AVR单片机基本输入和外部中断实验二

AVR单片机基本输入和外部中断实验二
AVR单片机基本输入和外部中断实验二

A VR学习笔记二、基本输入和外部中断实验

-------基于LT_Mini_M16

2.1 利用按键控制发光二极管的亮灭

2.1.1 实例功能

在“点亮发光二极管”和“让发光二极管动起来”这两个例子中,都是通过单片机程序来控制发光二极管的亮灭。如果想要控制发光二极管的亮灭,只有通过打开或者关闭电源来实现控制。那么怎样实现人工参与控制呢?

在有些应用场合,需要单片机对人工的开关信号作出相应的响应和处理,通过控制电源的通断会影响到单片机系统中的其他功能,所以通过控制电源的方法并不明智。能不能通过按动一个按键来实现发光二极管的亮灭呢?

当然可以,前面已经讲过,A VR单片机的I/O口都是双向的,也就是既能当作输出控制端口,也能当作输入检测端口。既然我们可以通过控制端口输出不同的高低电平使发光二极管实现点亮和熄灭;那么为什么不能通过监测端口输入电平的状态来进行相应的处理呢。

在本例中,通过介绍利用按键开关控制发光二极管的亮灭来了解A VR单片机的端口检测外部信号的功能和方法。

本例中有3个功能模块,描述如下:

●单片机系统:检测外界的按键开关信号,根据按键的开关状态控制发光二极管的亮灭状态。

●外围电路:首先是产生信号的按键电路,包括对按键去抖动电路的介绍;然后是发光二极管的控制电路。

●软件程序:通过读取AVR单片机相应端口的状态,编写相应的程序控制发光二极管的亮灭。

本例的目的在于希望读者完成本例后,能完成相关电路的设计和相应程序的编写,从而掌握以下知识点:

◆了解AVR单片机端口输入功能,掌握使用AVR单片机端口输入功能检测外部信号的原理。

◆熟悉单片机端口输入输出功能的综合使用。

◆掌握AVR单片机按键的硬件去抖动的电路设计和原理。

◆掌握AVR单片机端口输入输出程序的编写。

◆掌握AVR单片机按键软件去抖动功能的实现。

2.1.2 器件和原理

本例主要介绍A VR单片机外围电路中按键去抖电路的设计,分别介绍相应的软件和硬件解决方案。然后利用C语言编写通过按键控制发光二极管亮灭状态的程序。

1、按键的去抖动电路

(1)按键的响应过程

我们日常所说的按键,实际上是一个机械开关,本实例所用的按键外观如图2.1.1所示。理想的按键的闭合和断开时,接触点的电压应该立即变高或者变低,但是由于机械触点的弹性以及按键按动时电压突变等原因,在触点闭合或断开的瞬间会出现电压抖动现象,如

图2.1.2所示。在发生抖动的时间一般在5-10ms。

一次按键处理过程如下:当按键按下之后,相应的按键接触点的电压以高低电平的方式输入到单片机的I/O口。按键的闭合与断开是有一定时间的,一般为0.1-1S。而A VR单片机的机器周期一般为1us甚至更短,在0.1-1S的时间段内,程序会检测很多次按键的输入电平,这样单片机可能会认为按键被按下了多次,从而出现误判。

图2.1.1 按键开关图2.1.2 按键闭合断开时的电压波动示意图(2)按键去抖动的方法和原理

为了去除按键的抖动,保证单片机对按键的一次输入只响应一次,可以采用硬件和软件两种方法:硬件电路去抖动是在外围电路中加入去抖动电路(如R-S触发器);软件去抖动是在程序中加入延时程序以跳过抖动时间,等待信号稳定后再次判断按键的输入电平,如果信号电平保持不变,则可以确认一次按键按下。

●硬件去抖动电路的原理

用R-S触发器形成去抖电路是单片机外围电路设计中常用的方法,这种方法可以减少单片机软件对按键动作的延时和计算。

先来了解一下R-S触发器的基本工作原理和工作特点。R-S触发器的基本构成如图2.1.3所示,这个电路有两个与非门交叉耦合而成,/S、/R是信号输入端,低电平有效。Q 和/Q既表示触发器状态,又是触发器的输出端。

图2.1.3 R-S触发器的基本原理

在启动过程中,/S端一旦下降到开门电平,Q端电平就会上升,反馈到门B的输入端,此时门B在/R的低电平作用下处于导通状态,/Q输出高电平反馈到A的输入端,如果这时/S端电压有一个高的跳动,则A门截止,Q段输出低电平,这个低电平反馈到A的输入端,使A门导通,Q端电平为高,这样就保证了Q端电平的稳定,从而消除按键的抖动。

典型的硬件去抖动电路如图2.1.4,74LS02按键输出端口通过/Q端接入单片机的I/O 口,74LS02构成一个R-S触发器电路实现按键的消抖。

●软件消抖的原理和实现

软件消抖的基本原理是在软件中对按键进行两次检测确认,记载第一次检测到按键按下后,间隔10ms左右再次检测按键是否按下,只有在两次都检测到按键按下时才最终确认

有键按下,这样就避开了按键的抖动时间,从而消除了抖动的影响。

图2.1.4 74LS02实现的硬件消抖电路

在按键接口软件的设计中,除了要考虑按键消抖外,一般还要判别按键的释放,只有检测到按键释放后,才能确定为一次完整的按键动作。

通用的案件检测程序如下:

Keyscan()

{

if(!key) //判断按键是否按下,key=0表示按键按下

{

delayms(20); //延时20ms。避开按键抖动时间

if(!key) //再次判断按键是否按下,

{

…//按键按下的处理程序

}

}

While(!key); //判断按键是否放开,key=1表示按键释放,退出按键处理函数}

2.1.3 电路

本例中的电路如图2.1.5和2.1.6所示。

1、电路原理

图2.1.5是按键检测电路,两个按键分别连接到单片机的PD6、PD7管脚,A VR单片机在程序里把PD6、PD7设置为带上拉的端口,这样按键没有按下时,PD6、PD7处于高电平状态,当按键按下时PD6、PD7被连接到地,电平状态变为低电平,程序中检测到PD6、PD7的电平为低电平时,就可以认为按键被按下了。

图2.1.6为LED显示电路,当按键K3被按下时,D1、D3、D5、D7点亮,D2、D4、D6、D8熄灭。当按键K4被按下时,D1、D3、D5、D7熄灭,D2、D4、D6、D8点亮。

2、元器件选择

在这里列出和本例相关的、关键部分的器件名称及其在电路中的作用。

● ATmega16:单片机,检测按键按下情况并控制发光二极管的亮灭。

● D1-D8:发光二极管,指示按键状态。

● RP1:阻值为330Ω的排阻,限流电阻。

● K3、K4:按键,当按键按下时,与按键连接的单片机端口的电平发生变化。

图2.1.5 按键电路图2.1.6 LED电路

3、管脚连接

在这里列出和本例相关的、关键部分的单片机端口与外围电路的连接。

● PB0-PB7:连接8个发光二极管LED1-LED8,控制发光二极管的亮灭。

● PD6、PD7:连接按键K3、K4,检测两个按键的状态。

2.1.4 程序设计

1、程序功能

●按键软件消抖

本例中采用软件消抖的方法,在程序中加入软件延时,去除按键的抖动。

●按键检测

通过将单片机的PD6、PD7口设置为输入状态,同时使能这两个口的内部上拉电阻(因为这两个口在按键没有按下时处于悬空状态,易受外界干扰,所以必须将其内部上来电阻使能,使其平时处于高电平状态),检测按键是否按下。

●LED的亮灭控制

通过将单片机的PB0-PB7口设置为输出状态,根据K3、K4两个按键的按下情况,控制不同的发光二极管点亮或熄灭。

● AVR单片机端口输入状态的读取

A VR单片机端口配备有3个寄存器,分别是方向控制寄存器DDRx,数据寄存器PORTx,和输入引脚寄存器PINx(x=A\B\C\D)。当I/O工作在输入方式,要读取外部引脚上的电平时,应读取PINxn的值,而不是PORTxn的值。

2、主要变量和函数说明

3、使用WINA VR开发环境,makefile文件同前面的例子,直接复制到本实例程序的文件夹中即可。

4、程序代码

#include

#include

int main(void)

{

PORTB = 0X00; //输出低,LED全部熄灭

DDRB = 0Xff; //PB端口置为输出

PORTD = 0Xc0; //一定要使能上拉电阻,否则会有干扰

DDRD = 0X3F; //K3、K4按键(PD6、PD7)设置为输入端口

while(1)

{

if(!(PIND & (1 << PD6))) //判断按键是否按下

{

_delay_ms(20); //判断按键按下,延时一会再判断是否按下,以消除干扰

if(!(PIND & (1 << PD6))) // 按键真正按下后,进行相应处理

{

PORTB = 0X55; // 按键按下,灯亮

while(!(PIND & (1 << PD6)));//等待按键释放

//PORTB = 0X55; // 把这句话从上面移到这里,按键释放后,灯才点亮}

}

if(!(PIND & (1 << PD7))) //判断按键是否按下

{

_delay_ms(20); //判断按键按下,延时一会再判断是否按下,以消除干扰

if(!(PIND & (1 << PD7))) // 按键真正按下后,进行相应处理

{

PORTB = 0Xaa; //

while(!(PIND & (1 << PD7))); //

//PORTB = 0Xaa; //

}

}

}

}

2.2 利用外部中断检测按键

2.21 实例功能

前面例子中分别介绍了按键控制发光二极管的亮灭,但是我们注意到,在程序中需要一直检测按键的状态,这样明显的浪费了单片机的资源,降低了单片机的工作效率,。那么

有没有一种方法可以让单片机不用一直检测按键的状态,而只在有按键动作时才去响应呢?

