(完整版)蛋白质四级结构及其检测方法

(完整版)蛋白质四级结构及其检测方法

论述一、二、三、四级蛋白质结构及其检测方法?

蛋白质定义:由一条或多条多肽链以特殊方式结合而成的生物大分子,通常是将分子量在6000道尔顿以上的多肽称为蛋白质。

一、蛋白质一级结构:

(一)定义:蛋白质的一级结构又称为共价结构或化学结构,它是指蛋白质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。氨基酸残基主要通过肽键连接,有些蛋白质中含有二硫键。

(二)检测方法:

二硝基氟苯(DNFB)法、丹磺酰氯法、氨肽酶法、C-末端氨基酸测定(肼解法、还原法、羧肽酶法)

二、蛋白质二级结构:

(一)定义:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,只涉及肽链主链的构象及链内或链间形成的氢键。并不涉及氨基酸残基侧链的构象。主要的化学键为氢键。

(二)检测方法:

构象的研究方法:X射线衍射法、核磁共振光谱法、圆二色谱CD、紫外-可见差光谱、荧光探针法、激光拉曼光谱法、红外光谱法、关联规则与遗传算法。

三、蛋白质三级结构:

(一)定义:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。主要的化学键:疏水键、离子键、二硫键、氢键和配位键稳定维系三级结构的作用。

(二)检测方法:

同源建模(比较建模SWISS-MODEL)法、穿针引线方法(折叠识别方法)、从头预测法、最速下降法、牛顿法、共轭梯度法、遗传算法、分解-结合法、离散化方法、分子动力学法、混合预测方法、粒子群优化算法(PSO)。

四、蛋白质四级结构:

(一)定义:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基。蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。亚基之间的结合力主要是疏水作用,其次是氢键和离子键。

(二)检测方法:

线性降维法:Swiss-Prot数据库中抽取数据集进行四级结构预测。

Quat-PRE方法:综合运用mRMR方法和SVM的wrapper方法进行四级结构预测。

最近邻居算法:从蛋白质一级序列出发,利用蛋白质序列氨基酸组成、二肽组成以及混合组成方法对蛋白质单聚体、二聚体、三聚体、四聚体、五聚体、六聚体和八聚体进行分类研究。

免疫球蛋白的试题及答案

第四章免疫球蛋白 名词解释: 1.抗体(antibody) 2.Fab(fragment antigen binding) 3.Fc(fragment crytallizable) 4.免疫球蛋白(Immunoglobulin Ig) 5.超变区(hypervariable region,HVR) 6.可变区(variable region,V区) 7.单克隆抗体(Monoclonal antibody,mAb) 8.ADCC(Antibody –dependent cell-mediatedcytotoxicity) 9.调理作用(opsonization) 10.J链(joining chain) 11.分泌片(secretory piece) 12.Ig功能区(Ig domain) 13.Ig折叠(Ig folding) 14.CDR(complementary-determining region) 问答题 1.简述抗体与免疫球蛋白的区别和联系。 2.试述免疫球蛋白的主要生物学功能。 3.简述免疫球蛋白的结构、功能区及其功能。 4.简述单克隆抗体技术的基本原理。 参考答案 名词解释 1.抗体(Antibody) :是B 细胞特异性识别Ag后,增殖分化成为浆细胞,所合成分泌的一类能与相应抗原特异性结合的、具有免疫功能的球蛋白。 2.Fab(Fragment antigen binding):即抗原结合片段,每个Fab段由一条完整的轻链和重链的VH和CH1功能区构成,可以与抗原表位发生特异性结合。 3.Fc片段(fragment crytallizable):即可结晶片段,相当于IgG的CH2和CH3功能区,无抗原结合活性,是抗体分子与效应分子和细胞相互作用的部位。 4. 免疫球蛋白(Immunoglobulin,Ig):是指具有抗体活性或化学结构与抗体相似的球蛋白。可分为分泌型和膜型两类。 5.高变区(hypervariable region ,HVR):在Ig分子VL和VH内,某些区域的氨基酸组成、排列顺序与构型更易变化,这些区域为超变区。 6.可变区(V区):在Ig多肽链氨基端(N端),L链1/2与H链1/4区域内,氨基酸的种类、排列顺序与构型变化很大,故称为可变区。 7.单克隆抗体(Monoclonal antibody ,mAb):是由识别一个抗原决定簇的B淋巴细胞杂交瘤分裂而成的单一克隆细胞所产生的高度均一、高度专一性的抗体。 8.ADCC(Antibody –dependent cell-mediatedcytotoxicity):即抗体依赖的细胞介导的细胞毒作用。是指表达Fc受体细胞通过识别抗体的Fc段直接杀伤被抗体包被的靶细胞。NK细胞是介导ADCC的主要细胞。 9.调理作用(Opsonization):是指IgG抗体(特别是IgG1和IgG3)的Fc段与中性粒细胞、巨噬细胞上的IgG Fc受体结合,从而增强吞噬细胞的吞噬作用。 10.J链(joining chain):是由浆细胞合成的富含半胱氨酸的一条多肽链。J链可以连接Ig单体形成二聚体、五聚体或多聚体。

