差动保护试验方法

差动保护试验方法
差动保护试验方法

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

主变差动保护试验指导

3.6.2.2主变差动保护 正常情况下流进流出主变的功率一致(励磁损耗忽略)。影响功率相关参数:电压(额定)、电流(变比)。由于主变两侧电压关系已定,主变差动仅引入电流参与计算,此时需要对电流增加约束条件:容量、电压。 参数:以变压器铭牌实际为准! 各侧容量S,如三圈变一般低侧容量只有高中侧一半。1MV A=1000kV A。 各侧额定电压,某侧有多档位时以中间档位(额定档)为准,如上图高侧额定电压Ueh 35kV,低侧额定电压Uel 10.5kV。 整定: 接线方式:注意因装置不同,有时整定选项无直接对应表述。此时应按照实际接线(各侧电流接入装置的位置)整定。如上图接线为YD11,某装置为三组电流接入,其接线选项有Y-Y-D1,Y-Y-D11等方式,现场接线为一、三侧,综合起来就可以选择Y-Y-D11接线。 各侧容量:如上图为2.5MV A或2500kV A. 各侧额定电压:如上图接线方式为Y-Y-D11接线时,一侧额定电压35kV,二侧空额定电压可整定最小值,三侧额定电压10.5kV。 各侧CT变比:如上图接线方式为Y-Y-D11接线时,一侧CT变比150/5,二侧空CT变比可整定最小值,三侧额CT变比300/5。 计算: 首先计算各侧二次额定电流Ie。 如上图: 高侧二次额定电流Ieh=(S/1.732/Ueh)/(150/5)=1.375A。设变比150/5。 低侧二次额定电流Iel=(S/1.732/Uel)/(300/5)=2.291A。设变比300/5。 三相平衡电流: 在两侧施加平衡电流的意义即流进流出主变功率相同,如高侧施加Ieh三相平衡电流表示流入功率Sh,低侧施加Iel三相平衡电流表示流出功率Sl,此时Sh=Sl,也即高压侧输入Ieh与低压侧输入Iel等效。

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

发电机差动保护动作原因分析

发电机差动保护动作原因分析 一、事故经过 2012年10月23日07时29分,网控值班员听见巨响声同时发现盘面柴发电源二103-16断路器跳闸,网控值班员立即前往网控10KV配电室发现浓烟,经检查柴发电源二103-16高压柜后盖已被甩出,柜内已烧黑。2号发电机纵差保护动作,2号发电机组跳闸。07时33分,低频保护动作,甩负荷至第5轮。07时33分41秒,1号、3号机组跳闸,全厂失电。 二、故障分析 继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16柜故障时刻发抗组差动回路确实存在很大的不平衡电流。与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。证明发电机等一次设备未发生故障,发抗组保护装臵本身在这次大修期间已经对保护装臵及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。差动动作时间和103-16柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。随后保护人员调取录波图进行分析,发现故障时刻发电机中性点B相电流波形严重畸变。经过计算,发电机中性点B相电流与发电机机端B相电流之差正好等于装臵

采样的差流值。 从录波图上可以看出,故障时刻发电机中性点B相电流波形发生严重畸变,且故障时刻发电机中性点B相电流与发电机机端电流在同一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互感器和发电机机端电流互感器造成的影响不同。 三、波形畸变分析 1、从录波图上可以看出,B相电流波形开始发生畸变前一刻波形

