第13例谐响应分析实例—单自由度系统的受迫振动

第13例谐响应分析实例—单自由度系统的受迫振动
第13例谐响应分析实例—单自由度系统的受迫振动

单自由度有阻尼系统的受迫振动实验

5□ 5-1 单自由度系统有阻尼受迫振动 图5-1 单自由度系统有阻尼受迫振动实验原理图

单自由度系统有阻尼受迫振动□ 5-2 图5-2 单自由度系统有阻尼受迫振动实验操作界面 单自由度系统有阻尼受迫振动实验操作界面说明 主菜单 存 盘 :将测试数据存盘。按提示输入学号作为文件名。 实验指导 :激活本实验的实验指导文本。 退 出 :退出本操作界面,回到主界面(图2) 虚拟仪器 量程:指示灯为“绿色”表示信号达到半量程,为“黄色”表示信号

过载。设置量程使信号超过半量程而不过载可以减小量化误差。 示波器 :选择“显示选择”中的显示内容,可使其单独显示“加速度信号”或“激励信号”的时间历程。也可同时显示“加速度/激励信号”的时间历程。 电压表 :显示加速度信号的电压值。 频率计 :显示加速度响应信号的频率。 李萨玉图 :观察加速度信号和激振信号的李萨玉图。 信号发生器 :输出一定电压和频率的简谐信号。用“On/Off”开启或关闭信号发生器。 测试数据: 拾取数据 : 拾取电压表和频率计当前的读数到测试数据表格内。若重复拾取某一频率的数据,则当前拾取的数据将覆盖过去拾取的同频率的数据。 重新拾取 : 清除测试数据表格中的全部数据,重新拾取电压表和频率计当前的读数。 数据检验 : 将测试数据表格中的加速度信号数据绘成幅频曲线(图5-3)。 图5-3

一、实验目的 ? 了解和掌握单自由度系统在简谐激振力作用下受迫振动的一般规律及现象。 ? 掌握根据李萨育图获得结构固有频率的方法(即相位共振法)。 ? 了解和掌握机械结构加速度幅频特性曲线的测量方法以及如何由幅频特性曲线得到结构的固有频率。 二、实验仪器 ? 单自由度系统试件 1件 ? 激振器及功率放大器 1套 ? 加速度传感器(ICP式) 1只 ? ICP电源(即ICP信号调节器)4通道 1台 ? 信号发生器 1台 ? 电压表 1台 ? 频率计 1台 ? 示波器 1台 其中:信号发生器、电压表、频率计和示波器由计算机虚拟提供。 三、实验方法及步骤 1、装配实验系统 ? 按图5-1将综合实验台装配成单自由度系统。 ? 按1节所述的方法和要求安装激振器和加速度传感器。 ? 按图5-1连接各测试设备。 2、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”!打开 各设备电源。 3、从“综合振动综合实验系统”对话框(图2),进入“单自由度系统有 阻尼受迫振动”实验操作界面(图5-2)。 4、使信号发生器的输出频率约为30Hz,输出电压约为1V。调节功率放

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2 a θ=h α 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 θ F sin α 2 θα h mg θ

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2=== 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

4-单自由度系统的受迫振动

1-2单自由度体系的受迫振动 主要问题1-2-1简谐激励作用的受迫振动响应1-2-2周期激励作用的受迫振动响应1-3-3任意激励作用的受迫振动响应 1-3-5 隔振 1-3-4 等效阻尼 激励 响应 系统

1-2-1简谐激励作用的受迫振动响应 单自由度系统振动方程 t F kx x c x m ωsin 0=++ 非自治系统 t f x x x n n ωω?ωsin 202=++

t k F t k F t x t x x n n n n ωλ ωλλωωωsin 11 sin 1sin cos 2 02000-+--+= 无阻尼系统 ???? ?====+0002 )0(,)0(,0sin x x x x t t f x x n ωω方程之解 无阻尼自由振动 无阻尼受迫振动 自由伴随振动 瞬态过程 稳态过程

实际系统中,阻尼的客观存在,随着时间的推移,瞬态响应逐渐衰减,系统进入稳态振动过程 系统的瞬态振动过程是复杂的运动形式?ε λ21+=?0 →εt t f x n n ωεωε cos sin 20 -≈t t f x n n ωωcos 2 1 0-≈“拍”

无阻尼系统的稳态响应 t k F x ωλ sin 112 0-=k F st 0 = δ静变形 2 11λβ-= 动力放大因子 1<<λ?1 >>λ?1 =λ?1 →β系统表现为静态特征0 →β系统表现为动态特征∞ →β系统出现“共振”现象