蛋白质结构与功能的关系

蛋白质结构与功能的关系 蛋白质的结构包括一级结构、二级结构、三级结构、四级结构。 一级结构是蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。 蛋白质的二级结构是指多肽链的主链骨架本身在空间上有规律的折叠和盘绕,它是由氨基酸残基非侧链基团之间的氢键决定的。常见的二级结构有α螺旋、三股螺旋、β折叠、β转角、β凸起和无规卷曲。α螺旋中肽链骨架围绕一个轴以螺旋的方式伸展,它可能是极性的、疏水的或两亲的。β折叠是肽链的一种相当伸展的结构,有平行和反平行两种。如果β股交替出现极性残基和非极性残基,那么就可以形成两亲的β折叠。β转角指伸展的肽链形成180°的U形回折结构而改变了肽链的方向。β凸起是由于β折叠股中额外插入一个氨基酸残基而形成的,它也能改变多肽链的走向。无规卷曲是在蛋白质分子中的一些极不规则的二级结构的总称。无规卷曲无固定走向,有时以环的形式存在,但不是任意变动的。从结构的稳定性上看,右手α螺旋>β折叠> U型回折>无规卷曲,但在功能上,酶与蛋白质的活性中心通常由无规卷曲充当,α右手螺旋和β折叠一般只起支持作用。 蛋白质的三级结构是指多肽链在二级结构的基础上,进一步盘绕、卷曲和折叠,形成主要通过氨基酸侧链以次级键以及二硫键维系的完整的三维结构。三级结构通常由模体和结构域组成。稳定三级结构的化学键包括氢键、疏水键、离子键、范德华力、金属配位键和二硫键。模体可用在一级结构上,特指具有特殊生化功能的序列模体,也可被用于功能模体或结构模体,相当于超二级结构。结构模体是结构域的组分,基本形式有αα、βαβ和βββ等。常见的模体包括:左手超螺旋、右手超螺旋、卷曲螺旋、螺旋束、α螺旋-环-α螺旋、Rossmann卷曲和希腊钥匙模体。结构域是在一个蛋白质分子内的相对独立的球状结构和/或功能模块,由若干个结构模体组成的相对独立的球形结构单位,它们通常是独自折叠形成的,与蛋白质的功能直接相关。一个结构域通常由一段连续的氨基酸序列组成。根据其占优势的二级结构元件的类型,结构域可分为五大类:α结构域、β结构域、α/β结构域、α+β 结构域、交联结构域。以上每一类结构域的二级结构元件可能有不同的组织方式,每一种组织就是一种结构模体。这些结构域都有疏水的核心,疏水核心是结构域稳定所必需的。 具有两条和两条以上多肽链的寡聚蛋白质或多聚蛋白质才会有四级结构。组成寡聚蛋白质或多聚蛋白质的每一个亚基都有自己的三级结构。蛋白质的四级结构内容包括亚基的种类、数目、空间排布以及亚基之间的相互作用。驱动四级结构形成或稳定四级结构的作用力包括

第四章 免疫球蛋白剖析

第四章免疫球蛋白 第一节基本概念 1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。 20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。肺炎球菌多糖免疫家兔后可获得高效价免疫血清。然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。 2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。 区别: 抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。 前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后 者是B细胞表面的抗原识别受体。 第二节免疫球蛋白结构

一、免疫球蛋白的基本结构 (一)重链和轻链 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。 1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区的数目以及铰链区的长度等。同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD和IgE尚未发现有亚类。 2.轻链 免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。轻链可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的,两型轻链的功能无差异。不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ 4 四个亚型。 (二)可变区和恒定区 通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variable

蛋白质四级结构及其检测方法

论述一、二、三、四级蛋白质结构及其检测方法? 蛋白质定义:由一条或多条多肽链以特殊方式结合而成的生物大分子,通常是将分子量在6000道尔顿以上的多肽称为蛋白质。 一、蛋白质一级结构: (一)定义:蛋白质的一级结构又称为共价结构或化学结构,它是指蛋白质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。氨基酸残基主要通过肽键连接,有些蛋白质中含有二硫键。 (二)检测方法: 二硝基氟苯(DNFB)法、丹磺酰氯法、氨肽酶法、C-末端氨基酸测定(肼解法、还原法、羧肽酶法) 二、蛋白质二级结构: (一)定义:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,只涉及肽链主链的构象及链内或链间形成的氢键。并不涉及氨基酸残基侧链的构象。主要的化学键为氢键。 (二)检测方法: 构象的研究方法:X射线衍射法、核磁共振光谱法、圆二色谱CD、紫外-可见差光谱、荧光探针法、激光拉曼光谱法、红外光谱法、关联规则与遗传算法。 三、蛋白质三级结构: (一)定义:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。主要的化学键:疏水键、离子键、二硫键、氢键和配位键稳定维系三级结构的作用。 (二)检测方法: 同源建模(比较建模SWISS-MODEL)法、穿针引线方法(折叠识别方法)、从头预测法、最速下降法、牛顿法、共轭梯度法、遗传算法、分解-结合法、离散化方法、分子动力学法、混合预测方法、粒子群优化算法(PSO)。 四、蛋白质四级结构: (一)定义:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基。蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。亚基之间的结合力主要是疏水作用,其次是氢键和离子键。 (二)检测方法: 线性降维法:Swiss-Prot数据库中抽取数据集进行四级结构预测。 Quat-PRE方法:综合运用mRMR方法和SVM的wrapper方法进行四级结构预测。 最近邻居算法:从蛋白质一级序列出发,利用蛋白质序列氨基酸组成、二肽组成以及混合组成方法对蛋白质单聚体、二聚体、三聚体、四聚体、五聚体、六聚体和八聚体进行分类研究。

生物化学知识点与题目 第四章 蛋白质化学.

