路中晶闸管具有以下特性:当晶闸管承受反向电压时,无论门极是否有触发电流,晶闸管都不会导通。晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何变化,晶闸管都保持导通,即晶闸管导通后,门极失去作用。晶闸管在导通的情况下,当主回电压减小到接近于零时,晶闸管关断。

根据晶闸管的这种特性,通过控制晶闸管的导通和关断时刻,就能控制整流电路的触发角的大小。在整流电路合闸启动中或电流断续时,为确保电路的正常工作,需保证导通的两个晶闸管均有触发脉冲。在触发某个晶闸管的同时,给序号的前一个晶闸管补发脉冲。即用两个窄脉冲代替宽脉冲,两个脉冲前沿相差60度,脉冲一般为20度到30度,称为双脉冲触发。

4.1.2 触发电路原理说明

双脉冲信号的形成与控制用KJ041六路双脉冲形成器完成,KJ041内部结构如图4-1所示。

图4-1 KJ041内部结构原理图

如图4-1所示,KJ041的1-6管脚为单脉冲信号输入,把单脉冲信号由10-15管脚两两同时形成双脉冲信号,10-15管脚两两同时输出对应输送给VT6-VT1。

(1)假设在T1时刻15脚开始给VT1输送脉冲信号,刚经过60度后14脚开始给VT2双脉冲信号,即只有15脚和14脚有信号输出,其它脚没有信号输出,此时VT1和VT2同时导通;

(2)过60度后,15脚停止输出信号,而13脚开始给VT3输出信号,即只有14脚和13脚有信号输出,其它管脚没有信号输出,此时VT2和VT3同时导通;

(3)再过60度后,14脚停止输出信号,而12脚开始给VT4输出信号,

即只有13脚和12脚有信号输出,其它管脚没有信号输出,此时VT3和VT4同时导通;

(4)再过60度后,13脚停止输出信号,而11脚开始给VT4输出信号,

即只有12脚和11脚有信号输出,其它管脚没有信号输出,此时VT4和VT5同时导通;

(5)再过60度后,12脚停止输出信号,而10脚开始给VT6输出信号,

即只有11脚和10脚有信号输出,其它管脚没有信号输出,此时VT5和VT6同时导通;

(6)再过60度后,11脚停止输出信号,而15脚开始给VT1输出信号,

即只有10脚和15脚有信号输出,其它管脚没有信号输出,此时VT6和VT1同时导通;重复以上步骤就可得到所要的触发脉冲。

4.2 保护电路的设计

4.2.1 主电路的过电压保护

抑制过电压的方法:用非线性元件限制过电压的副度,用电阻消耗生产

过电压的能量,用储能元件吸收生产过电压的能量。对于非线性元件,不是额定电压小,使用麻烦,就是不宜用于抑制频繁出现过电压的场合。所以我们选用用储能元件吸收生产过电压的能量的保护。使用RC吸收电路,这种保护可以把变压器绕组中释放出的电磁能量转化为电容器的电场能量储存起来。由于电容两端电压不能突变,所以能有效抑制过电压,串联电阻消耗部分产生过电压的能量,并抑制LC回路的震动。

晶闸管的过电压能力较差,当它承受超过反向击穿电压时,会被反向击穿而损坏。如果正向电压超过管子的正向转折电压,会造成晶闸管硬开通,不仅使电路工作失常,且多次硬开关也会损坏管子。因此必须抑制晶闸管可能出现的过电压,常采用简单有效的过电压保护措施。

对于晶闸管的过电压保护可参考主电路的过电压保护,我们使用阻容保护,电路图如图4-2所示。

图4-2 晶闸管的过电压保护

4.2.2 晶闸管的过电流保护

常见的过电流保护有:快速熔断器保护,过电流继电器保护,直流快速开关过电流保护。快速熔断器保护是最有效的保护措施;过电流继电器保护中过电流继电器开关时间长(只有在短路电流不大时才有用;直流快速开关过电流保护功能很好,但造价高,体积大,不宜采用。因此,最佳方案是用快速熔断器保护。