当然有!单片机中除了具有基本输入输出功能的作用外,还有专门检测外界信号并作出响应的中断系统。在本例中,通过利用外部中断实现单片机对按键事件的响应和处理。

本例中三个功能模块描述如下:

●单片机系统:对按键事件产生的中断时间作出响应,并在数码管上显示按键按下的次数。

●外围电路:通过将按键连接到单片机的外部中断检测端口,实现中断产生电路,数码管显示电路用于指示按键的按下状态。

●软件程序:编写AVR单片机的外部中断服务程序,从而实现对中断事件的响应。

2.2.2 器件和原理

1单片机的中断系统

关于中断的概念可以在一般的教材中找到,本例中只做简要叙述,不再详细说明。

中断属于一种对事件的实时处理过程。中断源可能随时停止单片机当前正在处理的工作,转而去处理中断事件,待中断时间处理完毕之后,再返回原来工作的断点处,继续原来的工作。

对于单片机的中断系统,需要了解这几个概念:中断源、中断信号、中断向量、中断优先级、中断嵌套、中断控制(屏蔽)、中断响应条件、中断响应过程(中断服务程序)。

●中断源

中断源是指能够向单片机发出中断请求信号的部件和设备。对于单片机来讲,往往存在多个中断源。中断源一般可分为内部中断源和外部中断源。

单片机内部集成的许多功能模块,如定时器、串行通讯口、模/数转换器等,它们在正常工作时往往无需CPU参与,而当处于某种状态或达到某个规定值需要程序控制时,会通过发出中断请求信号通知CPU。这一类的中断源位于单片机内部,称作内部中断源。内部中断源在中断条件成立时,一般通过片内硬件会自动产生中断请求信号,无须用户介入,使用方便。内部中断是CPU管理片内资源的一种高效的途径。

系统中的外部设备也可以用作中断源,这时要求它们能够产生一个中断信号(通常是高(低)电平或者电平跳变的上升(下降)沿),送到单片机的外部中断请求引脚供CPU检测。这些中断源位于单片机外部,称为外部中断源。通常用作外部中断源的有输入输出设备、控制对象、以及故障源等。

●中断信号

中断信号是指内部或外部中断源产生的中断申请信号,这个中断信号往往是电信号的某种变化形式,通常有以下几种类型:

?脉冲的上跳沿或下降沿(上升沿触发型或下降沿触发型)

?高电平或低电平(电平触发型)

?电平的变化(状态变化触发型)

对于单片机来讲,不同的中断源,产生什么类型的中断信号能够触发申请中断,取决于芯片内部的硬件结构,而且通常也可以通过用户的软件来设定。

单片机的硬件系统会自动对这些中断信号进行检测。一旦检测到规定的信号出现,将会把相应的中断标志位置“1”(在I/O空间的控制或状态寄存器中),通知CPU进行处理。

●中断向量

中断源发出的请求信号被CPU检测到之后,如果单片机的中断控制系统允许响应中断,CPU会自动转移,执行一个固定的程序空间地址中的指令。这个固定的地址称作中断入口地址,也叫做中断向量。中断入口地址往往是由单片机内部硬件决定的。

一个单片机有若干个中断源,每个中断源都有着自己的中断向量。这些中断向量一般在程序存储空间中占用一个连续的地址空间段,称为中断向量区。由于一个中断向量通常仅占几个字节或一条指令的长度,所以在中断向量区一般不放置中断服务程序的。中断服务程序一般放置在程序存储器的其它地方,而在中断向量处放置一条跳转到中断服务程序的指令。这样,CPU响应中断后,首先自动转向执行中断向量中的转移指令,再跳转执行中断服务程序。

●中断优先级

单片机系统一般有多个中断源,当某一时刻同时有多个中断产生时,单片机该如何处理呢?这就有了中断优先级的概念。

通常,单片机可以接收若干个中断源发出的中断请求。但在同一时刻,MCU只能响应这些中断请求中的其中一个。为了避免MCU同时响应多个中断请求带来的混乱,在单片机中为每一个中断源赋予一个特定的中断优先级。一旦有多个中断请求信号,MCU先响应中断优先级高的中断请求,然后再逐次响应优先级次一级的中断。中断优先级也反映了各个中断源的重要程度,同时也是分析中断嵌套的基础。

对于中断优先级的确定,通常是由单片机的硬件结构规定的。一般的确定规则方式为两种:

?某中断对应的中断向量地址越小,其中断优先级越高(硬件确定方式)。

?通过软件对中断控制寄存器的设定,改变中断的优先级(用户软件可设置方式,注意:AVR不支持)。

实际上,MCU在两种情况下需要对中断的优先级进行判断:

第一种情况为同时有两(多)个中断源申请中断。在这种情况下,MCU首先响应中断优先级最高的那个中断,而将其它的中断挂起。待优先级最高的中断服务程序执行完成返回后,再顺序响应优先级较低的中断。

第二种情况是当MCU正处于响应一个中断的过程中。如已经响应了某个中断,正在执行为其服务的中断程序时,此时又产生一个其它的中断申请,这种情况也称作中断嵌套。

●中断嵌套

对于中断嵌套的处理,不同的单片机处理的方式是不同的,应根据所使用单片机的特点正确实现中断嵌套的处理。

按照通常的规则,当MCU正在响应一个中断B的过程中,又产生一个其它的中断A申请时,如果这个新产生中断A的优先级比正在响应的中断B优先级高的话,就应该暂停当前的中断B的处理,转入响应高优先级的中断A,待高优先级中断A处理完成后,再返回原来的中断B的处理过程。如果新产生中断A的优先级比正在处理中断B的优先级低(或相同),则应在处理完当前的中断B后,再响应那个后产生的中断A申请(如果中断A条件还成立的话)。

一些单片机(如8051结构)的硬件能够自动实现中断嵌套的处理,既单片机内部的硬件电路能够识别中断的优先级,并根据优先级的高低,自动完成对高优先级中断的优先响应,实现中断的嵌套处理。

而另一类的单片机,如我们正在学习的AVR单片机,其硬件系统不支持自动实现中断嵌套的处理。如果在系统设计中,必须使用中断嵌套处理,则需要由用户编写相应的程序,通过软件设置来实现中断嵌套的功能。

●中断控制(屏蔽)

单片机拥有众多中断源,但在某一具体设计中通常并不需要使用所有的中断源,或者在系统软件运行的某些关键阶段不允许中断打断现行程序的运行,这就需要一套软件可控制的中断屏蔽/允许系统。在单片机的I/O寄存器中,通常存在一些特殊的标志位用于控制开放

或关闭(屏蔽)MCU对中断响应处理,这些标志称为中断屏蔽标志位或中断允许控制位。用户程序可以改变这些标志位的设置,在需要的时候允许MCU响应中断,而在不需要的时候则将中断请求信号屏蔽(注意:不是取消),此时尽管产生了中断请求信号,MCU也不会响应中断请求。

从对中断源的控制角度讲,中断源还可分成2类:

?非屏蔽中断。非屏蔽中断是指MCU对中断源产生的中断请求信号是不能屏蔽的,也就是说一旦发生中断请求,MCU肯定响应该中断。在单片机中,外部RESET引脚产

生的复位信号,就是一个非屏蔽的中断。

?可屏蔽中断。可屏蔽中断是指用户程序可以通过中断屏蔽控制标志对中断源产生的中断请求信号进行控制,既允许或禁止MCU对该中断的响应。在用户程序中,可

以预先执行一条允许中断的指令,这样一旦发生中断请求,MCU就能够响应中断。

反之,用户程序也可以预先执行一条中断禁止(屏蔽)指令,使MCU不响应中断

请求。因此,可屏蔽中断的中断请求能否可以被MCU响应,最终是由用户程序来

控制的。在单片机中,大多数的中断都是可屏蔽的中断。

●中断响应条件

单片机在工作时,在每个机器周期都会查询一下各个中断源的中断标记,从而判断是否有中断申请,如果中断标志为1,说明有中断请求发生。

综合前面的介绍,我们可以知道,在单片机中,对应每一个中断源都有一个相应的中断标志位,该中断标志位将占据中断控制寄存器中的一位。当单片机检测到某一中断源产生符合条件的中断信号时,其硬件会自动将该中断源对应的中断标志位置“1”,这就意味着有中断信号产生了,向MCU申请中断。