第四章蛋白质化学 知识点: 一、氨基酸 蛋白质的生物学功能 氨基酸:酸水解:破坏全部色氨酸以及部分含羟基氨基酸。碱水解:所有氨基酸产生外消旋。氨基酸的分类:非极性氨基酸(8种):Ala、V al、Leu、Ile、Pro、Met、Phe、Trp;极性氨基酸(12种):带正电荷氨基酸Lys、Arg、His;带负电荷氨基酸Asp和Glu;不带电荷氨基酸Ser、Thr、Tyr、Asn、Gln、Cys、Gly。 非蛋白质氨基酸: 氨基酸的酸碱性质: 氨基酸的等电点,氨基酸的可解离基团的pK值,pI的概念及计算, 高于等电点的任何pH值,氨基酸带有净负电荷,在电场中将向正极移动。 氨基酸的光吸收性:芳香族侧链有紫外吸收,280nm, 氨基酸的化学反应:α-氨基酸与水合茚三酮试剂共热,可发生反应,生成蓝紫化合物。茚三酮与脯氨酸和羟脯氨酸反应则生成黄色化合物。 二、结构与性质 肽:基本概念;肽键;肽;氨基酸残基;谷胱甘肽;肽键不能自由转动,具有部分双键性质;肽平面 蛋白质的分子结构:一级结构,N-末端分析,异硫氰酸苯酯法;C-末端分析,肼解法 蛋白质的二级结构:是指蛋白质分子中多肽链骨架的折叠方式,包括α螺旋、β折叠和β转角等。 超二级结构:超二级结构是指二级结构的基本结构单位(α螺旋、β折叠等)相互聚集,形成有规律的二级结构的聚集体。 结构域: 蛋白质的三级结构:蛋白质的三级结构指多肽链中所有氨基酸残基的空间关系,其具有二级结构或结构域。 球状蛋白质分子的三级结构特点:大多数非极性侧链(疏水基团)总是埋藏在分子内部,形成疏水核;大多数极性侧链(亲水基团),总是暴露在分子表面,形成一些亲水区。 蛋白质的四级结构:蛋白质的四级结构是由两条或两条以上各自独立具有三级结构的多肽链(亚基)通过次级键相互缔合而成的蛋白质结构。变构蛋白、变构效应;血红蛋白氧合曲线。维持蛋白质分子构象的化学键:氢键,疏水键,范德华力,盐键,二硫键等 三、蛋白质的分子结构与功能的关系 蛋白质的分子结构与功能的关系:一级结构决定高级结构,核糖核酸酶的可逆变性;变性、复性、镰刀型红细胞贫血症的生化机理; 四、蛋白质的性质及分离纯化 胶体性质:双电层,水化层;1. 透析;2. 盐析;3. 凝胶过滤; 酸碱性质:1. 等电点沉淀;2. 离子交换层析;3. 电泳 蛋白质的变性:蛋白质变性后,二、三级以上的高级结构发生改变或破坏,但共价键不变,一级结构没有破坏。

免疫球蛋白的结构

第一节免疫球蛋白的结构(The Structure of Immunoglobulin) B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋白,这类免疫球蛋白被称为抗体(antibody, Ab)。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。 实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。1968年和1972年的两次国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。 Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Bence Jones, BJ)蛋白等。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。 ☆☆相关素材☆☆ 图片正常人血清电泳分离图 一免疫球蛋白的基本结构 The basical structure of immunoglobulin 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。 X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region)连接到主干上形成一个"Y"形分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本单位。

蛋白质结构预测和序列分析软件

蛋白质结构预测和序列分析软件蛋白质数据库及蛋白质序列分析 第一节、蛋白质数据库介绍 一、蛋白质一级数据库 1、 SWISS-PROT 数据库 SWISS-PROT和PIR是国际上二个主要的蛋白质序列数据 库,目前这二个数据库在EMBL和GenBank数据库上均建 立了镜像 (mirror) 站点。 SWISS-PROT数据库包括了从EMBL翻译而来的蛋白质序 列,这些序列经过检验和注释。该数据库主要由日内瓦大 学医学生物化学系和欧洲生物信息学研究所(EBI)合作维 护。SWISS-PROT的序列数量呈直线增长。 2、TrEMBL数据库: SWISS-PROT的数据存在一个滞后问题,即 进行注释需要时间。一大批含有开放阅读 了解决这一问题,TrEMBL(Translated E 白质数据库,它包括了所有EMBL库中的 质序列数据源,但这势必导致其注释质量 3、PIR数据库: PIR数据库的数据最初是由美国国家生物医学研究基金 会(National Biomedical Research Foundation, NBRF) 收集的蛋白质序列,主要翻译自GenBank的DNA序列。 1988年,美国的NBRF、日本的JIPID(the Japanese International Protein Sequence Database日本国家蛋 白质信息数据库)、德国的MIPS(Munich Information Centre for Protein Sequences摹尼黑蛋白质序列信息 中心)合作,共同收集和维护PIR数据库。PIR根据注释 程度(质量)分为4个等级。 4、 ExPASy数据库: 目前,瑞士生物信息学研究所(Swiss I 质分析专家系统(Expert protein anal 据库。 网址:https://www.360docs.net/doc/6811084741.html, 我国的北京大学生物信息中心(www.cbi.