主变投运差动保护动作的原因分析

2013年第03期?总第310期 主变投运差动保护动作的原因分析 (汝南县电业公司,河南…汝南…463300) 王永慧 差动保护做为变压器主保护,其保护范围是变压器各侧电流互感器之间的一次设备,当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流正比于故障点电流,差动继电器动作,其主要反映以下故障:变压器引线及内部线圈的匝间短路,线圈的层间短路,大电流接地系统中线圈及引线的接地故障。它能迅速而有选择地切除保护范围内的故障,但往往却因接线错误而导致差动保护误动。 1 保护动作情况 汝南县35 kV 三桥变电站通过增容改造后进行试送电,两台主变的冲击、核相等工作均顺利正常,在进行三桥#1主变带负荷时,三桥#1主变差动保护动作跳闸,现场调度随即令三桥#1主变停止运行,解除备用,做安全措施,并安排保护人员准备进行检查试验,同时又对三桥#2主变进行了带负荷试验,三桥#2主变差动保护也出现动作跳闸情况。 2 保护动作现场试验分析 针对两台主变均出现相同的保护动作情况,现场运行验收人员认为有以下几种可能:两台变压器的差动保护范围内均存在故障; 电流互感器二次接线极性端有接反现象或接线有不正确情况;保护定值输入出现错误。 现场运行及保护人员立即对两台主变进行了检查试验,经测量两台变压器直流电阻均正常,变压器与电流互感器之间也无任何异物,变压器内部未发现气体产生,冲击试验时变压器声音均正常,可以排除变压器差动保护范围内存在故障而导致动作。 保护人员又将两台主变两侧的电流互感器二次线重新核对了变比、用万用表进行点极性、核对线号,接线变比、极性端、接线均正确。为避免使用万用表点极性过程 出现错误,保护人员将极性反接后,两台主变带负荷时仍然出现差动保护动作跳闸,这也说明不是电流互感器二次线极性端存在问题。行保护人员向验收专家组提出这样一个问题:35 kV 三桥变电站在20世纪90年代建设时期,由于受当时设计技术影响,35 kV 三桥变电站设计为小型化末端变电站,室外布局较为紧凑,35 kV 进线间隔只有一组刀闸,且安装在35 kV 母线门型构架上,三桥351母刀闸与35 kV 母线的A 相跳线,距离35 kV 进线刀闸与母线的跳线较近,缺少安全距离,为了保证安全距离,当时将A 相与C 相的跳线进行了互换,这样三桥351母线A 相跳线在空间上距离缩短,减少了跳线的摆动幅度,保证了与35 kV 母线跳线的安全距离;本次增容改造,由于受资金限制,室外设备构架均未改动,只对一次设备进行了增容和更换,并将常规继电器保护更换为综合自动化保护。主变的一次进线侧A 相与C 相仍按原来的方式进行跳线,是否问题就出在这里。 3.1 主变接线组别的变化 在电力系统中,35 kV 主变压器常采用Yd11接线方式,35 kV 三桥#1、#2主变压器也是Yd11接线方式,当A 相与C 相接反后,实际接线方式已发生了变化,由Yd11变化为Yd1。即低压侧按ax–cz–by–ax 顺序接成三角形,变化为ax–by–cz–ax 顺序接成三角形。变化情况如图1、图2所示。 i A'2 i C'2 i B'2 i B'2 i C'2 i A2 i B2 i C2 i A'2 i C'2 i B'2 i A'2 i B'2 i C'2 i A2i B2 i C2 i B2 i C2 i A2 图1 Yd11接线图 图2 Yd1接线图

变压器保护校验方法

RCS-978系列变压器保护测试 一、RCS-978型超高压线路成套保护 RCS-978配置: 主保护:稳态比率差动,工频变化量比率差动,零序比率差动, 谐波制动, 后备保护:复合电压闭锁(启动)方向过流 零序方向过流保护 间隙零序过流过压保护 零序过压 稳态比率差动 一、保护原理 基尔霍夫电流定律,流入=流出 (1)差动元件的动作特性 在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图: 在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流; I res.min 为最小制动电流,又称为拐点电流; K=tan α为制动特性斜率,也称为比率制动系数。 微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为: 拐点前(含拐点): .min .min ()op op res res I I I I ≥≤

拐点后: .min .min .min () ()op op res res res res I I K I I I I ≥+-> 式中 I op ——差动电流的幅值 I res ——制动电流的幅值 也有某些变压器差动保护采用三折线的制动曲线。 (2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取 差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例, op h l I I I =+ 在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式: ① /2res h l I I I =- ② ()/2res h l I I I =+ ③ max{,}res h l I I I = ④ ()/2res op h l I I I I =-- ⑤ res l I I = 二、测试要点:标么值的概念 另:注意,978可以自动辅助计算当前的差流, 但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前 X 相制动电流下的动作电流边界!!! 三、试验举例: 保护定值:动作门槛:0.3 差动速断电流:4 I 侧(Y 接线)二次侧额定电流:3.935; II 侧(Y 接线)二次侧额定电流:3.765; III 侧(D 接线)二次侧额定电流:3.955 由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。 1.选择“差动菜单”——“扩展差动” 2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