5 三相桥式整流电路的PSIM仿真

运用PSIM软件对本三相桥式晶闸管整流电路进行系统仿真实验。主电路图如下:

图5-2主电路仿真

1 当负载为阻感负载且带反电动势触发角α=30 时的U

d 、I

d

、U

VT

、I

VT

、Ia波形图如下:

图5-3 U d 波形

图5-4 Id波形

图5-5 Uvt波形

图5-6 Ia波形

图5-7 Ivt波形

2 当负载为阻感负载且带反电动势触发角α=90 时的U d、I d、U VT、I VT、Ia波形图如下:

图5-8 Ud波形

图5-9 Ia波形

图5-10 Id波形

图5-11 Uvt1波形

图5-12 Ivt波形

6 课程设计总结

本次课程设计,做的是三相桥式整流电路设计。从本次课程设计的目的来看,收获是不少的。通过仔细审题和思考,我发现有很多东西要做,首先要解决的问题就是变压器的选择,因为之前对变压器的学习大多是理论很少涉及具体应用选型,为此我从找了一些关于变压器应用的书籍弥补了自己在这反面的缺憾,再者主要就是保护电路的设计部分,之前学习的保护电路大多是理论方面,而针对具体电路各种保护器件的选择方法较少提到,所以我还是求助于同学的同时也在网上论坛向别人求助解答,虽然得到的很多东西对现在的课程设计并不是很有用,我最终也找到了自己想要学习的部分知识。同时设计时还遇到很多小的问题因为自己知识不牢固或者自己根本不懂在此去回顾课本或者借书或者求助于同学或则网络。最终都解决掉了自己的疑惑。

经过这次课程设计后,觉得自己有一个不小的进步。虽然有些方面有些不足,但通过阅读相关书籍,学到了更好更多的东西。他们从另一个方面透析了自己的不足,这是很重要的,它让我学会了怎样学习别人的长处并把它变成自己的长处。

总之课程设计让我学到了好多能力,这些能力不是学习理论知识的时候可以得到的,比如查阅资料的能力,与人交流的能力,这些都是我们以后工作生活中必不可少的能力。

实验一,三相桥式全控整流电路实验

实验一、三相桥式全控整流电路实验 一、实验目的 1.熟悉三相桥式全控整流电路的接线、器件和保护情况。 2.明确对触发脉冲的要求。 3.掌握电力电子电路调试的方法。 4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。 二、实验类型 本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。 三、实验仪器 1.MCL-III教学实验台主控制屏。 2.MCL—33组件及MCL35组件。 3.二踪示波器 4.万用表 5.电阻(灯箱) 四、实验原理 实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。 五、实验内容和要求 1.三相桥式全控整流电路 2.观察整流状态下,模拟电路故障现象时的波形。 实验方法: 1.按图接好主回路。

2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。 打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。 (1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 3.三相桥式全控整流电路 (1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。 i α=0Oα=30O

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

三相桥式全控整流电路实验报告

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器

1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900Ω) 6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V—2V的脉冲。注:将面板上的Ublf接地(当三相桥式全控整流电路使用I组桥晶闸管VT1~VT6时),将I组桥式触发脉冲的六个琴键开关均拨到“接通”,琴键开关不按下为导通。 (4)将给定输出Ug接至MCL-33面板的Uct端,在Uct=0时,调节偏移电压Ub,使α=90o。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1)电阻性负载 按图接线,将Rd调至最大450Ω (900Ω并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv、U vw、U wu,从0V调至70V(指相电压)。调节Uct,使α在30o~90o范围内变化,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。 30°90° αUd (V) U2 (V) 30°143 70 60°90 70 90°23 70 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd调至最大(450Ω)。 调节Uct,使α在30o~90o范围内变化,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。