但中断标志位的置“1”,并不代表MCU一定响应该中断。为了合理控制中断响应,在单片机内部还有相关的用于中断控制的中断允许标志位。最重要的一个中断允许标志位是全局中断允许标志位。当该标志位为“0”,表示禁止MCU响应所有的可屏蔽中断的响应。此时不管有否中断产生,MCU不会响应任何的中断请求。只有全局中断允许标志位为“1”,才允许单片机响应中断。

MCU响应中断请求的第二个条件是每个中断源所具有的各自独立的中断允许标志位。当某个中断允许标志位为“0”时,表示MCU不响应该中断的中断申请。

从上面的中断响应条件看出,只有当全局中断允许标志位为“1”(由用户软件设置),中断A允许标志位为“1”(由用户软件设置),中断A标志位为“1”(符合中断条件时由硬件自动设置或由用户软件设置)时,MCU才会响应中断A的请求信号(如果有多个中断请求信号同时存在的情况下,还要根据中断A的优先级来确定)。

用户程序对可屏蔽中断的控制,一般是通过设置相应的中断控制寄存器来实现的。除了设置中断的响应条件,用户程序还需要通过中断控制器来设置中断的其他特性,如:中断触发信号的类型、中断的优先级、中断信号产生的条件等等。

●中断响应过程(中断服务程序)

当所有的中断响应条件都满足了之后,就要进入中断响应过程进行相应处理了。单片机响应中断后,首先要把当前指令的下一条指令的地址送入堆栈(保护断点),然后根据中断标记,将相应的中断入口地址送入程序指针,程序转到中断入口处继续执行(中断服务程序),中断程序执行完后,单片机再把堆栈中保存的地址取出,程序从刚才的中断处继续向下执行。

需要注意的是,单片机硬件所做的保护工作只是保护了程序的一个指令地址,如果中断响应过程中修改了一些寄存器和变量的值,就需要在中断响应程序里面自己加以保护。

2、A VR单片机的外部中断

A VR单片机有很多中断,在后面的实例中我们会逐一介绍。本例中只介绍A VR单片机的外部中断,

ATmega16有INT0、INT1和INT2 3个外部中断源,分别由芯片外部引脚PD2、PD3、PB2上的电平的变化或状态作为中断触发信号。

●外部中断触发方式和特点

INT0、INT1、INT2的中断触发方式取决于用户程序对MCU控制寄存器MCUCR以及MCU 控制与状态寄存器MCUCSR的设定。其中,INT0和INT1支持4种中断触发方式:上升沿触发、下降沿触发、任意电平变化触发、低电平触发。

INT2支持上升沿触发和下降沿触发。

任意电平变化触发表示只要引脚上有逻辑电平的变化就会产生中断申请(不管是上升沿还是下降沿都引起中断触发)。在这4种触发方式中,还有以下的一些不同的特点:

●低电平触发是不带中断标志类型的,即只要中断输入引脚PD2或PD3保持低电平,那

么将一直会产生中断申请。

●MCU对INT0和INT1的引脚上的上升沿或下降沿变化的识别(触发),需要I/O时钟

信号的存在(由I/O时钟同步检测),属于同步边沿触发的中断类型。

●MCU对INT2的引脚上的上升沿或下降沿变化的识别(触发),以及低电平的识别(触

发)是通过异步方式检测的,不需要I/O时钟信号的存在。因此,这类触发类型的中断经常作为外部唤醒源,用于将处在Idle休眠模式,以及处在各种其它休眠模式的MCU 唤醒。这是由于除了在空闲(Idel)模式时,I/O时钟信号还保持继续工作,在其它各种休眠模式下,I/O时钟信号均是处在暂停状态的。

●如果使用低电平触发方式的中断作为唤醒源,将MCU从掉电模式(Power-down)中唤

醒时,电平拉低后仍需要维持一段时间才能将MCU唤醒,这是为了提高了MCU的抗噪性能。拉低的触发电平将由看门狗的时钟信号采样两次(在通常的5V电源和25℃时,看门狗的时钟周期为1μs)。如果电平拉低保持2次采样周期的时间,或者一直保持到MCU 启动延时(start-up time)过程之后,MCU将被唤醒并进入中断服务。如果该电平的保持时间能够满足看门狗时钟的两次采样,但在启动延时(start-up time)过程完成之前就消失了,那么MCU仍将被唤醒,但不会触发中断进入中断服务程序。所以,为了保证既能将MCU唤醒,又能触发中断,中断触发电平必须维持足够长的时间。

●如果设置了允许响应外部中断的请求,那么即便是引脚PD2、PD3、PB2设置为输出

方式工作,引脚上的电平变化也会产生外部中断触发请求。这一特性为用户提供了使用软件产生中断的途径。

(3)与外部中断相关的寄存器和标志位

在ATmega16中,除了寄存器SREG (P7) 中的全局中断允许标志位I外,与外部中断有关的寄存器有4个,共有11个标志位。分别是:MCU控制寄存器—MCUCR、MCU控制和状态寄存器—MCUCSR、通用中断控制寄存器—GICR、通用中断标志寄存器—GIFR。其作用分别是3个外部中断各自的中断标志位、中断允许控制位和用于定义外部中断的触发类型。

具体寄存器各个标志位的意义和如何设置,请查阅相关ATmega16的数据手册,在此不做过多描述。

需要注意的是:在系统程序的初始化部分中对外部中断进行设置时(定义或改变触发方式),应先将GICR寄存器中该中断的中断允许位清零,禁止MCU响应该中断后再设置ISCn 位。

而在开放中断允许前,一般应通过向GIFR寄存器中的中断标志位INTFn写入逻辑“1”,将该中断的中断标志位清除,然后开放中断。这样可以防止在改变ISCn的过程中误触发中

断。

3、按键电路

按键电路与上一实例相同,在此略去。

4、外部中断程序的编写

我们已经知道,要实现中断程序,首先要在主程序里面对相关中断寄存器进行中断产生条件的设置。然后就是编写中断服务程序。

本例中中断寄存器的设置如下:

MCUCR |= (1 << ISC11) | (1 << ISC01) | (1 << ISC00);

//INT0设置为上升沿中断,INT1为下降沿中断请求GICR |= (1 << INT0) | (1 << INT1); //允许INT0、INT1中断

GIFR |= (1 << INTF1) | (1 << INTF0); //清除INT0、INT1中断标志位

sei(); //使能全局中断

中断服务程序的编写具有一定的格式,在不同编译环境下各不相同,在WINAVR(GCC)环境下有两种方式,分别是:

● SIGNAL(中断向量名)

{

… //中断服务程序内容

}

●ISR(中断向量名)

{

… //中断服务程序内容

}

在这两种方式中,需要分别添加头文件:#include 和#include

宏INTERRUPT 的用法与SIGNAL 类似,区别在于SIGNAL 执行时全局中断触发位被清除、其他中断被禁止;INTERRUPT 执行时全局中断触发位被置位、其他中断可嵌套执行。

另外avr-libc 提供两个API 函数用于置位和清零全局中断触发位,它们是经常用到的,分别是:void sei(void) 和void cli(void) 由interrupt.h定义

在本实例中,我们采用包含头文件#include ,的方式,使用ISR(中断向量名){…}来编写中断函数。

2.2.3 电路

本实例的按键电路如图2.2.1所示,数码管接口电路与实例1.3中的电路相同,在此不再给出。

图2.2.1 按键电路

1、电路原理

本实例用K1、K2两个按键分别连接到单片机的PD2、PD3端口,PD2、PD3同时也是单片机的外部中断INT0、INT1的两个引脚。当按键按下时,外部中断INT0、INT1的两个引脚的电平发生变化,从而产生外部中断。

2、元器件选择

在这里列出和本例相关的、关键部分的器件名称及其在电路中的作用。

● ATmega16:单片机,检测按键按下情况并控制数码管显示数字。

●数码管:显示按键状态。

● R10:阻值为10K的电阻,下拉限流电阻。

● K1、K2:按键,当按键按下时,与按键连接的单片机端口的电平发生变化,产生外部中断。

3、管脚连接

在这里列出和本例相关的、关键部分的单片机端口与外围电路的连接。

● PB0-PB7:连接数码管的8个段,控制数码管的显示。

● PD2、PD3:连接按键K1、K2,检测两个按键的状态。

●PC6:数码管选通端口,该端口通过三极管9013控制数码管的选通,当PC6输出高电平时,数码管选通。

2.1.4 程序设计

1、程序功能

程序的功能是控制一个8段数码管显示“0”-“F”16个十六进制的数字。当系统上电时,显示“0”。K1键的作用是加“1”控制键:按1次K1键,显示数字加1,依次类推。当第15次按K1键时,显示“F”,第16次按K1键,显示又从“0”开始。K2键的作用是减1控制键:按1次K2键,显示数字减1,减到“0”后,再从“F”开始。