蛋白质结构预测在线软件

蛋白质预测分析网址集锦? 物理性质预测:? Compute PI/MW?? ?? SAPS?? 基于组成的蛋白质识别预测? AACompIdent???PROPSEARCH?? 二级结构和折叠类预测? nnpredict?? Predictprotein??? SSPRED?? 特殊结构或结构预测? COILS?? MacStripe?? 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。? 由NCBI检索蛋白质序列? 可联网到:“”进行检索。? 利用SRS系统从EMBL检索蛋白质序列? 联网到:”,可利用EMBL的SRS系统进行蛋白质序列的检索。? 通过EMAIL进行序列检索?

当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。? 蛋白质基本性质分析? 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的例子是在羧基端含有KDEL序列特征的蛋白质将被引向内质网。WEB中有很多此类资源用于帮助预测蛋白质的功能。? 疏水性分析? 位于ExPASy的ProtScale程序(?)可被用来计算蛋白质的疏水性图谱。该网站充许用户计算蛋白质的50余种不同属性,并为每一种氨基酸输出相应的分值。输入的数据可为蛋白质序列或SWISSPROT数据库的序列接受号。需要调整的只是计算窗口的大小(n)该参数用于估计每种氨基酸残基的平均显示尺度。? 进行蛋白质的亲/疏水性分析时,也可用一些windows下的软件如,bioedit,dnamana等。? 跨膜区分析? 有多种预测跨膜螺旋的方法,最简单的是直接,观察以20个氨基酸为单位的疏水性氨基酸残基的分布区域,但同时还有多种更加复杂的、精确的算法能够预测跨膜螺旋的具体位置和它们的膜向性。这些技术主要是基于对已知

免疫球蛋白的结构

第一节免疫球蛋白的结构 (The Structure of Immunoglobulin) B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋 白,这类免疫球蛋白被称为抗体( an tibody, Ab )。 1937年,Tiselius 用电泳方法将血清蛋白分为白蛋白、a 1、a 2、B及丫球蛋白等组分,其后又证明抗体的活性部分是在丫球蛋白部分。因此,相当长一段时间内,抗体又被称为丫 球蛋白(丙种球蛋白)。 实际上,抗体的活性除丫球蛋白外,还存在于a和B球蛋白处。1968年和1972年的两次 国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin , Ig )。 Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Be nee Jon es, BJ )蛋白等。 免疫球蛋白可分为分泌型(secreted lg,Slg )和膜型(membrane Ig, mIg )。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别 受体。 ☆☆相关素材☆☆ 图片正常人血清电泳分离图 I 丨总血清 -------- igG -------- IgA --------- IgM 一电泳迁移率十 (igES极少、不能定曲表示) 正常人血清电泳分离图 一免疫球蛋白的基本结构The basical structure of immunoglobulin 免疫球蛋白分子是由两条相同的重链( heavy chain , H链)和两条相同的轻链(light chain , L链)通过链间二硫键连接而成的四肽链结构。 X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region )连接到主干上形成一个 "Y"形分子,称为Ig分子的单体, 是构成免疫球蛋白分子的基本单位。

蛋白质四级结构

四、蛋白质四级结构 1、二级结构 ·参与肽键的6个原子C1,C,O,N,H,C2位于同一平面。 C-N键不同于单键有40%双键性质。 (1)α-螺旋 ·螺旋方向为顺时针走向·每3.6个氨基酸上升一圈 ·维持因素为氢键·螺距为0.54nm ·肽键的N-H键与第4个肽键的羰基氧形成H键与轴平行。 脯氨酸无法形成氢键而不存在于α。 (2)β-折叠 ·分子内相距较远的两个肽段可通过折叠形成相同或通过回折形成走向。·肽链间肽键羰基氧和亚氨基氢形成氢键而稳固β-折叠结构。 (3)β-转角 ☆由4个氨基酸残基组成,1残基的C=O与4残基的N-H形成氢键。 而第二残基常为脯氨酸。 (4)无规卷曲:不是没有规则的随意变化,而是规律未确定的肽链结构。☆模体:蛋白质分子中具有特定空间构象与特定功能的结构成分。 超二级结构:几个二级结构结合成的有规则的二级结构组合。 2、三级结构 (1)整条肽链中全部氨基酸残基的相对空间位置。