三相桥式整流电路

1 原理及方案 1.1原理 三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。 1.2方案设计 整流电路是电力电子电路中出现最早的一种,它将交流电变为直流电,应用广泛。当整流负载容量较大,或要求直流电压脉冲较小时,应采用三相整流电路,其交流测由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。 本设计要求整流电路带直流电机负载,希望获得的直流电压脉冲较小,所以用三相全波整流比较合理。三相桥式全控和三相桥式半控是常见的三相桥式可控全波整流电路。三相半控桥式整流电路适用于中等容量的整流装置或不要求可逆的电力拖动中,它采用共阴极的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成,电路兼有可控与不可控两者的特性。共阳极组的三个整流二极管总是在自然换流点换流,使电流换到阴极点为更低的一相中去。该电路在使用中需加设续流二极管,以避免可能发生的失控现象,所以电路不具备逆变能力。虽然三相半控电路相应触发电路较简单,但只能用于整流不能用于逆变,现在很少使用。本设计选择使用三相桥式全控整流电路。 整流电路的输入部分是变压器,作用是降低或减少晶闸管变流装置对电网和其它用电设备的干扰,将整流电路与电网隔离,并将电网电压值转变为整流所需输入值。整流部分是六个晶闸管,是由共阴极的三相半波可控整流电路与共阳极接法的三相半波可控整流电路串联而成。为使整流电路能正常工作,除了要给晶闸管配设可靠的触发电路外,还要有保护电路,以防止各种原因产生的过电压和过电流影响或损坏晶闸管。另外,在使用晶闸管整流装置供电时,其供电电压和电流中,含有各种谐波成份。当控制角 增大,负载电流减小到一定程度时,

三相桥式全控整流电路课程设计

电力电子技术课程设计说明书 三相桥式全控整流电路 系、部:电气与信息工程系 专业:自动化

目录 第1章绪论错误!未定义书签。 1. 电子技术的发展趋势错误!未定义书签。 2. 本人的主要工作错误!未定义书签。 第2章主电路的设计及原理错误!未定义书签。 1. 总体框图错误!未定义书签。 2. 主电路的设计原理错误!未定义书签。 带电阻负载时错误!未定义书签。 阻感负载时错误!未定义书签。 3. 触发电路错误!未定义书签。 4. 保护电路错误!未定义书签。 5. 参数计算错误!未定义书签。 整流变压器的选择错误!未定义书签。 晶闸管的选择错误!未定义书签。 输出的定量分析错误!未定义书签。 第3章MATLAB的仿真错误!未定义书签。 1. MATLAB仿真软件的简介错误!未定义书签。 2. 仿真模拟图错误!未定义书签。 3. 仿真结果错误!未定义书签。 第4章结束语错误!未定义书签。 参考文献错误!未定义书签。 第1章绪论 1. 电子技术的发展趋势 当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。

电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。 电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)和高新技术产业(例如:航天、现代化通信等)。下面着重讨论电力电子技术在电力系统中的一些应用。 在高压直流输电(HVDC)方面的应用 直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。随着大功率电子器件(如:可关断的晶闸管、MOS控制的晶闸管、绝缘门极双极性三极管等)开断能力不断提高,新的大功率电力电子器件的出现和投入应用,高压直流输电设备的性能必将进一步得以改善,设备结构得以简化,从而减少换流站的占地面积、降低工程造价。 在柔性交流输电系统(FACTS)中的应用 20世纪80年代中期,美国电力科学研究院(EPRI)博士首次提出柔性交流输电技术的概念。近年来柔性交流输电技术在世界上发展迅速,已被国内外一些权威的输电工作者预测确定为“未来输电系统新时代的三项支持技术(柔性输电技术、先进的控制中心技术和综合自动化技术)之一”。现代电力电子技术、控制理论和通讯技术的发展为FACTS的发展提供了条件。采用IGBT等可关断器件组成的FACTS元件可以快速、平滑地调节系统参数,从而灵活、迅速地改变系统的潮流分布。 在电力谐波治理方面的应用 有源滤波是治理日益严重的电力系统谐波的最理想方法之一。有源滤波器的概念最早是在20世纪70年代初提出来的,即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,从而实现实时补偿谐波电流的目的。随着中国电能质量治理工作的深入开展,使用以瞬时无功功率理论为理论基础的有源滤波器进行谐波治理将会有巨大的市场潜力。 在不间断电源(UPS)中的应用 UPS紧急供电系统是电力自动化系统安全可靠运行的根本保证,是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。现代UPS普遍采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,降低了电源的噪声,提高了效率和可靠性。 电力电子技术已迅速发展成为一门独立的技术、学科领域。它的应用领域几乎涉及到国民经济的各个工业部门。毫无疑问,它将成为新世纪的关键支撑技术之一。电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。 2. 本人的主要工作 (1)设计一个三相桥式全控整流电路。