θ βi e k -=1θβ 阻尼系统的稳态响应 t f x x x n n ωω?ωsin 202 =++ t i n n e f x x x ωω?ω02 2=++ 设系统的稳态响应为 t i Be x ω=B 为复振幅 )(F H B ω=H (ω)称为复频响应函数 2 2 2) 2()1(1?λλ+-= 2 12arctan λ?λ -=动力放大因子响应与激励的相位差!系统的幅频特性 !系统的相频特性 ??????+---=2222 )2()1(211)(?λλ?λλωi k H

第3章单自由度体系5(直接积分法)

第三章单自由度体系 直接积分法

主要内容 ?两种直接积分方法 (1)中心差分法 (2)Newmark—β法 ?数值积分的稳定性 ?了解算法阻尼(数值阻尼)现象

1. 数值积分概述(直接积分法,逐步积分法) (Direct Integration Methods, Step-by-Step Methods) 运动方程:In direct integration the equations of equilibrium are integrated using a numerical step-by-step procedure, the term ‘direct ’meaning that prior to the numerical integration, no transformation of equations into a different form is carried out. (K.J. Bathe, Finite Element Procedures, Prentice-Hall, 1996.)Two ideas: (1)运动方程并不在任何时间t 都得到满足,而仅仅是在以时间间隔为Δt 的离散时间点上得到满足。 (2)在时间间隔Δt 内,对位移、速度和加速度的变化作出某些假定。 ()()()mu c t u k t u p t ++=

1. 数值积分概述 常用的数值积分方法: (1)分段解析法; (2)中心差分法; (3)Runge-Kutta法; (4)Houbolt法; (5)平均加速度法; (6)线性加速度法; (7)Newmark—β法; (8)Wilson —θ法; (9)HHT法(Hilber-Hughes-Taylor method); (10)精细积分法; ……

结构动力学第三章单自由度体系的振动

第3章 单自由度体系的振动 在结构动力学中,单自由度体系的振动是最简单的振动,但这部分内容又十分重要,因为从中可得到有关振动理论的一些最基本的概念和分析问题的方法,同时它也适用于更为复杂的振动问题,是分析多自由度体系振动问题的基础,因此搞清楚了单自由度体系的振动,将有助于我们提高分析和解决其他各种振动问题的能力。另外在实际工程中,确实有许多振动问题,可简化为单自由度问题,或近似地用单自由度理论去分析解决。 本章按有阻尼和无阻尼体系研究自由振动,强迫振动,对弯曲振动做详细讨论,简要陈述剪切振动和旋转振动。 单自由度体系可按如下情况对振动进行分类: 预备知识 ①齐次微分方程:2 0y y ω+=& &的通解:12()cos sin y t C t C t ωω=+,其中1,2C C :微分常数,由初始条件确定。 ②() 12,()sin cos y x t y t C t C t t ωωωω?==-+?& ③cos sin ix e x i x =+ ④单质点体系一般振动形式: 去掉阻尼cy &和外力()P t 影响,即可得到无阻尼体系自由振动。 ⑤2 ()y y P t ω+=& &的解为2 0y y ω+=&&的通解,加上2 ()y y P t ω+=&&的特解组成。 通解: 1sin()y A t ω?=+ 特解: []20 1 ()sin ()t y F t d τωττω = -? 解为通解+特解: ⑥如果杆件的刚度为EI ,则两端刚结的杆的侧移刚度为3 12l EI ;一端铰结的杆的侧移刚度为 33l EI 。 §3.1无阻尼体系自由振动 图3.1(a)所示为无阻尼、单自由度的悬臂梁体系,取出质量隔离体,在其上施加惯性力 y m &&-,如图3.1(b)所示,由0y =∑得:

单自由度系统.

第1章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。 1.4 求图1-33中标出参数的系统的固有频率。 1.5 求图1-34所示系统的固有频率。图中匀质轮A 半径R,重物B 的重量为P/2,弹簧刚度为k. 1.6求图1-35所示系统的固有频率。图中磙子半径为R ,质量为M ,作纯滚动。弹簧刚度为K 。 1.7求图1-36所示齿轮系统的固有频率。已知齿轮A 的质量为A m ,半径为A r ,齿轮B 的质量为B m ,半径为B r ,杆AC 的扭转刚度为A k , ,杆BD 的扭转刚度为B k 。 1.8已知图1-37所示振动系统中,匀质杆长为l ,质量为m ,两弹簧刚度皆为K ,阻尼系数 为C ,求当初始条件00 0==θθ 时