●按键开关的软件去抖和释放

上一个实例已经讲过这种方法,本例不再重复。

●单片机外部中断的编程

在本例中,需要使用单片机的INT0、INT1,所以在程序中需要对相应的寄存器进行设置,并且编写中断服务程序。

●控制1位数码管的显示

在INT0中断服务程序中,当按键K1按下一次,数码管显示的数字加1;在INT1的中断服务程序中,当按键K2按下一次,数码管显示的数字减1。

2、主要变量和函数说明

本例中需要编写中断函数,函数的功能是:当有外部中断发生时,程序跳转到中断函数执行数码管显示的程序,处理完后跳回主程序继续执行。

程序中用到变量Counter和Disp_Buff[16] 。变量Counter用于指示按键按下的次数,数组Disp_Buff[16]存放数码管显示的字形编码。

3、使用WINA VR开发环境,makefile文件同前面的例子,直接复制到本实例程序的文件夹中即可。

4、程序代码

#include

#include

#include //中断函数头文件

unsigned char Disp_Buff[16] = {0xaf,0xa0,0xc7,0xe6,0xe8,0x6e,0x6f,0xa2,

0xef,0xee,0xeb,0x6d,0x0f,0xe5,0x4f,0x4b};

//数码管字型码表显示:0,1,2,3,4,5,6,7,8,9,A,b,C,d,E,F volatile unsigned char Counter; //按键按下次数变量,如果在中断中调用全局变量,必须加

//volatile来定义,否则变量不会变化

int main(void)

{

PORTB = 0X00; //

DDRB = 0Xff; //

PORTC &= ~(1 << PC6); //配置数码管0的位选通口为低电平,不导通数码管

DDRC |= (1 << PC6); ///配置数码管0的位选通口为输出,选通数码管0

PORTD = 0X08; //一定要使能K2的上拉电阻,否则会有干扰

DDRD = 0XF3; //K1、K2按键(PD2、PD3)设置为输入端口

MCUCR |= (1 << ISC11) | (1 << ISC01) | (1 << ISC00);

//INT0设置为上升沿中断,INT1为下降沿中断请求GICR |= (1 << INT0) | (1 << INT1); //允许INT0、INT1中断

GIFR |= (1 << INTF1) | (1 << INTF0); //清除INT0、INT1中断标志位

Counter = 0; //按键按下次数变量清零

PORTC |= (1 << PC6); //选通数码管0

sei(); //使能全局中断

while(1)

{

PORTB = Disp_Buff[Counter]; //数码管显示按键按下次数

}

}

//外部中断0函数,当按键K1按下后,进入此中断

ISR(INT0_vect )

{

_delay_ms(20); //按键按下,延时一会再判断是否按下,以消除干扰

if((PIND & (1 << PD2))) // 按键真正按下后,进行相应处理

{

if(++Counter >= 16) Counter = 0; //次数大于15,清零

while((PIND & (1 << PD2)));//等待按键释放

}

}

//外部中断1函数,当按键K2按下后,进入此中断

ISR(INT1_vect)

{

_delay_ms(20); //判断按键按下,延时一会再判断是否按下,以消除干扰

if(!(PIND & (1 << PD3))) // 按键真正按下后,进行相应处理

{

if(Counter) --Counter; // 次数减1

else Counter = 15; // 次数为零则改成15

while(!(PIND & (1 << PD3))); //

}

}

在语言C语言编写单片机程序过程,如果要使用外部中断服务程序时,要尽量减少中断服务程序的内容和长度。因为在主程序中可能还要相应别的中断,如果一个中断服务程序过长,很可能会影响到主程序对其他中断的响应。

常用的处理方法是:在中断服务程序中只改变变量的值,或者设置各种标志,在主程序里面对变量或标志进行判断和处理。本实例为了演示的方便,在中断程序中进行了所有的操作。应该说明的是,这种方法是极不可取的。更为合理的方法是:在中断服务程序里面只改变Counter的值。其余部分都放到主程序里面进行处理。

另外需要特别强调的一点是,在用WINA VR编写中断服务程序时,如果中断服务程序中用到了全局变量,则在定义全局变量时,必须在变量的数据类型前加volatile来定义,否则该变量在中断服务程序中不会变化。这是因为在用C语言编写单片机程序时,都会用到编译器的“优化”代码功能,以使程序更加简洁、紧凑。但是毕竟编译器的优化是很死板的,他会把一些对变量的读操作优化掉。这样就导致在全局中断中使用的变量被优化成一个静止变量,即该变量的值不再改变。所以我们要把这些变量定义为volatile,意思是提示编译器:该变量是很容易变化的,不准对该变量的读取进行优化。这样在中断中每次对变量的读写就都可以正确的执行了。

实验四单片机中断优先级实验

实验四单片机中断优先级实验 一、实验目的 1.理解AT89C51单片机中断优先级和优先权。 2.用PROTEUS设计、仿真基于AT89C51单片机的中断优先级实验。 3.掌握中断编程。 4.掌握发光二极管的控制方法。 二、实验要求 单片机主程序控制P0口数码管循环显示0~8;外中断(INT0)、外中断(INT1)发生时分别在P2、P1口依次显示0~8;INT1为高优先级,INT0为低优先级。 三、电路设计 1.从 ① ②RES、 ③ ④CAP、CAP-ELEC:电容、电解电容; ⑤CRYSTAL:晶振; ⑥BUTTON:按钮。 2.放置元器件 3.放置电源和地 4.连线 5.元器件属性设置 6.电气检测 四、源程序设计、生成目标代码文件 1.流程图 2.源程序设计

通过菜单“source→Add/Remove Source Files…”新建源程序文件:。 通过菜单“source→”,打开PROTEUS提供的文本编辑器SRCEDIT,在其中编辑源程序。 程序编辑好后,单击按钮存入文件。 3.源程序编译汇编、生成目标代码文件 通过菜单“source→Build All”编译汇编源程序,生成目标代码文件。若编译失败,可对程序进行修改调试直至汇编成功。 五、PROTEUS仿真 1.加载目标代码文件 2.全速仿真 单击按钮,启动仿真。 (1)低优先级INT0中断主程序:当主程序运行时,单片机控制与P0口相接的数码管循环显示1~8;而P1、P2口的数码管不显示。当前主程序控制P0口显示“8”的时刻单击“低优先级输入”按钮,触发INT0如图所示,INT0服务程序控制P2口依次显示1~8,当前显示“2”。 (2)高优先级INT1中断低优先级INT0;在上一步的基础上,即主程序被INT0中断在P0口输出“8”,而在INT0服务程序在P2口输出“2”的时刻,单击“高优先级输入”按钮,触发高优先级INT1,所在INT0被中断在显示“2”,INT1服务程序控制P1口依次显示1~8。

实验三 单片机外部中断实验

实验三单片机外部中断实验 一、实验目的 1.理解单片机AT89C51的中断原理及其中断过程。 2.用proteus设计、仿真AT89C51单片机的外部中断。 外部中断是单片机AT89C51的重要功能,本实验用AT89C51单片机外部中断功能改变数码管的显示状态。当无外部中断0时,主程序运行状态为七段数码管的a~g段依次点亮,不断循环;当有外部中断0(单片机P3.2脚上有下降沿电压)输入时,立即产生中断,转而执行中断服务程序,数码管显示状态为“8”亮灭闪烁显示,亮灭闪烁显示8次以后,返回主程序原断点处继续执行,数码管继续段点亮的循环显示。 ③7SEG-COM-AN-GRN:绿色发光二极管; ④CAP、CAP-ELEC:电容、电解电容; ⑤CRYSTAL:晶振; ⑥BUTTON:按钮。 2.放置元器件

3.放置电源和地 4.连线 5.元器件属性设置 6.电气检测 四、源程序设计、生成目标代码文件 1.流程图 2.源程序设计 通过菜单“sourc e→Add/Remove Source Files…”新建源程序文件:DZC33.ASM。 通过菜单“sourc e→DZC34.ASM”,打开PROTEUS提供的文本编辑器SRCEDIT,在其中编辑源程序。 程序编辑好后,单击按钮存入文件DZC34.ASM。 3.源程序编译汇编、生成目标代码文件 通过菜单“sourc e→Build All”编译汇编源程序,生成目标代码文件。若编译失败,可对程序进行修改调试直至汇编成功。 五、PROTEUS仿真 1.加载目标代码文件 2.全速仿真 单击按钮,启动仿真。 3.仿真调试 (1)带断电仿真 五、思考题: 1、MCS-51单片机响应某一个中断请求的条件是什么? 2、8051单片机提供几个中断源?有几级中断优先级别?各中断标志是如何产生的又如何清除这些中断标志?各中断源所对应的中断入口地址是多少?