三相桥式整流电路实验报告

实验报告 实验名称三相桥式全控整流电路实验课程名称电力电子技术 院系部:专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期: 华北电力大学

实验一、三相桥式全控整流电路实验 一、实验目的 1.熟悉三相桥式全控整流电路的接线、器件和保护情况。 2.明确对触发脉冲的要求。 3.掌握电力电子电路调试的方法。 4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。 二、实验类型 本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。 三、实验仪器 1.MCL-III教学实验台主控制屏。 2.MCL—33组件及MCL35组件。 3.二踪示波器 4.万用表 5.电阻(灯箱) 四、实验原理 实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。 五、实验内容和要求 1.按图接好主回路。 2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。 打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。 (1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (3)用万用表记录α=0O、30O、60O、90O、120O时对应的Uct(Ug)的值。在做下 3.三相桥式全控整流电路 (1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。

三相全控桥式整流电路

课程设计任务书 学生:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

三相桥式全控整流电路设计

电气工程学院课程设计报告 课程名称:电力电子技术 设计题目:三相桥式全控整流电路设计 专业班级:自动化1班 学号: 20120220 姓名: 时间: 2015年9月2日--9月30日 ——————以下由指导教师填写——————分项成绩:出勤成品答辩及考核 总成绩:总分成绩 指导教师(签名):

前言 课程设计是《电力电子技术》课程的实践性教学环节,通过课程设计,可 使学生在综合运用所学理论知识,拓展知识面,理论分析和计算,实验研究以及系统地进行工程实践训练等方面得到训练和提高,从而培养学生具有独立解决实际问题和从事科学研究的初步能力。通过设计过程,可是学生初步建立正确的设计思想,熟悉工程设计的一般顺序呢、规范和方法,提高正确使用技术 资料、标准、手册等工具书的能力。通过设计工作还可以培养学生实事求是和一丝不苟的工作作风,树立正确的生产观点、经济观点和全局观点,为后续课程的学习和毕业设计,乃至向工程技术人员的过渡打下基础。 目录 前言 1 一课程设计的内容和具体要求 2 二变压器设计 3 三晶闸管的选择 3 四晶闸管的保护设计 4 五触发电路设计 5 六触发电路供电电源设计 6 七Matlab仿真7 八实验总结8

一.课程设计的内容和具体要求 要求设计一个完整的三相桥式全控整流电路,包括主电路、触发电路、整流变压器的设计,晶闸管的选型和保护等。 (一)技术指标 1、整流器负载为10KW 直流电动机 额定电压D C 220V,额定电流55A,电枢电阻0.5?,总电阻1? 2、输入电压A C 380V(+5~10%) 3、输入电压D C 0~220V,输出最大电流λI nom (λ=1.5) 4、最小α角为15° 5、触发电路采用K J004 6、主变压器采用Y/Y12 联接。 7、主电路采用三相桥式全控整流电路。 (二)设计要求 1、变压器 设计 1)二次相电压U 2 的计算 2)二次电流I 2 和一次电流I 1 的计算 3)变压器容量的计算 2、晶闸管的选择 3、晶闸管保护设计 1)晶闸管过流保护 2)晶闸管过压保护 4、触发电路设计 1)同步变压器设计及同步电压的相位选择2)三相触发电路设计(双窄脉冲) 5、触发脉冲供电电源设计 (三)成品要求 1、课程设 计报告一份 2、电路图一份