(1)t F t f ωsin )(=的稳态解; (2)t t t f )()(δ=的解; 1.9图1-38所示盒内有一弹簧振子,其质量为m ,阻尼为C ,刚度为K ,处于静止状态,方盒距地面高度为H ,求方盒自由落下与地面粘住后弹簧振子的振动历程及振动频率。 1.10汽车以速度V 在水平路面行使。其单自由度模型如图1-39。设m 、k 、c 已知。路面波动情况可以用正弦函数sin()y h at =表示。求:(1)建立汽车上下振动的数学模型;(2)汽车振动的稳态解。 1.11.若电磁激振力可写为t H t F 02sin )(ω=,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。 1.1 2.若流体的阻尼力可写为3x b F d -=,求其等效粘性阻尼。

单自由度系统自由衰减振动及固有频率、阻尼比

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η=d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξπξ- δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面, 进入单通道示波状态进行波形和频谱同时示波,见图2。 3400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

单自由度系统(自由振动)

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图1.1所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形?:,同时也产生弹簧恢复力K ?,当其等于重力W 时,则处于静平衡位置,即 W=K ?? 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(?+x),显然大于重力W , 由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x == (1-1-5) ()x m x k W F =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x x )

Newmark法求解单自由度

% 单位:N/mm/s/ton function res=Newmark(alpha,C) % 系统设置; T=0.1/alpha; K=(2*3.1415926/T)^2; M=1; % C=0; % 定义参数 h=0.0002; beta=0.25; gamma=0.5; con=zeros(1,7); con(1)=1/(beta*h^2); con(2)=gamma/(beta*h); con(3)=1/(beta*h); con(4)=1/(2*beta)-1; con(5)=gamma/beta-1; con(6)=0.5*h*(gamma/beta-2); con(7)=h*(1-gamma/(2*beta)); % 有效刚度 Ke=K+con(1)*M+con(2)*C; % 定义矩形荷载 t=0:h:1; f=zeros(1,size(t,2)); for i=1:size(t,2) if t(i)==0 f(i)=0; else if t(i)>0 && t(i)<=0.1 f(i)=1000*(3.1415926)^2; else f(i)=0; end end % plot(t,f); % 系统初始条件 u0=0; du0=0; ddu0=0; U=zeros(3,size(t,2)); % 求解 for i=1:(size(t,2)-1) fe=f(i+1)+M*(con(1)*u0+con(3)*du0+con(4)*ddu0)+C*(con(2)*u0+con(5)*du 0+con(6)*ddu0); u1=fe/Ke;

du1=con(2)*(u1-u0)-con(5)*du0+con(7)*ddu0; %计算速度和加速度; ddu1=(f(i+1)-C*du1-K*u1)/M; U(:,i+1)=[u1;du1;ddu1]; u0=u1; du0=du1; ddu0=ddu1; end res=[U;t]; end

单自由度系统振动的基础知识

本文讨论简谐激励作用下的受迫振动 1、简谐激励下单自由度系统的振动微分方程 单自由度系统模型 F t=F0e iωt 式中:F(t)为系统的激振力,F0为简谐力的幅值,ω为激振力的频率,当m、k、c分别为系统的质量、刚度、阻尼,根据力的平衡关系可得该系统在简谐激振力作用下的振动微分方程: mx+cx+kx=F0e iωt 2、系统的响应表达式 单自由度受迫振动微分方程式二阶常系数线性非齐次常微分方程,它的解由两部分组成 x t=x1t+x2(t) 式中x1t是齐次方程mx+cx+kx=0的通解,即为单自由度系统的衰减振动,其通解表达式为 x1t=Ae?nt sin?(ωn t+α) x2t是振动微分方程的特解,其特解为 x2t=Xe iωt=|X|e i(ωt?φ) 受迫振动有两部分组成,前一部分为衰减振动,后一部分是受迫振动,