外部中断实验

1 外部中断实验 一、实验目的 1掌握外部中断技术的基本使用方法 2掌握中断处理程序的编写方法 二、实验说明 1、外部中断的初始化设置共有三项内容:中断总允许即EA=1,外部中断允许即EXi=1(i=0或1),中断方式设置。中断方式设置一般有两种方式:电平方式和脉冲方式,本实验选用后者,其前一次为高电平后一次为低电平时为有效中断请求。因此高电平状态和低电平状态至少维持一个周期,中断请求信号由引脚INT0(P3.2)和INT1(P3.1)引入,本实验由INT0(P3.2)引入。 2、中断服务的关键: a 、保护进入中断时的状态。 堆栈有保护断点和保护现场的功能使用PUSH 指令,在转中断服务程序之前把单片机中有关寄存单元的内容保护起来。 b 、必须在中断服务程序中设定是否允许中断重入,即设置EX0位。 c 、用POP 指令恢复中断时的现场。 3、中断控制原理: 中断控制是提供给用户使用的中断控制手段。实际上就是控制一些寄存器,51系列用于此目的的控制寄存器有四个:TCON 、IE 、SCON 及IP 。 4、中断响应的过程: 首先中断采样然后中断查询最后中断响应。采样是中断处理的第一步,对于本实验的脉冲方式的中断请求,若在两个相邻周期采样先高电平后低电平则中断请求有效,IE0或IE1置“1”;否则继续为“0”。所谓查询就是由CPU 测试TCON 和SCON 中各标志位的状态以确定有没有中断请求发生以及是那一个中断请求。中断响应就是对中断请求的接受,是在中断查询之后进行的,当查询到有效的中断请求后就响应一次中断。 INT0端接单次脉冲发生器。P1.0接LED 灯,以查看信号反转。 三、实验内容及步骤 1、使用单片机最小应用系统1模块,P1.0接发光二极管,INTO 接单次脉冲输出端。 2、安装好仿真器,用串行数据通信线连接计算机与仿真器,把仿真头插到模块的单片机插座中,打开模块电源,打开仿真器电源。 3、启动计算机,打开Keil 仿真软件,进入仿真环境。选择仿真器型号、仿真头型号、CPU 类型。 4、打开 中断.ASM 源程序,编译无误后,全速运行程序,连续按动单次脉冲产生电路的按键,发光二极管每按一次状态取反,即隔一次点亮。 5、可把源程序编译成可执行文件,烧录到89C51芯片中。 四、流程图及源程序 1、流程图 保护现场 设置初始状态 设置中断控制寄存器 开始 中断入口

单片机中断实验报告

人的一生要疯狂一次,无论是为一个人,一段情,一段旅途,或一个梦想 ------- 屠呦呦 实验三定时器中断实验 一、实验目的 1、掌握51单片机定时器基本知识; 2、掌握定时器的基本编程方法; 3、学会使用定时器中断。 二、实验内容 1、利用定时器设计一个秒表,计数范围为0—59,并在数码管实时显示。 三、实验设备 PC 机一台、单片机实验箱 主要器件:AT89C52、7SEG-BCD、 四、实验步骤 1、使用Proteus设计仿真原理图; 2、使用Keil设计程序; 3、联合调试仿真。 五、实验流程图 六、实验程序与结果 #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1;

void timer1_init() { TMOD=0x10;//将定时器1设置为工作方式1 TH1=(65536-6000)/256;//定时器每加一时间为1/fsoc,定时时间为1/500 //(1/500)s/(1/3000000)s=6000 TL1=(65536-6000)%256;//fsoc=3000000,所以装入16位定时器中值为65536-6000 EA=1; ET1=1; TR1=1; } void main() { timer1_init(); while(1); } void timer1() interrupt 3 { TH1=(65536-6000)/256;//每次进入中断,重装初值TL1=(65536-6000)%256; F=~F;//每次进入中断P1.1口取反 } #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1; void timer0_init() {TMOD=0x01;//将定时器0设置为工作方式1 TH0=(65536-83)/256;//定时器每加一时间为1/fsoc,定时时间为2Khz,既500us //500us/6us=83.3333 TL0=(65536-83)%256;//fsoc=6000000,所以装入16位定时器中值为65536-83 EA=1; ET0=1; TR0=1; }void main() { timer0_init(); while(1); } void timer0() interrupt 1 { TH0=(65536-83)/256;//每次进入中断,重装初值 TL0=(65536-83)%256; F=~F;//每次进入中断P1.1口取反,表示定时时间到 } #include // 包含51单片机寄存器定义的头文件 #define seg_data P1 #define seg_data2 P3 #define uint unsigned int sbit D1=P2^0; //将D1位定义为P2.0引脚 uint counter=0; unsigned int unit=0,decade=0,avs=0;//time=0;

单片机实验四报告材料_外中断实验

大学实验报告 学生:学号:专业班级: 实验类型:?验证?综合■设计?创新实验日期:2018.05.29 实验成绩: 实验四外中断实验 (一)实验目的 1.掌握单片机外部中断原理; 2.掌握数码管动态显示原理。 (二)设计要求 1.使用外部中断0和外部中断1; 2.在动态数码管上显示中断0次数,中断1用作次数清0,数码管采用74HC595驱动。 (三)实验原理 1.中断 所谓中断是指程序执行过程中,允许外部或部时间通过硬件打断程序的执行,使其转向为处理外部或部事件的中断服务程序中去,完成中断服务程序后,CPU返回继续执行被打断的程序。如下图所示,一个完整的中断过程包括四个步骤:中断请求、中断响应、中断服务与中断返回。 当中断请求源发出中断请求时,如果中断请求被允许的话,单片机暂时中止当前正在执行的主程序,转到中断处理程序处理中断服务请求。中断服务请求处理完后,再回到原来被中止的程序之处(断电),继续执行被中断的主程序。 如果单片机没有终端系统,单片机的大量时间可能会浪费在是否有服务请求发生的查询操作上,即不论是否有服务请求发生,都必须去查询。因此,采用中断技术大大地提高了单片机的工作效率和实时性。

2.IAP15W4K58S4单片机的中断请求 IAP15W4K58S4单片机的中断系统有21个中断请求源,2个优先级,可实现二级中断服务嵌套。由IE、IE2、INT_CLKO等特殊功能寄存器控制CPU是否相应中断请求;由中断优先级高存器IP、IP2安排各中断源的优先级;同优先级2个以中断同时提出中断请求时,由部的查询逻辑确定其响应次序。 中断请求源中的外部中断0(INT0)和外部中断1(INT1)详述如下: (1)外部中断0(INT0):中断请求信号由P3.2引脚输入。通过IT0来设置中断请求的触发方式。当IT0为“1”时,外部中断0为下降沿触发;当IT0为“0”时,无论是上升沿还是下降沿,都会引发外部中断0。一旦输入信号有效,则置位IE0标志,向CPU申请中断。 (2)外部中断1(INT1):中断请求信号由P3.3引脚输入。通过IT1来设置中断请求的触发方式。当IT1为“1”时,外部中断1为下降沿触发;当IT1为“0”时,无论是上升沿还是下降沿,都会引发外部中断1。一旦输入信号有效,则置位E1标志,向CPU申请中断。 中断源是否有中断请求,是由中断请求标志来表示的。在IAP15W4K58S4单片机中,外部中断 0、外部中断1等请求源的中断请求标志分别由特殊功能寄存器TCON和SCON控制,格式如下: (1)TCON寄存器中的中断请求标志。TCON为定时器T0与T1的控制寄存器,同时也锁存T0和T1的溢出中断请求标志及外部中断0和外部中断1的中断请求标志等。格式如下图所示: D7 D6 D5 D4 D3 D2 D1 D0 88H 与中断有关的各标志位功能如下: ①TF1:T1的溢出中断请求标志。T1被启动计数后,从初值做加1计数,计满溢出后由硬件 置位TFI,同时向CPU发出中断请求,此标志一直保持到CPU 响应中断后才由硬件自动清0。 也可由软件查询该标志,并由软件清0。 ②TF0:T0的溢出中断请求标志。T0被启动计数后,从初值做加1计数,计满溢出后由硬件 置位TF0,同时向CPU发出中断请求,此标志一直保持到CPU响应中断后才由硬件自动清 0。也可由软件查询该标志,并由软件清0。 ③IE1:外部中断1的中断请求标志。当INT1(P3.3)引脚的输入信号满足中断触发要求时,置 位IE1,外部中断1向CPU申请中断。中断响应后中断请求标志自动清0。 ④IT1:外部中断1(INT1)中断触发方式控制位。当(IT1)=1时,外部中断1为下降沿触发方式。 在这种方式下,若CPU检测到INT1出现下降沿信号,则认为有中断申请,随即使IE1标志 置位。中断响应后中断请求标志会自动清0,无须做其他处理。当(T1)=0时,外部中断1为