三相全控桥式整流电路

课程设计任务书 学生姓名:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

电力电子课程设计-三相桥式整流电路的MATLAB仿真

五邑大学 电力电子技术课程设计报告题目:三相桥式整流电路的MATLAB仿真 院系信息工程学院 专业轨道交通电气化 班级 学号 学生姓名 指导教师 完成时间2016年11 月17 日

三相桥式整流电路的MATLAB仿真 一、题目的要求和意义 利用MATLAB软件中的SIMULINK对三相桥式整流电路进行建模、仿真,设置参数,采集波形。具体要求如下:输入三相电压源,线电压取380V,50Hz,内阻0.004欧姆。利用六个晶闸管搭建三相桥式整流电路的模型。当负载分别为纯电阻负载和阻感负载时设置相关参数利用示波器查看仿真波形,并将ud、id、uVT1波形记录下来。 整流电路是电力电子技术中最为重要,也是应用得最为广泛的电路,不仅应用于一般工业领域,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强。利用matlab对三相桥式全控整流电路仿真,可以让我们进一步深入了解三相整流电路工作的每一个步骤,充分掌握三相整流电路,而对故障波形的采集与分析,锻炼我们解决电路出现问题时的能力,以使我们在实际工作中也能足够的理论知识去排除及解决各种电路故障,具有十分重要的意义。二、基本原理 三相桥式整流电路习惯将其阴极连接在一起的三个晶闸管(VT1、VT3、VT5)称为阴极组;阳极连接在一起的三个晶闸管(VT2、VT6、VT2)称为阳极组,如图1所示、 图1 三相桥式整流电路原理图 图1中a相电源的初相角是0,c相电源初相角是120度,b相电源的初相角是-120度。三相半波整流时,在一个周期内,相电压最高值会交换三次,而三相全桥时,负载相当于接在两相的线电压上,而线电压的最高值每个周期会交换六次,线电压波峰的交点叫自然交换点,这就意味,当触发角α=0时,就能整流出一个周期内有六个波峰的直流电,它们的电压波形如图2

三相桥式整流及逆变电路实验

实验十一三相桥式全控整流及有源逆变电路实验 一、实验目的 (1)加深理解三相桥式全控整流及有源逆变电路的工作原理。 (2)了解KC系列集成触发器的调整方法和各点的波形。 二、实验所需挂件及附件 序号型号备注 1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。 2 DJK02 晶闸管主电路 3 DJK02-1三相晶闸管触发电路该挂件包含“触发电路”,“正反桥功放”等几个模块。 4 DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 5 DJK10 变压器实验该挂件包含“逆变变压器”以及“三相不控整流”。 6 D42 三相可调电阻 7 双踪示波器自备 8 万用表自备 三、实验线路及原理 实验线路如图3-13及图3-14所示。主电路由三相全控整流电路及作为逆变直流电源的三 相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l、KC42等集成 芯片组成,可输出经高频调制后的双窄脉冲链。集成触发电路的原理可参考1-3节中的有关 内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。 图3-13 三相桥式全控整流电路实验原理图 在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器 均在DJK10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压 端Am、Bm、Cm,返回电网的电压从高压端A、B、C输出,变压器接成Y/Y接法。 图中的R均使用D42三相可调电阻,将两个900Ω接成并联形式;电感L d在DJK02面板上, 选用700mH,直流电压、电流表由DJK02获得。

三相桥式整流电路及其MATLAB仿真..