(2)次级键:疏水键(主要)、离子键、氢键、范德华力。 (3)结构域:蛋白质上折叠成的多个结构较紧密且稳定的区域,并各行其功能。 (4)☆分子伴侣:辅助一级结构是合成中的蛋白质折叠为正确空间构象的蛋白。 ·只有在特定条件下,一级结构决定高级结构,高级结构再决定生物学功能。 3、四级结构 亚基间以非共价键相连接 结合力:氢键、离子键驱动力:疏水键 每个亚基均有三级结构,但无生物学功能。 ·同二聚体·异二聚体 五、蛋白质结构与功能 1、一级结构 (1)一级结构是空间构想基础,只要一级结构未破坏,就有可能恢复至原来三级结构。 (2)一级结构相似的蛋白有相似的高级功能 (3)物种越相近,一级结构越相似。 (4)重要氨基酸残基缺失替代,会严重影响构想及生理功能而引起疾病。 2、特定空间结构 ·血红素:Fe2+含6个配位键,4个与卟啉环4个N相连,第5个:肽链中F8组氨基酸残基还与Fe2+配位结合,则血红素辅基可与蛋白质部分结合稳定。 第6个:与O结合 ·血红蛋白α2β2(每个亚基结合一个血红素携带一个O,共携带4个O。 141*2+146*2=574,共574个残基。 ·α1结合O→α2→β1→β2 正协同 ┖别构 ☆协同效应:一个亚基与配体(如O2)结合后,能影响此寡聚体中另一亚基与配体的结合能力。促进→正协同、抑制→负协同

免疫球蛋白分子的结构与功能

、免疫球蛋白分子的基本结构 Porter等对血清IgG 抗体的研究证明,lg分子的基本结构是由四肽链组成的。即由二条 相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为lg分子的单体,是构成免疫球蛋白分子的基 本结构。lg单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N 端)和羧基端(C端)。 图2-3免疫球蛋白分子的基本结构示意图 (一)轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是lg分子的 L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较 分析,从而为lg分子氨基酸序列分析提供了良好的材料。 1. 轻链(light chain,L )轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:kappa(与lambda(入)同一个天然lg分子上L链的型总是相同的。正常人血清中的K入约为2:1。 2. 重链(heavy chain,H链)重链大小约为轻链的2倍,含450?550个氨基酸残基,分子量约为55或75kD。每条H链含有4?5个链内二硫键所组成的环肽。不同的H链由于 ?戰水化合韧

氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:卩链、丫链、a链、3链和£链,不同H链与L链 (K或入链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。Y a和3链上含有4个肽,□和&链含有5个环肽。 (二)可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N- 末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。 1. 可变区(variable region,V区)位于L链靠近N端的1/2 (约含108?111个氨基酸残基)和H链靠近N端的1/5或1/4 (约含118个氨基酸残基)。每个V 区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67?75个氨基酸残基。V区氨基酸的组成和排列 随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万 化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR )。在V区 中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion )。VL 中的高变区有三个,通常分别位于第24?34、50?65、95?102位氨基酸。VL和VH的这 三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(compleme ntarity-determi ning regi-on,CDR)o VL 和VH 的HVR1、HVR2 和HVR3 又可分另U称为CDR1、CDR2 和CDR3 , 一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇(idiotypic determ inants 主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。

蛋白质结构

四级结构(quaternary structure) 四级结构是指在亚基和亚基之间通过疏水作用等次级键结合成为有序排列的特定的空间结构。四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。亚基有时也称为单体(monomer),仅由一个亚基组成的并因此无四级结构的蛋白质如核糖核酸酶称为单体蛋白质,由两个或两个以上亚基组成的蛋白质统称为寡聚蛋白质,多聚蛋白质或多亚基蛋白质。多聚蛋白质可以是由单一类型的亚基组成,称为同多聚蛋白质或由几种不同类型的亚基组成称为杂多聚蛋白质。对称的寡居蛋白质分子可视为由两个或多个不对称的相同结构成分组成,这种相同结构成分称为原聚体或原体(protomer)。在同多聚体中原体就是亚基,但在杂聚体中原体是由两种或多种不同的亚基组成。 蛋白质的四级结构涉及亚基种类和数目以及各亚基或原聚体在整个分子中的空间排布,包括亚基间的接触位点(结构互补)和作用力(主要是非共价相互作用)。大多数寡聚蛋白质分子中亚基数目为偶数,尤以2和4为多;个别为奇数,如荧光素酶分子含3个亚基。亚基的种类一般是一种或两种,少数的多于两种。 亚基的立体排布 稳定四级结构的作用力与稳定三级结构的没有本质区别。亚基的二聚作用伴随着有利的相互作用包括范徳华力,氢键,离子键和疏水作用还有亚基间的二硫键。亚基缔合的驱动力主要是疏水作用,因亚基间紧密接触的界面存在极性相互作用和疏水作用,相互作用的表面具有极性基团和

疏水基团的互补排列;而亚基缔合的专一性则由相互作用的表面上的极性基团之间的氢键和离子键提供。 血红蛋白的四级结构 血红蛋白分子就是由二个由141个氨基酸残基组成的α亚基和二个由146个氨基酸残基组成的β亚基按特定的接触和排列组成的一个球状蛋白质分子,每个亚基中各有一个含亚铁离子的血红素辅基。四个亚基间靠氢键和八个盐键维系着血红蛋白分子严密的空间构象。 蛋白质--名词辨析 蛋白质一级结构(primary structure): 氨基酸序列。 蛋白质二级结构(secondary structure): 蛋白质主干原子间形成的二面角Φ(phi)和φ(psi)以及主链 上原子间形成的氢键决定的,在某些情况下,这些二面角和