基于STM8的外部中断实验

例程四按键中断 其实在上个例程就说那个中断的,但不是重点说,例程四就重点说下这个中断的设置,主要是针对外部中断,对于其他的中断,到时在相应的模块里面会说的。在STM8S207RB这个芯片里面有很多IO口都可以触发中断的。主要是GPIO_A,GPIO_B,GPIO_C,GPIO_D,GPIO_E,这五组IO口都可以触发外部中断,所以大家以后要设计电路的话,必须先要查看先对应的文档来看下,了解清楚芯片的资料才好设置。其实大家学会调用库里面的函数的话,这些初始化相当来说就很容易的了。 以上外部中断的设置来自“STM8寄存器.pdf”文档第74页 下面看下电路图先吧,只要当你清楚电路具体的链接,才能完成相对应的初始化。

用到内部的资源 "stm8s_clk.h" "stm8s_exti.h" "stm8s_gpio.h" "stm8s_uart1.h" "stm8s_clk.c" "stm8s_exti.c" "stm8s_gpio.c" "stm8s_uart1.c" 看完了电路图,照样是先看主函数

在主函数里面最重要的是Buttom_Init();的初始化,其他的初始话上前几个例程已经有介绍过,相信大家也很清楚了。下面重点讲下Buttom_Init()。 函数原型: 第一条语句是设置Buttom1和Buttom2相对应的IO为上拉输入; 第二条语句是设置GPIOD,也即是按键,为下降沿触发中断。 __enable_interrupt();这条语句是开总中断,在上一个例程里面说过了,以后凡是有触发中断的都要用上这条语句,所以说这条语句很重要的。 下面讲下外部中断常用的几个函数,这些函数都是库有的,可以直接调用的。

单片机外部中断实验(附C语言程序)

单片机外部中断实验(附c程序) 一、实验目的 掌握外部中断的C语言和汇编语言编程方法,会用外部中断解决实际应用问题。 。 二、实验内容 8051C51单片机P2.0接一个发光二极管LED1、P2.1接一个发光二极管LED2,P3.2接一个开关、P3.3接一个开关要求实现以下功能: (1)合上、P3.3断开时LED1闪烁 (2)P3.2断开、P3.3合上时LED2闪烁 (3)P3.2合上后(不断开)再合上P3.3,LED1闪烁LED2不闪烁 (4)P3.3合上后(不断开)再合上P3.2,LED2不闪烁LED1闪烁 试编写C语言和汇编语言程序 使用自然优先级就可以 也可 XO 高级X1低级PX0=1 PX1=0 四、实验电路 五、参考程序(自己完成) C程序: Include Sbit P2_0=P2^0; Sbit P2_1=P2^1; Sbit P3_2=P3^2; Sbit P3_3=P3^3; void delay02s(void) //延时0.2秒子程序 { unsigned char i,j,k; for(i=20;i>0;i--) for(j=20;j>0;j--) for(k=248;k>0;k--); }

Void main { EA=1; EX0=1; EX1=1; ITO=1; IT1=1; PX0=1; PX1=0; While(1); } Void int0(void) interrupt 0 { if(!P3_2) { While(1) { P2_0=1; delay02s(); P2_0=0; delay02s(); } } } Void int1(void) interrupt 2 { if(!P3_3) { While(1) { P2_1=1; delay02s(); P2_1=0; delay02s(); } } }

单个外部中断实验

一、 实验要求 在单片机的外中断输入引脚INT0————(或INT1———— ),接一个按键开 关来产生外部中断请求,通过P1口连接的8个LED 发光二极管的状态,来反映外中断的作用。 中断未发生时,P1口连接的8个LED 为流水状态,当按键 开关按下,即外部中断请求产生时,8个LED 呈现闪烁状态。按键开关松开,8个LED 又为流水状态。 二、 实验目的 (1) 理解掌握外部中断源、中断请求、中断标志、中断入口 等概念。 (2) 掌握中断程序的设计方法。 程序如下: ORG 0000H //程序入口 LJMP MAIN //跳入主程序入口MAIN ORG 0003H //INT0中断入口 LJMP INT0P ORG 0030H MAIN: SETB EA //中断允许总开关控制位 SETB EX0 //允许外部中断0中断 SETB PX0 //外部中断0中断为高优先级 START:MOV R2,#8 MOV A,#0FEH //为点亮引脚发光二极管需写入P1口的点亮控制码 LOOP: MOV P1,A //点亮控制码写入P1口,点亮相应的LED

LCALL DELAY //调用延时子程序 RL A //点亮控制码循环左移,点亮下一位 DJNZ R2,LOOP //判断左移是否超过8位,未超过继续循环 LJMP START //左移循环已8次,再重新进行下一次循环点亮 INT0P: PUSH PSW //保护现场 PUSH Acc NOLIG: JNB IE0,IT0R MOV P1,#00H LCALL DELAY MOV P1,#0FFH LCALL DELAY LJMP NOLIG IT0R:RETI DELAY: MOV R5,#60 //延时子函数 D1: MOV R6,#20 D2: MOV R7,#248 D3: DJNZ R7,D3 DJNZ R6,D2 DJNZ R5,D1 RET END 程序如图:

单片机中断实验报告

实验三定时器中断实验 一、实验目的 1、掌握51单片机定时器基本知识; 2、掌握定时器的基本编程方法; 3、学会使用定时器中断。 二、实验内容 1、利用定时器设计一个秒表,计数范围为0—59,并在数码管实时显示。 三、实验设备 PC 机一台、单片机实验箱 主要器件:AT89C52、7SEG-BCD、 四、实验步骤 1、使用Proteus设计仿真原理图; 2、使用Keil设计程序; 3、联合调试仿真。 五、实验流程图 六、实验程序与结果 #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1; void timer1_init() 开始 设置显示初值启动定时器 判断是否到59 继续 是 否

{ TMOD=0x10;//将定时器1设置为工作方式1 TH1=(65536-6000)/256;//定时器每加一时间为1/fsoc,定时时间为1/500 //(1/500)s/(1/3000000)s=6000 TL1=(65536-6000)%256;//fsoc=3000000,所以装入16位定时器中值为65536-6000 EA=1; ET1=1; TR1=1; } void main() { timer1_init(); while(1); } void timer1() interrupt 3 { TH1=(65536-6000)/256;//每次进入中断,重装初值TL1=(65536-6000)%256; F=~F;//每次进入中断P1.1口取反 } #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1; void timer0_init() {TMOD=0x01;//将定时器0设置为工作方式1 TH0=(65536-83)/256;//定时器每加一时间为1/fsoc,定时时间为2Khz,既500us //500us/6us=83.3333 TL0=(65536-83)%256;//fsoc=6000000,所以装入16位定时器中值为65536-83 EA=1; ET0=1; TR0=1; }void main() { timer0_init(); while(1); } void timer0() interrupt 1 { TH0=(65536-83)/256;//每次进入中断,重装初值 TL0=(65536-83)%256; F=~F;//每次进入中断P1.1口取反,表示定时时间到 } #include // 包含51单片机寄存器定义的头文件 #define seg_data P1 #define seg_data2 P3 #define uint unsigned int

外部中断实验

实验二外部中断实验 一.实验目的 1.学习外部中断技术的基本使用方法; 2.学习中断处理程序的编程方法。 二.实验设备及器材配置 1.单片机仿真实验系统。 2.计算机。 3.导线。 三.实验内容 在以下实验题目中任选一个或由老师指定。 1.P1口做输出口,接八只发光二极管,编写程序,使其循环点亮。以单脉冲输出端做为中断申请,当第一次产生外部中断时,使发光二极管全亮,延时1秒后返回中断之前的状态;当第二次产生外部中断时,使发光二极管全灭,延时1秒后返回中断之前的状态;以后如上述一直循环下去。 2.以单脉冲输出端做为中断申请,自行设计连线,用实验箱上的红、绿、黄发光二极管模拟交通灯控制。当有急救车通过时,两交通灯信号为全红,以便让急救车通过,延时10秒后交通灯恢复中断前状态。 四.实验原理说明 本实验中中断处理程序的应用,最主要的地方是如何保护进入中断前的状态,使得中断程序执行完毕后能返回中断前P1口及发光二极管的状态。除了保护累加器A、程序状态字PSW外、P1口的状态外,还要注意主程序中的延时程序和中断程序的延时程序不能混用,本实验中,主程序延时程序用的寄存器和中断延时用的寄存器也不能混用。 五.连线方法及实验电路 8031的P1.0—P1.7分别接发光二极管L0—L7,P3.2接单脉冲输出端“ ” 外部中断实验电路如图1-3所示。