目录 摘要....................................................................................... - 2 - Abstract .................................................................................. - 3 - 第一章引言 .......................................................................... - 4 - 1.1 设计背景....................................................................... - 4 - 1.2 设计任务....................................................................... - 4 - 第二章方案选择论证 .......................................................... - 6 - 2.1方案分析........................................................................ - 6 - 2.2方案选择........................................................................ - 6 - 第三章电路设计 ................................................................ - 7 - 3.1 主电路原理分析............................................................ - 7 - 第四章仿真分析 ................................................................ - 9 - 4.1 建立仿真模型 ............................................................... - 9 - 4.2仿真参数的设置 .......................................................... - 10 - 4.3 仿真结果及波形分析................................................... - 11 - 第五章设计总结 ................................................................ - 26 - 致谢................................................................................. - 27 - 参考文献............................................................................... - 28 -

三相桥式全控整流电路的工作原理

图1 三相桥式全控整流电路 三相桥式全控整流电路的工作原理 在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a 相,晶闸管KP3和KP6接b 相,晶管KP5和KP2接c 相。 晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。 为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就是在自然 换相点触发换相时的情况。图1是电路接线图。 为了分析方便起见,把一个周期等分6段(见图2)。 在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a 相经KP1流向负载,再经KP6流入b 相。变压器a 、b 两相工作,共阴极组 的a 相电流为正,共阳极组的b u d=u a-u b=u ab 经过60°后进入第(2)段时期。这时a 相电位仍然最高,晶闸管KPl 继续导通,但是c 相电位却变成最低,当经过自然换相点时触发c 相晶闸管KP2,电流即从b 相换到c 相,KP6承受反向电压而关断。这时电流由a 相流出经KPl 、负载、KP2流回电源c 相。变压器a 、c 两相工作。这时a 相电流为正,c 相电流为负。在负载上的电压为 u d=u a-u c=u ac 再经过60°,进入第(3)段时期。这时b 相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a 相换到b 相,c 相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc 两相工作,在负载上的电压为 u d=u b-u c=u bc

仿真实验4 三相桥式可控整流电路

仿真实验4 三相桥式可控整流电路 1. 实验目的 根据图4.1三相桥式可控整流电路,建立simulink电路仿真模型,然后通过仿真实验研究三相桥式可控整流电路在不同负载下的工作特点。 图4.1 2. 实验步骤 1)打开文件“EXP4_r3.mdl”,自动进入simulink仿真界面,在编辑器窗口中显示如图4.2 所示的三相桥式可控整流电路的模型。 图4.2 三相桥式可控整流电路的模型

2)了解图4.2电路模型中各元件上需设定的参数 交流电源Va : 峰值(peak amplitude, V )=141.4V(有效值为100V), 相位(phase, deg )=0 频率(Frequency, Hz)=50 交流电源Vb : 峰值(peak amplitude, V )=141.4V(有效值为100V), 相位(phase, deg )=-120 频率(Frequency, Hz)=50 交流电源Vc : 峰值(peak amplitude, V )=141.4V(有效值为100V), 相位(phase, deg )=120 频率(Frequency, Hz)=50 同步6脉冲发生器:在输入端alpha_deg 上给定控制角α(单位角度); 晶闸管变换器(Thyristor Converter)为3相全控整流桥形式,由同步6脉冲发生器提供触发脉冲。 负载中的RLC 串连之路load :电阻值(resistance,ohms )=10 电感量(inductance,H )=0 电容量(capacitance,F )=inf 3) 测试电阻负载时,整流电路的工作特性 负载参数与2)中设定相同。 在α=0?、30?、60?、90?时记录示波器pulse 给出的触发脉冲波形和voltage 给出的负载电压电流等波形,及显示单元上Ud2(负载上电压平均值)上显示的值。将不同控制角时得到的Ud1与理论计算的结果相比较,并根据实测的数据画出电阻负载时移相控制特性曲线1()d U f α=。 注意:α变化时只需改变同步6脉冲发生器输入端alpha_deg 上给定的控制角α。 4)测试阻感负载时,整流电路的工作特性。 在负载参数中设定:电感量(inductance,H )=0.5。使之成为阻感负载。 在α=0?、30?、60?、90?时记录示波器pulse 给出的触发脉冲波形和voltage 给出的负载电压电流等波形,及显示单元上Ud2(负载上电压平均值)上显示的值。将不同控制角时得到的Ud1与理论计算的结果相比较,并根据实测的数据画出移相控制特性曲线2()d U f α=。 3. 实验报告内容 (1)分析图4.1 所示三相桥式可控整流电路的工作原理。 (2)按照实验步骤的要求,记录有关波形和观测数值,分析并得出结论。 思考题: 1)在相同的电源电压下和负载下,比较三相桥式整流电路与单相桥式整流电路输出电压的高低差异,试分析造成该差异的原因。 2)在相同的阻感负载下,比较三相桥式整流电路与单相桥式整流电路输出电流的脉动幅度大小的差别,试分析造成该差异的原因。