蛋白质一级结构的测定方法

蛋白质一级结构的测定 1.测定蛋白质分子中多肽链的数目:N-末端和C-末端残基的摩尔数和蛋白质的相对分子质量 2.拆分蛋白质分子的多肽链 非共价相互作用缔合的寡聚蛋白:用变性剂尿素盐酸胍 共价二硫桥:氧化剂或还原剂 3.断开多肽链内的二硫桥 过甲酸氧化法常用试剂过甲酸 巯基化合物还原法:过量的巯基乙醇处理,ph8-9室温,系统中放尿素和盐酸胍,烷基化试剂保护常用试剂β巯基乙醇,巯基乙酸 4.分析每一多肽链的氨基酸组成:完全水解 酸水解:常用hcl,水解后除去 碱水解:用于测定色氨酸含量。很多氨基酸遭到破坏,色氨酸定量回收。 5.鉴定多肽链的N-末端和C-末端 N-末端分析: ①二硝基氟苯DNFB ②丹磺酰氯DNS:强烈荧光,灵敏度高 ③苯异硫氰酸酯PITC:多肽或蛋白质的末端氨基和氨基酸的α氨基一样与PITC反应生成PTC-多肽,在酸性有机溶剂中加热,N-末端的PTC-氨基酸发生环化 ④氨肽酶:肽链外切酶/外肽酶,从多肽链的N-末端逐个向里切。常用亮氨酸氨肽酶(水解以Leu为N-末端的肽链速度为最大) C-末端分析: ①肼解法:蛋白质多肽与无水肼加热发生肼解。反应中除C-末端氨基酸以游离形式存在外,其他氨基酸都转变为相应的氨基酸酰肼化物。肼解中,Gln,Asn,Cys被破坏不易测出,C末端的Arg转变成鸟氨酸 ②还原法:硼氢化锂还原成α-氨基醇 ③羧肽酶法:肽链外切酶,专一地从肽链C末端逐个降解。羧肽酶A能释放除Pro,Arg和Lys之外的所有C-末端残基的肽键,B只能释放精氨酸和赖氨酸,AB的混合物能释放除Pro 外任一C末端残基的肽键。Y可以作用于任何一个C末端残基 6.裂解多肽链成较小的片段:用几种不同的断裂方法将每条多肽样品降解成几套 ①酶裂解法:肽链内切酶。胰蛋白酶,嗜热菌蛋白酶,胃蛋白酶 胰蛋白酶只断裂赖氨酸或精氨酸残基的羧基参与形成的肽键 胰凝乳蛋白酶能断裂赖氨酸、酪氨酸、甘氨酸残基的羧基参与形成的肽键 ②化学裂解法:测定相对分子质量大的蛋白质序列。溴化氰:断裂由Met残基的羧基参加形成的肽键羟胺断裂肽段的分离纯化 7.测定各肽段的氨基酸序列 Edman化学降解法:PITC与多肽链的游离氨基作用,测定任何非封闭的多肽蛋白质序列仪酶降解法:利用外肽酶(氨肽酶和羧肽酶)逐个向里切 质谱法,气质联用法 根据核苷酸序列的推定法 8.重建完整多肽链的一级结构 9.确定半胱氨酸残基之间形成的S-S交联桥的位置 采用胃蛋白酶水解原来的含二硫桥的蛋白质,所得的肽段混合物用对角线电泳进行分离,用茚三酮反应鉴定

抗体的结构

抗体的结构 一、单体 Porter等对血清IgG抗体的研究证明:Ig分子的基本结构是由四肽链组成的。即:由二条相同的分子量较小的肽链(轻链)和二条相同的分子量较大的肽链(重链)组成。 轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体;单体是构成所有免疫球蛋白分子的基本结构;所有抗体的单体都是四条肽链的对称结构,即:两条糖基化重链(H)和两条非糖基化轻链(L);每条重链和轻链分为氨基端(N端)和羧基端(C端)。 二、轻链和重链

1、轻链(light chain,L链) 由214个氨基酸残基组成,通常不含碳水化合物,分子量为24kD,有两个由链内二硫键组成的环肽,L链可分为:Kappa(κ)与 lambda(λ)2个亚型。 2、重链(heavy chain,H链) 由450-550个氨基酸残基组成,分子量55-75kD,含糖数量不同,4-5个链内二硫键,可分为5类,μ、γ、α、δ、ε链,不同的H链与L链(κ或λ)组成完整的Ig分子。分别称为:IgM,IgG,IgA,IgD和IgE。

三、可变区和恒定区 通过对H链或L链的氨基酸序列比较分析,发现: 其N-末端序列变化很大,称此区为可变区(V区); C-末端氨基酸则相对稳定,变化很小,称此区为恒 定区(C区)。 1、可变区(Variable region,V区) L链N端1/2处(VL)108-111个氨基酸残基,H链N端1/5-1/4处(VH)118个氨基酸残基,V区有一个肽环65-75个氨基酸残基。

可变区可分为高变区(hypervariable region,HVR)和骨架区(framework region,FR),VL的HVR在24-34,50-56,89-97氨基酸位置。VH的HVR在31-35,50-56,95-102氨基酸位置。分别称为VL和VH的HVR1,HVR2,HVR3。