发变组差动保护测试的方法和步骤

发变组差动保护测试的方法和步骤 摘要:本文介绍了组发电机差动保护的基本配置方案。通过对差动速断保护和 比例差动保护的制动面积进行分析,测试了比率制动差动保护原理并对发电机差 动保护的简易型测试方法和步骤进行了讨论。 关键词:发变组;差动保护;发电机 引言随着我国电力工业的迅猛发展 ,发电机也时刻受到外界负荷的影响。为了保证供电 的可靠性和连续性,必须对电力发电机继电保护装置的性能和动作可靠性做出相应的严格设置。 1.发电机差动保护的原理与配置 发电机纵差动保护是发电机的主保护,它采集发电机定子绕组两端的电流。如图1所示:发电机中性点侧和发电机出口断路器的各安装了一组电流互感器,它的二次侧输出直接 连接到发电机的主保护装置。根据两侧的电流相量差和差动保护整定值来决定是否动作。在 正常情况下,中性侧电流和出口侧的电流是大小相等,方向相同,两侧的差动电流是零。当 相间短路故障发生时,两侧的电流互感器的短路电流均流向短路点。此时,两侧电流的方向 相反,所以差动电流将不再为零。 事实上,由于类型、特性等存在不同,两侧的电流互感器存在一些差异。在正常情况下,两侧的每相绕组一次侧电流是相同的,但二次侧电流也可能存在不平衡电流。因此,对差动 保护动作电流的整定值不能太小,以躲开不平衡电流。根据上面的整定方法,可能导致差动保 护不能动作,需要等待故障进一步发展后,保护才能动作。但到那个时候,发电机可能已经 造成了巨大的伤害。 第三部分的动作区域包含比率制动差动保护和差动速断保护,只要任一条件满足,保护将会 动作。 2.发电机微机保护的测试方法 测试分为比率制动差动保护和差动速断保护两部分分别测试,其完整的测试连接如图3 所示。整定定值为, 根据测试结果表1的连接,正确设置系统保护装置的参数,可以使比率制动差动保护和 差动速断保护正确动作。 3.简易型比率制动差动保护的测试方法和流程 对于中小机组来说,由于测试设备较为简单,可以使用固定制动电流,改变差动电流, 寻找差动保护动作的关键点来判断保护是否正确动作,即为简易型保护测试方法。 (1)保护测试接线如图3所示,IA和IB是保护测试仪连接保护装置的差动保护电流输入,并根据正确的极性分别设定IA和IB的相角。 (2)向保护测试仪输入IA=1.5A,IB=0.5A,IA和IB的相角根据极性来设定。在保护测试 仪中设置IA、IB的电流步长为0.01A。在测试过程中使用手动功能增加/减少电流,使制动电 流不变,可以实现锁定制动电流Ir为2.0A如图4所示。然后逐渐增加差动电流Id,找到并 验证差动保护制动特性的当前值。 图4 比率制动差动保护的动作特性 采用手动调整电流的测试方法,首先用手动逐步减小测试电流,使IA=1.3A,IB=0.7A,然后将测试电流加入保护装置。此时Ir=2.0A,Id=0.6A,而且Id>Id0,但根据比率制动特性,保 护装置应可靠的不动作。当采用手动调整逐渐增加电流IA,沿垂线找到相应的差动保护电流。观察交流采样结果和差动保护电流、制动电流的计算值,记录当前保护的动作值。根据灵敏 度要求,当差动电流为整定值的95%时,保护装置应可靠的没有不动作。 根据上述方法进行实际测试,采用博电PW30保护测试仪对差动保护测试,试验结果如 表2所示。

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

主变压器差动保护动作的原因及处理示范文本

主变压器差动保护动作的原因及处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

主变压器差动保护动作的原因及处理示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 主变压器差动保护动作跳闸的原因是: (1)主变压器及其套管引出线发生短路故障。 (2)保护二次线发生故障。 (3)电流互感器短路或开路。 (4)主变压器内部故障。 处理的原则是: (1)检查主变压器外部套管及引线有无故障痕迹和异 常现象。 (2)如经过第(1)项检查,未发现异常,但本站 (所)曾有直流不稳定接地隐患或曾带直流接地运行,则 考虑是否有直流两点接地故障。如果有,则应及时消除短

路点,然后对变压器重新送电。 (3)如果进行第(2)项检查,未发现直流接地故障,但出口中间继电器线圈两端有电压,同时差动继电器接点均已返回,则可能是差动跳闸回路和保护二次线短路所致,应及时消除短路点,然后试送电。 (4)检查高低压电流互感器有无开路或接触不良现象,发现问题及时处理,然后向变压器恢复送电。 (5)如果上述检查未发现故障或异常,则可初步判断为变压器内部故障,应停止运行,等待试验;如果是引出线故障,则应及时更换引出线。 (6)如果差动保护和瓦斯保护同时动作跳闸,应首先判断为变压器内部故障,按重瓦斯保护动作处理。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