由于阻尼的存在,衰减振动经过一段时间后就会消失,在衰减振动完全消失之前,系统的振动称为暂态过程,亦称为暂态响应。在此之后是稳定的等幅受迫振动,这是受迫振动的稳态过程,亦称为稳态响应。它是一简谐振动,其频率与激励力的频率相同,与激励力相比落后一相位角φ,称为相位差,X为稳态响应的幅值。 3、频率响应函数 将稳态解代入振动微分方程中可得: ?ω2m+iωc+k Xe iωt=F0e iωt 则系统的频率响应函数可表示为: ω=X F0=1 ?ω2m+iωc+k 令ξ为阻尼比,ξ= mk,λ=ωω0,ω0为系统的固有频率,则 Hω=X F0=1 k[(1?λ2+i2ξλ)] 4、幅频特性曲线及相频特性曲线 根据频率响应函数,令X0=F0k,表示在激振力的作用下弹簧的静伸长量,称为静力偏移,频率响应函数可转变为 X X 0= 1 (1?λ2+i2ξλ) 运用平方差公式,将频率响应函数转化成标准复数形式,即 X X 0= 1 (1?λ2+i2ξλ)=1?λ2 (1?λ2)2+(2ξλ)2?i2ξλ (1?λ2)2+(2ξλ)2 将X X0表示为系统振幅与静力偏移的比值,称为放大系数或动力系数用希腊字母β表示。

单自由度体系杜哈梅积分

function y=kst(t0,t1,t2,ts,m,b0,b1,w0,c) t0=input('请输入起始时间:t0= ');t1=input('请输入荷载消失时间:t1= ');t2=input('请输入想要的时间:t2= '); ts=input('请输入时间步长:ts= '); m=input('请输入质量:m= ') ;b0=input('请输入荷载截距:b0= ');b1=input('荷载消失时的荷载:b1= ');k=input('请输入刚度:k= ') ; c=input('请输入阻尼比:c= '); w0=sqrt(k/m);w1=w0*sqrt(1-c^2); t=t0:ts:t2; for i=1:(length(t)) x=linspace(t(1),t(length(t))) p=interp1([t0 t1],[b0 b1],t); p(find(isnan(p)==1)) = 0; px=linspace(p(1),p(length(t))); a=px.*exp(c*w0*x).*cos(w1*x); A=trapz(x,a); b=px.*exp(c*w0*x).*sin(w1*x); B=trapz(x,b); y=exp(-c*w0*t).*(A.*sin(w1*t)-B.*cos(w1*t))./(m*w1) v=diff(y) a0=diff(y,2) end ymax=max(y)

figure plot(t,y); 此程序为复合梯形法计算冲击荷载作用下的杜哈梅积分。 以P(t)=-1250000*(t+0.08)的冲击荷载为例,质量:m=6.4;阻尼比c=0.05;刚度:k=34847.77 N/m.将参数输入程序得到以下结果:

1 单自由度体系的自由振动

y s y(t) s=-k(y+y s )w=mg F(t)=-m y §1 单自由度体系的自由振动 一、无阻尼的自由振动: 如下图,以单自由度体系为例,设此梁上的集中质量为m ,其重量为W mg =, 梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相 应的质量位置称为质量的静力平衡位置。若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。由于振动的方向与梁轴垂直,故称为横向振动。在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。 1、建立运动方程 建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。 今考虑在振动过程的某一瞬时t ,设质量在此瞬时离开其平衡位置的位移为y ,取质量为隔离体,则在质量上作用有三种力:质量的重量W ,杆件对质量的弹性恢复力S 和惯性力F(t)。根据达朗伯原理,这三个力应成平衡,即 W+S+F(t)=0 (1) 在弹性体系中,弹性恢复力S 为 ()s k y y s =-+

上式中的K 为一常数,称为刚度系数,代表简支梁上使质量在运动方向产生单位位移时需要加在质量上的沿质量运动方向的集中力的量值。式中负号表示s 的指向和位移的方向相反。 而 1y s W k =? 即 y s W k =? 因此,将()s k y y s =-+和y s W k =?代入式(1)得 ()0 F t ky =-+ (2) 上式表明,如果以静力平衡位置作为计算位移的起点,则建立体系的运动方程时,可以不考虑重力W 的影响。这对其他体系的振动(包括受迫振动)也同样适用。 将2 2 ()d y F t m dt =-代入式(2)得: 2 2()0d y m ky t dt += 令2 k m ω= dy y dt = (速度) 2 2 d y y dt = (加速度) 则 2 2 ()0d y m ky t dt += 可变为 2 y y ω+= (3) 此为单自由度体系无阻尼自由振动的运动方程,它反映了这种振动的一般规律。 若采用柔度法建立运动方程(建立位移方程),以静力平衡位置作为计算位移的起点,则梁在质量m 处除惯性力2 2()d y F t m dt =-这个假想的 外荷载作用外,再无其他外力作用。所以由达朗伯原理可知,梁在集中质量m 处任一运动瞬时的位移为

相关文档
最新文档