三相桥式全控整流电路课程设计文稿

三相桥式全控整流电路课程设计文稿

————————————————————————————————作者:————————————————————————————————日期:

湖北民族学院 三相桥式全控整流电路的设计 学生姓名:林博 指导教师:徐超 专业:电气工程及其自动化 班级:K0312416 学号;K081241138

摘要 电子技术的应用已深入到工农业经济建设,交通运输,空间技术,国防现代化,医疗,环保,和亿万人们日常生活的各个领域,进入21世纪后电力电子技术的应用更加广泛,因此对电力电子技术的研究更为重要。近几年越来越多电力电子应用在国民工业中,一些技术先进的国家,经过电力电子技术处理的电能已得到总电能的一半以上。本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。但是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。本电路图主要由芯片C8051-F020微控制器来控制并在不同的时刻发出不同的脉冲信号去控制6个SCR。在负载端取出整流电压,负载电流到C8051-F020模拟口,然后由MCU处理后发出信号控制SCR的导通角的大小。在本课题设计开发过程中,我们使用KEIL-C开发软件,C8051开发系统及PROTEL-99,并最终实现电路改造设计,并达到预期的效果。 关键字:MCU;SCR;电力电子;导通角;KEIL-C

目录 摘要 (2) 1、原理及方案 (4) 2、主电路的设计及器件选择 (5) 2.1三相全控桥的工作原理 (5) 2.2参数计算 (7) 3、触发电路设计 (10) 3.1集成触发电路 (10) 3.2KJ004的工作原理 (10) 3.3集成触发器电路图 (11) 4、保护电路的设计 (13) 4.1晶闸管的保护电路 (13) 4.2交流侧保护电路 (14) 4.3直流侧阻容保护电路 (15) 5、MATLAB建模与仿真 (16) 5.1MATLAB建模 (16) 5.2MATLAB仿真 (18) 5.3仿真结构分析 (19) 课程设计体会 (21)

三相桥式全控整流电路实验报告

实验编号 实验报告书 实验项目:三相桥式全控整流及实验 所属课程: 电力电子技术基础 课程代码: 面向专业: 自动化 学院(系): 物理与机电工程学院自动化系 实验室: 电机与拖动代号: 426 2012年 10 月 20 日 一、实验目的: 1.熟悉MCL-01, MCL-02组件。

2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。 3.了解集成触发器的调整方法及各点波形。 二、实验内容: 1.三相桥式全控整流电路 2.三相桥式有源逆变电路 3.观察整流或逆变状态下,模拟电路故障现象时的波形。三、实验主要仪器设备: 1.MCL系列教学实验台主控制屏。 2.MCL—01组件。 3.MCL—02组件。 4.MEL-03可调电阻器。 5.MEL-02芯式变压器 6.二踪示波器 7.万用表 三相桥式全控整流及有源逆变电路实验线路图及接线图 四、实验示意图:

五、实验有关原理及原始计算数据,所应用的公式: 三相桥式全控整流电路的原理 一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。一般1、3、5为共阴极,2、4、6为共阳极。 (1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。(2)对触发脉冲的要求: 1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60?。 2)共阴极组VT1、VT3、VT5的脉冲依次差120?,共阳极组VT4、VT6、VT2也依次差120?。 3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180?。(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。 (4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用) (5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。 三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。 6 个晶闸管导通的顺序是按 VT6 – VT1 → VT1 – VT2 → VT2 – VT3 → VT3 – VT4 → VT4 – VT5 → VT5 – VT6 依此循环,每隔 60 °有一个晶闸管换相。为了保证在任何时刻都必须有两个晶闸管导通,采用了双脉冲触发电路,在一个周期内对每个晶闸管连续触发两次,两次脉冲前沿的间隔为 60 °。三相桥式全控整流电路原理图如右图所示。 三相桥式全控整流电路用作有源逆变时,就成为三相桥式逆变电路。由整流状态转换到逆变状态必须同时具备两个条件:一定要有直流电动势源,其极性须和晶闸管的导通方向一致,其值应稍大于变流器直流侧的平均电压;其次要求晶闸管的 a > 90 °,使 U d 为负值。 三相桥式全控整流电路原理图 实验线路如图2-1所示。主电路由三相全控变流电路及作为逆变直流电源的三相不控

三相桥式全控整流电路

1系统概述 整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(Power MOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。按电路结构可分为桥式电路和零式电路。按交流输入相数分为单相电路和多相电路。按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。 本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。因此,实际中一般不采用半波整流,而采用全波整流。 三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。

1.1总体方案设计 现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示: 1.2系统工作原理 在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。故主电路是典型的三相桥式整流电路带阻感负载。 而除了主电路以外,系统还有控制电源电路和触发电路。控制电源电路通过7815芯片将电网交流电整理输出为+15V,提供触发电路的+Uco;通过7915芯片将电网交流电整理输出为-15V,提供触发电路的-Up. 触发电路结构机构相对比较复杂,由同步变压器,脉冲变压器,3个KJ004集成块和1个KJ041集成块组成。可以形成6路双脉冲,分别去控制主电路的6个晶闸管。触发器按一定的顺序输出脉冲,这样可以使主电路3组晶闸管依次打开。

三相桥式全控整流电路实验报告

实验三三相桥式全控整流电路实验 一.实验目得 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路得接线及工作原理。 二.实验内容 1.MCL-18得调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时得波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后得双窄脉冲链。三相桥式整流电路得工作原理可参见“电力电子技术”得有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900 ) 6.二踪示波器

7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管得脉冲就是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33得双脉冲观察孔,应有间隔均匀,相互间隔60o得幅度相同得双脉冲。 (3)用示波器观察每只晶闸管得控制极、阴极,应有幅度为1V—2V得脉冲。注:将面板上得Ublf接地(当三相桥式全控整流电路使用I组桥晶闸管VT1~VT6时),将I组桥式触发脉冲得六个琴键开关均拨到“接通”, 琴键开关不按下为导通。 (4)将给定输出Ug接至MCL-33面板得Uct端,在Uct=0时,调节偏移电压Ub,使α=90o。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1)电阻性负载 按图接线,将Rd调至最大450Ω (900Ω并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv、U vw、U wu,从0V调至70V(指相电压)。调节Uct,使α在30o~90o范围内变化,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)得波形,并记录相应得Ud与交流输入电压U2 数值。 30°90° 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd调至最大(450Ω)。 调节Uct,使α在30o~90o范围内变化,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)得波形,并记录相应得Ud与交流输入电压U2 数值。 30°90° 4.电路模拟故障现象观察。在整流状态时,断开某一晶闸管元件得触发脉冲开关,则该元件无触发脉冲即该支路不能导通,观察并记录此时得u d波形。

相关文档
最新文档