差动保护校验

高压侧平衡系数为1; 中压侧平衡系数为MTA/HTA(即中压侧的TA变比与高压侧TA变比的比值); 中性点平衡系数为LTA/HTA(即中性点TA变比与高压侧TA变比的比值); 3.3 零序差动保护调试步骤 3.3.1 电流通道采样精度的校验 3.3.1.1分别从保护装置各侧电流端子处通入三相对称电流,校验装置三相电流及零序电流的采样精度。 3.3.2.2分别从保护装置各侧电流端子处通入单相电流,察看零序电流显示是否精确。 3.3.2 差动电流定值及差速电流定值的校验 3.3.2.1从保护装置高压侧电流端子处通入单相电流,电流大小为1.05倍的I0cd(I0sd)以及0.95倍的I0cd(I0sd),校验1.05倍定值可靠动作,0.95倍的定值可靠不动作。 3.3.2.2从保护装置中压侧电流端子处通入单相电流,电流大小为1.05倍的I0cd*中压侧平衡系数(I0sd*中压侧平衡系数)以及0.95倍的I0cd*中压侧平衡系数(I0sd*中压侧平衡系数),校验1.05倍定值可靠动作,0.95倍的定值可靠不动作。 3.3.2.3从保护装置中性点电流端子处通入单相电流,电流大小为1.05倍的I0cd*中性点平衡系数(I0sd*中性点平衡系数)以及0.95倍的I0cd*中性点平衡系数(I0sd*中性点平衡系数),校验1.05倍定值可靠动作,0.95倍的定值可靠不动作。 3.3.3 零序比率制动元件的校验 分别以高压侧对中压侧、高压侧对中性点、中压侧对中性点两侧比率制动校验比率制动特性曲线。

图4 特性曲线标注 3.3.3.1如图4所示,在横坐标上(制动电流)分别取几个点例如取Ir1= I0zd,Ir2=2 I0zd,Ir3=3 I0zd,Ir4=3.2 I0zd,根据曲线特性计算相对应的 Id1,Id2,Id3,Id4,由Id=|I01+ I02 |;Ir=max(|I01|,|I02|),已知Id 、Ir,可求出I01 和I02。 3.3.3.2将求出的一组值加入装置,校验正确性。例如,若校验中压侧制动高压侧时,当I01 >I02时,将I01加入中压侧电流通道中(此电流加入前需乘以中压侧平衡系数),在高压侧电流通道中加入比I02小的一个电流值,此时,零序差动保护不动作,将此值设为变量并逐渐抬高,当抬高到I02附近值时,零序差动保护动作,证明这组值是正确的。 3.3.3.3按照上述方法校验其他几组值,通过这几组值可以确定曲线,进而校验比率特性的正确性。 以上在校验差动定值时,中性点应保证始终有流,所以在做中压侧零序电流制动高压侧零序电流时,应考虑中性点电流的影响。

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2)

其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为: cdzd T m j j DI DI I +?>?∑=1 (1) ∑∑==?'>?m j j m j j I K I 1 1 (2) 其中K '为工频变化量比例制动系数,母联开关处于合闸位置以及投单母或刀闸双跨时K '取0.75,而当母线分列运行时则自动转用比率制动系数低值,小差则固定取0.75;△I j 为第j 个连接元件的工频变化量电流;△DI T 为差动电流起动浮动门坎;DI cdzd 为差流起动的固定门坎,由I cdzd 得出。 3)故障母线选择元件