抗体和抗体的结构详解知识讲解

抗体和抗体的结构详 解

抗体和抗体的结构详解 2014-10-21 00:00 来源:丁香园点击次数: 3476 关键词:抗体结 构 抗体,也叫免疫球蛋白 (Ig),是一种能特异性结合抗原的糖蛋白,而抗原是在易感染动物体内引发抗体产生的物质。在体内,抗体是由于外源性分子的侵袭而产生的。抗体以一个或者多个Y 字形单体存在,每个 Y 字形单体由 4 条多肽链组成,包含两条相同的重链和两条相同的轻链。轻链和重链是根据它们的分子量大小来命名的。Y 字形结构的顶端是可变区,为抗原结合部位。 任何一个抗体的轻链都可以分为κ或λ型(基于小分子多肽结构上的差异),每一个抗体的重链则决定了它的类或型。 抗体结构 重链 哺乳动物 Ig 的重链一共有五种,分别用希腊字母α、δ、ε、γ和μ 来命名,相对应组成的抗体就称为 IgA、IgD、IgE、IgG 和 IgM 五种抗体。不同的重链在大小和组成上有所区别,α和

γ包含大约 450 个氨基酸,而μ 和ε则有大约 550 个氨基酸。 每个重链有两个区:恒定区和可变区。所有同一型的抗体其恒定区都是相同的,不同型的抗体之间则存在差异。重链γ、α和δ的恒定区的组成为 3 个前后串联的 Ig 结构域,并有一个铰链区增加它的灵活性;重链μ 和ε的恒定区则由 4 个 Ig 结构域组成。不同 B 细胞产生的抗体其重链的可变区不同,但同一种 B 细胞或细胞克隆产生的抗体其可变区则是相同的,每一个重链的可变区都是大约 110 个氨基酸长度,并组成一个单独的 Ig 结构域。 轻链 哺乳动物只有两种轻链:λ型和κ型,每条轻链有两个前后相连的结构域:一个恒定区和一个可变区。轻链的长度大约为 211~217 个氨基酸, 每个抗体包含的两条轻链总是相同的,对哺乳动物来说每一个抗体中的轻链只有一个型:κ或λ型。在一些低等的脊椎动物中,像软骨鱼类(软骨鱼)和硬骨鱼类体内也会发现其他型的轻链如ι(iota) 型。 Fab和Fc段 Fc 段可以直接结合酶或荧光染料来标记抗体,是在 ELISA 过程中抗体铆钉在板上的部位,也是在免疫沉淀、免疫印迹和免疫组化中识别并结合二抗的部位。抗体可以被蛋白水解酶如木瓜蛋白酶水解成 2 个 F(ab) 段和一个 Fc 段,或者被胃蛋白酶从铰链区断开,水解成一个 F(ab)2 段和一个 Fc 段。IgG 抗体片段有时是非常有用的,由于缺少 Fc 段,F(ab) 段即不会和抗原发生沉淀,也不会在活体研究中被免疫细胞捕获。因为分子片段较小,且缺乏交联功能(由于 Fc 段的缺失),Fab 段通常用于功能性研究中的放射性标记,Fc 段则主要用做组化染色中的阻断剂。 抗体同型:

蛋白质结构预测网址

蛋白质结构预测网址 物理性质预测: Compute PI/MW Peptidemass TGREASE SAPS 基于组成的蛋白质识别预测 AACompIdent PROPSEARCH 二级结构和折叠类预测 nnpredict Predictprotein SSPRED 特殊结构或结构预测 COILS MacStripe 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。 由NCBI检索蛋白质序列 可联网到:“”进行检索。 利用SRS系统从EMBL检索蛋白质序列 联网到:”,可利用EMBL的SRS系统进行蛋白质序列的检索。 通过EMAIL进行序列检索 当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL方式进行序列检索。 蛋白质基本性质分析 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水性图谱可通知来预测跨膜螺旋。同时,也有很多短片段被细胞用来将目的蛋白质向特定细胞器进行转移的靶标(其中最典型的例子是在羧基端含有KDEL序列特征的蛋白质将被引向内质网。WEB中有很多此类资源用于帮助预测蛋白质的功能。 疏水性分析 位于ExPASy的ProtScale程序()可被用来计算蛋白质的疏水性图谱。该网站充许用户计算蛋白质的50余种不同属性,并为每一种氨基酸输出相应的分值。输入的数据可为蛋白质序列或SWISSPROT数据库的序列接受号。需要调整的只是计算窗口的大小(n)该参数用于估计每种氨基酸残基的平均显示尺度。 进行蛋白质的亲/疏水性分析时,也可用一些windows下的软件如, bioedit,dnamana等。 跨膜区分析 有多种预测跨膜螺旋的方法,最简单的是直接,观察以20个氨基酸为单位的疏水性氨基酸残基的分布区域,但同时还有多种更加复杂的、精确的算法能够预测跨膜螺旋的具体位置和它们的膜向性。这些技术主要是基于对已知跨膜螺旋的研究而得到的。自然存在的跨膜螺旋Tmbase 数据库,可通过匿名FTP获得(),参见表一