图1-3 外部中断实验电路 六.思考题及实验报告要求 1.思考题 (1).试说明51系列单片机外部中断如何使用。 (2).修改程序,外部中断产生时,使发光二极管闪亮移位方向改变。 2.实验报告要求 (1).给出自行设计的程序清单、程序流程图。 (2). 总结实验过程中调试所遇到的问题和解决方法,写出编程调试的经验和体会。 VW集成调试软件使用 1.自建以字母开头的文件夹,推荐在F盘。 2.双击桌面V/W快捷方式 3.左击【文件】-新建文件-保存文件(存于自建文件夹下,以字母开头,后缀为.ASM或.C) 4.左击【文件】-新建项目-(以字母开头,存于自建文件夹下,加入自存的汇编或C源程序) 5.编写程序 6. 左击【项目】-编译,根据提示将提示的错误位置修改,编译,直至程序无错。 7.实验箱断电、连线完毕后,打开实验箱电源开关。左击【仿真器】,在出现的窗口中选择LAB8000\MCS51\8031AH或A T89C51,晶体频率:6000000Hz。 8. 左击【执行】-全速运行,在实验箱上观察运行结果。

单片机外部中断实验

(仿真部分) 一、实验目的 1. 学习外部中断技术的基本使用方法。 2. 学习中断处理程序的编程方法。 二、实验内容 在INT0和INT1上分别接了两个可回复式按钮,其中INT0上的按钮每按下一次则计数加一,其中INT1上的按钮每按下一次则计数减一。P1.0~ P1.3接LED灯,以显示计数信号。 三、实验说明 编写中断处理程序需要注意的问题是: 1.保护进入中断时的状态,并在退出中断之前恢复进入时的状态。 2.必须在中断处理程序中设定是否允许中断重入,即设置EX0位。 3.INT0和INT1分别接单次脉冲发生器。P1.0~ P1.3接LED灯,以查看计数信号. 四、硬件设计 利用以下元件:AT89C51、BOTTON、CAP、CAP-POL、CRYSTAL、RES、NOT、LED-Yellow。设计出如下的硬件电路。晶振频率为12MHz。 五、参考程序框图 中断处理程序框图

(实验箱部分) 1.实验目的 认识中断的基本概念 学会外部中断的基本用法 学会asm和C51的中断编程方法 2.实验原理 图按键中断 【硬件接法】 P1.1控制LED,低电平点亮 P3.3/INT1接按键,按下时产生低电平 【运行效果】 程序工作于中断方式,按下按键K2后,LED点亮,1.5秒后自动熄灭。 8051单片机有/INT0和/INT1两条外部中断请求输入线,用于输入两个外部中断源的中断请求信号,并允许外部中断源以低电平或下降沿触发方式来输入中断请求信号。/INT0和/INT1中断的入口地址分别是0003H和0013H。 TCON寄存器(SFR地址:88H)中的IT0和IT1位分别决定/INT0和/INT1的触发方式,置位时为下降沿触发,清零时为低电平触发。实际应用时,如果外部的中断请求信号在产生后能够在较短时间内自动撤销,则可以选择低电平触发。在中断服务程序里要等待其变高后才能返回主程序,否则会再次触发中断,产生不必要的麻烦。 如果外部的中断请求信号产生后可能长时间后才能撤销,则为了避免在中断服务程序里长时间无谓等待,可以选择下降沿触发。下降沿触发是“一次性”的,每次中断只会有1个下降沿,因此中断处理程序执行完后可以立即返回主程序,而不必等待中断请求信号恢复为高电平,这是一个重要的技巧。 3. 实验步骤 ●参考实验例程,自己动手建立Keil C51工程。注意选择CPU类型。Philips半导体的P89V51RB2。 ●编辑源程序,编译生成HEX文件。 ●ISP下载开关扳到“00”,用Flash Magic软件下载程序HEX文件到MCU BANK1,运行。 运行Flash Magic软件。各步骤操作如下: Step 1: COM Port:选择实际使用的串行口,通常为COM1; Baud Rate:波特率不可设置得过高,推荐用9600; Device:请选择正确的型号89V51RB2; Interface:选择None(ISP)。 Step 2:请勾中“Erase blocks used by Hex File”。

外部中断0实验程序

51单片机第十四课外部中断0实验 #include #define uchar unsigned char #define uint unsigned int sbit led0=P0^0; unsigned char code smg_du[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e, 0x79,0x71,0x00}; unsigned char code smg_we[]={0x08,0x18,0x28,0x38,0x48,0x58,0x68,0x78}; //************************************************ //延时函数,在12MHz的晶振频率下 //大约50us的延时 //************************************************ void delay_50us(uint t) { uchar j; for(;t>0;t--) for(j=19;j>0;j--); } //************************************************ //延时函数,在12MHz的晶振频率下 //大约50ms的延时 //************************************************ void delay_50ms(uint t) { uint j; for(;t>0;t--) for(j=6245;j>0;j--); } void main() {

单片机外部中断的使用

哈尔滨理工大学荣成学院 单片机原理及应用Protues 仿真实验 班级: 学号: 姓名: 日期:

实验三单片机外部中断的使用 一、实验名称:单片机外部中断的使用 二、实验目的 1.掌握在Keil环境下建立项目、添加、保存源文件文件、编译源程序的方法; 2.掌握运行、步进、步越、运行到光标处等几种调试程序的方法; 3.掌握在Proteus环境下建立文件原理图的方法; 4..实现Proteus与Keil联调软件仿真。 三、使用仪器设备编号、部件及备件 1.实验室电脑; 2.单片机实验箱。 四、实验过程及数据、现象记录 在Proteus 环境下建立如下仿真原理图,并保存为文件;

原理图中常用库元件的名称: 无极性电容:CAP 极性电容:CAP-ELEC 单片机:AT89C51 晶体振荡器:CRYSTAL 电阻:RES 按键:BUTTON 发光二极管:红色LED-RED 绿色LED-GREEN 蓝色LED-BLUE 黄色LED-YELLOW 在Keil环境下建立源程序并保存为.ASM文件,生成.HEX文件;汇编语言参考程序如下:ORG 0000H

LJMP MAIN ORG H ;外部中断0程序入口地址LJMP EXINT0 ORG 0030H MAIN: MOV SP,#60H ;堆栈指针初始化 SETB ;设置外部中断 0 为边沿触发 SETB ;开外部中断0 SETB ;开CPU总中断MOV A,#01H LOOP: MOV P1,A RL A CALL DELAY SJMP LOOP DELAY: MOV R1,# ;延时250ms子程序DL1: MOV R2,# DL2: MOV R3,# DJNZ R3,$ DJNZ R2,DL2 DJNZ R1,DL1 ;延时子程序返回EXINT0: PUSH PUSH CLR RS1 SETB RS0 MOV R0,# LP: MOV P1,#0FFH CALL DELAY MOV P1,#00H CALL DELAY DJNZ R0,LP POP PSW POP ACC ;中断返回END 将以上程序补充完整,流水时间间隔,闪烁时间间隔为250ms。C51语言参考程序: #include #include #define uchar unsigned char #define uint unsigned int void delay_ms(uint x) { uint i; uchar j; for(i=0;i

实验二 外部中断实验

实验二外部中断实验 一、实验目的 1.掌握外部中断技术的基本使用方法 2.掌握中断处理程序的编写方法 二、实验原理 1.外部中断的初始化设置的三项内容:中断总允许即EA=1,外部中断允许即EXi=1(i=0或1),中断方式设置。中断方式设置一般有两种方式:电平方式和脉冲方式. 2.中断服务的关键: (1)保护进入中断时的状态。 堆栈有保护断点和保护现场的功能使用PUSH,在转中断服务程序之前把单片机中有关寄存单元的内容保护起来。注:中断程序自动保护PC,对其做入栈操作 (2)用POP指令恢复中断时的现场。(先进后出) 3.中断控制原理: 中断控制是提供给用户使用的中断控制手段。实际上就是控制一些寄存器,51系列用于此目的的控制寄存器有四个:TCON 、IE 、SCON 及IP。 TCON格式(中断控制字) TF1、TF0:定时器/计数器T的溢出中断请求标志位; TR1、TR0:计数器控制位TR1(TR0)=1启动定时器TR1(TR0)=0停止计数器 IE1:外部中断请求1标志位; IT1:IT1=0为低电平触发IT1=1为负跳变有效; IE0:外部中断请求0标志位; IT0:IT0=0为低电平触发IT0=1为负跳变有效; 复位后TCON被清零,中断请求被禁止。

SCON格式(触发方式中断控制字) TI:串行口的发送中断请求标志位。发送1帧串行数据后,硬件自动为TI置1。注:CPU不会为T1清零,需要在中断程序中用软件为TI清零 RI:串行口接受中断请求标志位。接收完1帧串行数据后,硬件自动为RI置1。注:CPU不会为R1清零,需要在中断程序中用软件为RI清零 三、实验内容 参考实验程序(主程序为P1口输出跑马灯程序),编写中断子程序使得发生外部中断0,且为下降沿触发时,LED灯全亮。中断结束后LED继续接上次状态进行跑马灯闪烁。注:注意保护现场。且编译器不支持工作组寄存器名(R0-R7)入栈,需要对栈地址操作。例:PUSH 06H (累加器支持左移右移不支持压栈出栈; 工作组寄存器不支持左移右移支持压栈出栈);把R6入栈等同PHSHU R6 四、实验步骤 1.使用单片机最小应用系统1模块,P1接发光二极管,INTO接单次脉冲输出端。 2.用串行数据通信线连接计算机与仿真器,把仿真器插到模块的锁紧插座中,请注意仿真器的方向:缺口朝上。 3.打开Keil uVision2仿真软件,首先建立本实验的项目文件,接着添加**.ASM源程序,进行编译,直到编译无误。 4.打开模块电源和总电源,点击开始调试按钮,点击RUN按钮运行程序。 五、参考程序 汇编语言: ORG 0000H LJMP START ORG 0003H LJMP INT ORG 0030H INT: PUSH 05H PUSH 06H PUSH 07H MOV P1,#00H ACALL DELAY POP 07H POP 06H POP 05H RETI START: MOV IE,#81H MOV TCON, #01H MOV A, #0FEH