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

南瑞主变差动保护调试篇

经验总结-主变差动保护部分 一、从工程角度出发所理解的主变差动保护 关于接线组别和变比的归算思路 1、影响主变差动保护的几个因素 差动保护因为其具有的选择性好、灵敏度高等一系列优点成为变压器、电动机、母线及短线路等元件的主保护。这几种差动保护原理是基本相同的,但主变差动保护还要考虑到变压器接线组别、各侧电压等级、CT变比等因素的影响。所以同其它差动保护相比,主变差动保护实现起来要更复杂一些。 变压器变比的影响:因为变压器变比不同,造成正常情况下,主变高低压侧一次电流不相同。比如:假设变压器变比为110KV/10KV,不考虑变压器本身励磁损耗的理想情况下,流进高压侧电流为1A,则流出低压侧为11A。这很好理解,三相视在功率S= √3UI。不考虑损耗,高低压侧流过功率不变,各侧电压不同,自然一次电流也不同。 CT变比的影响:还是用上面的举例,如果变压器低压侧保护CT的变比是高压侧CT 变比的11倍,就可以恰好抵消变压器变比的影响,从而做到正常情况下,流入保护装置(CT二次侧)的电流大小相同。但现实情况是,CT变比是根据变压器容量来选择,况且CT变比都是标准的,同样变压器变比也是标准化的,这三者的关系根本无法保证上述的理想比例。假设变压器容量为20MKVA,110KV侧CT变比为200/5,低压侧CT变比如果为2200/5即可保证一致。但实际上低压侧CT变比只能选2000/5或2500/5,这自然造成了主变高低压侧CT二次电流不同。 变压器接线组别的影响:变压器不同的接线组别,除Y/Y或△/△外,都会导致变压器高低压侧电流相位不同。以工程中常见的Y/△-11而言,低压侧电流将超前高压侧电流30度。另外如果Y侧为中性点接地运行方式,当高压侧线路发生单相接地故障时,主变Y 侧绕组将流过零序故障电流,该电流将流过主变高压侧CT,相应地会传变到CT二次,而主变△侧绕组中感应出的零序电流仅能在其绕组内部流过,而无法流经低压侧开关CT。 2、为消除上述因素的影响而采取的基本方法 主变差动保护要考虑的一个基本原则是要保证正常情况和区外故障时,用以比较的主变高低压侧电流幅值是相等,相位相反或相同(由差流计算采取的是矢量加和矢量减决定,不过一般是让其相位相反),从而在理论上保证差流为0。不管是电磁式或集成电路及现在的微机保护,都要考虑上述三个因素的影响。(以下的讨论,都以工程中最常见的Y/△-11而言) 电磁式保护(比如工程中常见的LCD-4差动继电器),对于接线组别带来的影响(即相位误差)通过外部CT接线方式来解决。主变为Y/△接线,高压侧CT二次采用△接

差动保护调试方法

微机变压器差动保护 一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器 常采用Y/D-11接线方式,因此,变压器两侧电流的相位差为30°。如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流。必需消除这种不平衡电流。 (中华人民共和国行业标准DL —400—91《继电保护和安全自 动装置技术规程》2.3.32条:对6.3MVA及以上厂用工作变压器和并联运行变压器。10MVA 及上厂用变压器和备用变压器和单独运行的变压器。以及2MVA及以上用电速断保护灵敏度不符合要求的变压器,应装设纵联差动保护。) (一)用电流互感器二次接线进行相位补偿 其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器 接成星形,如图1所示 图1变压器为Y o/ △ -11连接和TA/Y连接的差动保护原理接线

采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流 I A2、丨B2、I C2 , 刚好与三角形侧的电流互感器二次回路中的电流 I a 2、I b2、I c2同相位,如图2所示。 (二) 用保护内部算法进行相位补偿 当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从 而简化了 TA 二次接线,增加了电流回路的可靠性。但是如图 3当变压器为Y 。/ △ -11连接 时,高、低两侧TA 二次电流之间将存在30°的角度差,图4(a )为TA 原边的电流相量 图2向量图 b

图3变压器为Y △ -11连接和TA 为Y/Y 连接的差动保护原理接线 为消除各侧TA 二次电流之间的角度差,由保护软件通过算法进行调整 1、常规差动保护中电流互感器二次电流的相位校正 大部分保护装置采用 Y -△变化调整差流平衡,如四方的 CST31南自厂的PST-12O0 WBZ-500H 南瑞的LFP-972、RCS-985等,其校正方法如下: Y 0侧: I A2 = ( I A2 — I B2 ) / 3 I B2= ( I B2 — I C2 ) / 3 I C 2 = ( I C2 — I A2 ) / 3 △侧: I a2=I a2 I b2 = I b2 I c2=I c2 式中: I A2、I B 2、I C2为Y 0侧TA 二次电流,*、?、I C 2为侧校正后的各相电流;、 I b2、I c2为△侧TA 二次电流,I a2、I b2、丨c2为△侧校正后的各相电流 经过软件校正后,差动回路两侧电流之间的相位一致,见图 4 (b )所示。同理,对于 三绕组变压器,若采用Y o / Y 。/ △ -11接线方式,Y o 侧的相位校正方法都是相同的。 2、RCS- 978中电流互感器二次电流的相位校正 RCS-978中电流互感器二次电流的相位校正方法与其它微机变压器保护有所不同,此

相关文档
最新文档