蛋白质一级结构的测定方法

蛋白质一级结构的测定方法 研究蛋白质的一级结构从确定组成蛋白质的单元结构氨基酸算起,已有150年的悠久历史,直到1955年,Sanger首次阐明胰岛素的氨基酸排列顺序,为研究蛋白质的一级结构开辟了道路, 这在分子生物学的发展进程中是一个重要突破。目前关于核酸的一级结构研究,由于Sanger等发明了加减法,可以得到了突飞猛进的发展。对此之下,关于蛋白质的一级结构研究进展不如核酸迅速。但随着Edman液相自动顺序分析仪和固相顺序分析仪以及气相色谱、质谱等方法的相继出现,结构分析的速度也显著加快,至今已完成近千种蛋白质的一级结构分析。目前不仅样品用量减少,而且工作人员也大大减少。当年Sanger分析胰岛素用了整整十年的时间,今天运用自动化仪器,分析一个分子量在10万左右的蛋白质只需要几天,可见新技术的应用和发展对科学发展起的促进作用,蛋白质一级结构测定方法的综述及专著文献较多,这里只扼要加以概述。 蛋白质分子的一级结构测定,概括起来包含多肽链的分离、降解、肽段的分离和顺序分析以及-S-S-定位等。 1.多肽链的分离 在测定一个蛋白质的结构以前,首先必须保证被测蛋白质的纯度,使结果准确可靠。其次要了解它的分子量和亚基数,按照其亚基数将蛋白质分成几个多肽链。 1)肽链的拆开 蛋白质分子多肽链的连接有共价结合和非共价结合两种。要拆开以共价结合的-S-S-连接的多肽链,必须采用的化学处理方法常有: ①过甲酸氧化 用氧化剂过甲酸断裂-S-S-。这个反应一般在0℃下进行2小时左右,两个S就全部能转变成磺酸基,这样被氧化的半胱氨酸称为磺基丙氨酸。 如果蛋白质分子中同时存在半胱胺酸,那么也会被氧化成磺基丙氨酸。此外甲硫氨酸和色氨酸也可被氧化,从而增加分析的复杂性。 ②巯基乙醇还原 利用还原剂巯基乙醇亦可使蛋白质的-S-S-断裂。当高浓度的巯基乙醇在pH8?条件下室温保温几小时后,可以使-S-S-定量还原为桽H。与此同时反应系统中还需要有8摩尔脲或6摩尔盐酸胍使蛋白质变性,多肽链松散成为无规则的构型,此时还原剂就可作用于-S-S-。此反应是可逆的,因此要使反应完全,疏基乙醇的浓度必需在0.1-0.5摩尔。 ③Cleland试剂的还原作用 Cleland′s指出二硫赤苏糖醇(dithioerythriotol)及二硫苏糖醇(dithiothriotol)在氧化还原能力上是比较强的试剂,只要0.01摩尔就能使蛋白质的-S-S-还原,反应基本与疏基乙醇相似,且在许多球蛋白反应中,可以不用变性剂。 Cleland试剂首先与蛋白质-S-S-形成中间物,反应终了,还原剂被氧化形成一个稳定的六环化合物,蛋白质则被还原。 还原蛋白不稳定,SH基极易氧化重新生成-S-S-键。稳定SH基的方法有: (A)烷基化试剂使SH基转变为稳定的硫醚衍生物。

抗体结构与分类

抗体结构与分类 大多数哺乳动物的抗体基本结构是一个由四条多肽链(二硫键连接的二条重链和二条轻链)组成的糖基化蛋白,分子量约150, 000Da。轻链的分子量约25,000Da,由二个结构域组成,一个可变区VL 和一个恒定区CL。轻链有κ和λ两种类型,人的L 链中κ型占60%,λ型占40%;小鼠L 链中κ型和λ型分别为95%和5%。一个抗体分子中的L 链只有一种类型。 重链分子量约50,000Da,有恒定区和可变区组成。轻链和重链有很

多相似氨基酸序列构成的同源区。这些同源区有110 个氨基酸,称 为免疫球蛋白结构域。重链包括可变区VH 和3~4 个恒定区,CH1, CH2, CH3,和CH4(依抗体类型不同)。CH1 和CH2 之间有一个铰链区,使得Y 型抗体分子的两个Fab 臂具有灵活性,以结合固定距离 的两个抗原决定簇。 重链也决定抗体分子的功能活性。依据重链不同,抗体分子分为IgG, IgA, IgM, IgE 和 IgD,对应的重链分别为, , μ, 和。IgD, IgE, 和 IgG 通常以单体存在,IgA 有单体和二聚体两种形式,IgM 以五 聚体存在,由二硫键连接。IgG 依产生物种不同又分为四个轻微差 异的亚型,称为同型。 蛋白水解酶水解IgG 形成有特定生物特性的固定片段,有助于IgG 结构和功能的研究。胃蛋白酶作用于IgG 分子,产生F(ab')2 片段,包括铰链区连接的两个Fab 区。F(ab')2 分子是二价的,可 作用于抗原。 木瓜蛋白酶水解IgG 时作用在CH1 和CH2 之间的铰链区,产生两 个单独的Fab 片段和一个Fc 片段。Fab 有抗原结合活性,Fc 则没有。Fc 是糖基化的片段,具有很多效应功能(如结合补体、结合巨 噬细胞和单核细胞的细胞受体等),也可用于划分抗体类型。 (学习的目的是增长知识,提高能力,相信一分耕耘一分

相关文档
最新文档