单片机实验5外部中断

一、实验目的和要求 1、掌握中断系统外部中断源的使用方法。 2、掌握延时程序的编程及使用方法。 3、掌握Proteus软件与Keil软件的使用方法。 4、掌握单片机系统的硬件和软件设计方法。 二、设计要求 1、用Proteus软件画出电路原理图,在单片机的P1.0 口线上接按键K0 ,作为外部中断源0使用,用于 开启波形,在单片机的P1.1口线上接按键K1 , 作为外部中断源1使用,用于关闭波形。 2、在单片机的P1.2口线上产生周期50mS的连续方 波,在P 1.2口线上接示波器观察波形。 三、电路原理图。

四、实验程序流程框图和程序清单。 题一二汇编程序: ORG 0000H LJMP MAIN ORG 0003H LJMP K0 ORG 0013H LJMP K1 ORG 000BH LJMP TTC0 ORG 0050H MAIN: MOV SP, #6FH MOV TMOD, #01H MOV TH0, #9EH MOV TL0, #58H SETB EA SETB ET0 SETB EX0 SETB EX1 SETB PT0 SETB PX0 SETB PX1 SETB IT0 HERE: LJMP HERE K0: SETB TR0 RETI K1: CLR TR0 RETI TTC0: CPL P1.2 MOV TH0, #9EH MOV TL0, #58H RETI END 题一二C语言程序: #include #define unchar unsigned char #define uint unsigned int sbit P10=P1^0; sbit P11=P1^1; sbit P12=P1^2; void K0()interrupt 0 using 0 { TR0=1; void K1()interrupt 2 using 2 { TR0=0; } void TTC0()interrupt 1 using 1 { P12=!P12; TH0=0x9E; TL0=0x58; } void main () { SP=0X6F; TMOD=0x01; TH0=0x9E; TL0=0x58; EA=1; ET0=1; EX0=1; EX1=1; IT1=1; IT0=1 ; while(1); } 题一二程序流程图: 五、实验结果(波形图)。 题一二汇编程序仿真波形 题一二C语言程序仿真波形

基与89C51单片机外部中断实验

实验六外部中断实验一 一、实验要求 1.在Proteus软件中画好51单片机最小核心电路,包括复位电路和晶振电路 2.P1口上拉接8个LED; 3.在Keil软件中编写程序,对LED显示进行控制,显示方式有两种:(1)0、7亮,1、 6亮,2、5亮,3、4亮,0、7亮循环;(2))3、4亮,2、5亮,1、6亮,0、7亮, 3、4亮循环。 4.在P3.2连接一个按键,当按键弹起时引脚为高电平,当按键按下时引脚为低时平 5.编写程序:系统对LED显示进行控制,一开始显示方式为(1),当按下P3.2连接 的按键时,系统在(1)和(2)之间切换显示方式 二、实验目的 1.学习端口输入输出的高级应用 2.掌握LED查表显示法 3.掌握外部中断的工作原理 4.掌握外部中断程序设计 三.实验说明 (条理清晰,含程序的一些功能分析计算) 1.程序中void my_int(void) interrupt 0 using 1 { flag=!flag;} //中断子程序是中断子程序,就是按键按下中断一次。 2.以下是灯亮的方式改变,即flag取反一次就改变一次。通过i++或i—实现 变化。 while(1) { P1=LED[i]; //在P1口显示灯亮的方式 delay_ms(500); //延时0.05s if(flag) //判断P3^2开关是否按下 {i++; if(i>=4) //如果灯显示从两边到中间要在回到两边 i=0;} else{i--; if(i<0)//同上 i=3;} 四、硬件原理图及程序设计 (一)硬件原理图设计

(二)程序流程图设计 是 开始 定义变量 i=0;flag=1; P0=LED[i]; Flag ? i++; 否 i--; P3.3按下时进行中 断 Flag=flag!;

实验二 按键中断实验

实验二按键中断实验 一、实验目的 了解中断的含义 二、实验内容 板子加电后,按动板子上K1-K3按键,可控制对应的LED1-LED3的亮灭,该实验学习了外部中断(EXTI)程序的编制及控制流程。 三、实验仪器、设备 计算机、开发板、keil软件 四、硬件设计 在开发板上V6、V7、V8分别与MCU的PB5、PD6、PD3相连,如下图所示 键盘部分如下图所示: 例程所用到的列扫描线:PC5,PC2,PC3。 例程所用到的行扫描线(EXTI中断线):PE2。

五、实验要求和步骤 开发板上有3个蓝色状态指示灯V6(LED1),V7(LED2),V8(LED3),通过对应的按键K1-K3,控制LED的亮灭,将PE2引脚配置为外部中断,当其上出现下降沿时产生一个中断,根据扫描PC5,PC2,PC3来判别是哪个按键按下。 首先我们了解一下什么是外部中断/事件控制器(EXTI)。 外部中断/事件控制器由19个产生事件/中断要求的边沿检测器组成。每个输入线可以独立地配置输入类型(脉冲或挂起)和对应的触发事件(上升沿或下降沿或者双边沿都触发)。每个输入线都可以被独立的屏蔽。挂起寄存器保持着状态线的中断要求。 EXTI控制器的主要特性如下: 每个中断/事件都有独立的触发和屏蔽 每个中断线都有专用的状态位 支持多达19 个中断/事件请求 检测脉冲宽度低于APB2 时种宽度的外部信号 如要产生中断,中断线必须事先配置好并被激活。这是根据需要的边沿检测通过设置2个触发寄存器,和在中断屏蔽寄存器的相应位写“1”到来允许中断请求。当需要的边沿在外部中断线上发生时,将产生一个中断请求,对应的挂起位也随之被置1。通过写“1”到挂起寄存器,可以清除该中断请求。为产生事件触发,事件连接线必须事先配置好并被激活。这是根据需要的边沿检测通过设置2个触发寄存器,和在事件屏蔽寄存器的相应位写“1”到来允许事件请求。当需要的边沿在事件连线上发生时,将产生一个事件请求脉冲,对应的挂起位不被置1。通过在软件中断/事件寄存器写“1”,一个中断/事件请求也可以通过软件来产生。 本次实验需要组件的工程文件文档如下: USER--stm32f10x_it.c 为中断服务程序主程序,我们对主程序进行一次详细的注释。 //______________________主程序____________________________________________________________________ int main(void) { unsigned char a=0,b=0,c=0; /*完成对系统时钟的设置,例程中通过系统时钟设置函数,外接晶振采用8Mhz,经过片内频率合成,9倍频,设置为72MHz的时钟。*/ RCC_Configuration(); /*嵌套向量中断控制器

单片机外部中断实验(附C语言程序)复习进程

单片机外部中断实验(附C语言程序)

单片机外部中断实验(附c程序) 一、实验目的 掌握外部中断的C语言和汇编语言编程方法,会用外部中断解决实际应用问题。 。 二、实验内容 8051C51单片机P2.0接一个发光二极管LED1、P2.1接一个发光二极管LED2,P3.2接一个开关、P3.3接一个开关要求实现以下功能:(1)合上、P3.3断开时LED1闪烁 (2)P3.2断开、P3.3合上时LED2闪烁 (3)P3.2合上后(不断开)再合上P3.3,LED1闪烁LED2不闪烁 (4)P3.3合上后(不断开)再合上P3.2,LED2不闪烁LED1闪烁 试编写C语言和汇编语言程序 使用自然优先级就可以 也可 XO 高级X1低级PX0=1 PX1=0 四、实验电路 五、参考程序(自己完成)

C程序: Include Sbit P2_0=P2^0; Sbit P2_1=P2^1; Sbit P3_2=P3^2; Sbit P3_3=P3^3; void delay02s(void) //延时0.2秒子程序{ unsigned char i,j,k; for(i=20;i>0;i--) for(j=20;j>0;j--) for(k=248;k>0;k--); } Void main { EA=1; EX0=1; EX1=1 ; ITO=1 ; IT1=1 ; PX0=1; PX1=0; While(1) ; } Void int0(void) interrupt 0 { if(!P3_2) { While(1) { P2_0=1; delay02s(); P2_0=0; delay02s(); } } } Void int1(void) interrupt 2 { if(!P3_3) {

相关文档
最新文档