选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解
选取一个模糊控制的实例讲解

一.实验题目:基于模糊控制系统的单级倒立摆

二.实验目的与要求:

倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。

本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。

本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。

同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具 Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。

三.实验步骤:

1.一级倒立摆系统模型的建立

在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可

将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下:

小车质量 M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

拉格朗日算子 L 是系统动能Ec 和势能Ep 之差,拉格朗日方程由拉格朗日算子L

和广义坐标qi ( i=1,2,3?n) 表示如下:

Fi 为系统沿该广义坐标方向上的外力,D 为由摩擦而消失的能,本系统中可认为D=0;本系统有两个广义坐标分别是x、θ。

整个系统(车+摆)移动时的动能:

其中 v 代表摆重心的速度矢量,重心位移为(x轴方向)(y轴方向)

于是:,

系统势能是摆重心的势能:

于是拉格朗日算子;

,

于是根据自由度q(t)=x(t) 的拉格朗日方程如下:

(1-1)

同理,可获得根据自由度q(t)=θ(t), 的拉格朗日方程如下:

因广义坐标θ方向上无外力作用,即

即拉格朗日方程为:(1-2)

由于倒立摆在平衡过程中摆角幅度很小,设竖直向上方向为θ=0 ,则在竖直方向附近摆角不大的范围内,可近似认为

于是(1-1)、(1-2)式可线性化为:

整理成状态空间方程形式,可得

(其中取u=F)(1-3)

实际系统的参数为:M=1Kg, m=, l=, g≈10m/s2

2.一级倒立摆系统性能分析

单级倒立摆系统的的开环特征根用 matlab 的p=eig(A) 语句计算得

{0 0 }

这说明开环系统有一个极点在∣S∣平面右半平面,有两个极点在原点,因此系统是不稳定的。

根据线性系统理论系统{A,B,C,D}能控,满秩,即rankQ0=k,在matlab 里可以编辑m文件,求解系统的能控阵、能观阵,求它们的秩,从而判断系统的能控性、能观性。对于(3)式所表示的系统求得所以系统开环虽不稳定,但状态完全能控,这为实现倒立摆的稳定控制提供了理论依据。

计算一级倒立摆线性动态方程开环特征根、能控性矩阵过程作为实验结果1。

3.状态反馈和极点配置法

设控制对象状态方程为:

控制系统的各种特性以及其各种品质指标很大程度上由其闭环系统的零点和极点的位置决定。极点配置法的控制原理就是设计状态反馈律中的K矩阵,使反馈闭环后的系统:

具有所需要的极点配置。

即闭环特征方程:

为所期望的极点。

下面给出Gura-Bass 算法的步骤:

1判断Σ(A,B)的完全可控性。确定能否完成预定的闭环极点配置综合目标。

2由给定的动态指标或闭环极点要求确定闭环特征多项式的n个系数βi。

3确定开环系统的特征多项式。

4求变换阵L=

能控阵Q=

5状态反馈阵 K 由下式求出

采用状态反馈方法使系统稳定并配置极点,

带入系统的物理参数 M=1Kg, m=, l=, g≈10m/s2

得到系统矩阵 A 和输入矩阵B 为

由上面分析可知,倒立摆系统有在复平面右半平面的特征根,所以该系统是不稳定的。也就是说,u=0 时,倒立摆系统是不稳定的系统;同时也意味着当x 非零时,总存在将x 转移至零的控制作用,亦即系统的状态是能控的。根据线性系统理论,不稳定的系统应用状态反馈,可使反馈后的系统的特征根,即矩阵(A-BK)的特征值,位于复平面的左半平面,从而使闭环系统稳定。亦即可使摆杆垂直且使小车处于基准位置,达到稳定状态;完全能控的系统可以通过对状态反馈矩阵的适当选择,使系统的极点按性能指标得到任意期望的配置。

对于上述倒立摆系统根据Gura-Bass 算法配置其闭环极点,使其阶跃响应满足:过渡过程时间ts,超调量σ% %<5%。首先要将期望的性能指标转化为复平面上极点的位置。其思路就是根据经验公式和性能指标确定一对主导闭环极点,然后将非主导极点放在复平面上远离主导极点的地方。根据系统的动态指标超调量σ%<5%,过渡过程时间t s<3s,以及二阶系统极点与动态指标的关系:

可以求得期望的系统闭环主导极点为:p1=-2+2i,p2=-2-2i,因为原系统是四阶的,所以选取另外两个非主导极点为-20 和-80。此程序作为实验结果2。

4.一级倒立摆系统的最优控制器设计

倒立摆系统是一个单输入双输出系统,被控系统的输入量是施加在小车上的力或小车的加速度,输出量是摆杆的角度和小车的位移。最优控制信号虽然实际上也是一个状态反馈信号,但是在性能指标J 最小的意义下求得的,与极点配置法的状态反馈不一样。

下面用Matlab 中的lqr 函数,求最优控制器对应的K。lqr 函数允许我们选择两个参数—— R 和Q,这两个参数用来平衡系统对输入量和状态量的敏感程度。最简单的情况是假设R=1 ,Q 为单位矩阵。当然,也可以通过改变Q 矩阵中的非零元素来调节控制器以得到期望的响应。

5.一级倒立摆的模糊控制器仿真设计

设定系统的初始状态为:下(相当于摆的初始倾斜角度为,车和摆的速度为0,小车的

位置在x=0 处)

为使摆不取决于小车的位置x而处于垂直位置,可以在零设定点调节角位置θ(t)。因此模糊控制器呈现两个输入θ和,以及反馈力输出F,相应的Simulink 模型见图5-1所示。目标信号见图5-2,扰动信号见图5-3。

5-25-3

倒立摆模糊控制Simulink模型:

5-1

所建立的模糊推理系统:

输入θ的隶属函数:

输入的隶属函数:

输出f 的隶属函数:

对小车位移和摆角正方向的定义,建立如下的模糊规则:

5.模糊控制器初始化,先新建空白页,运行,再在Command window输入fuzzy,导入,然后在Command window输入,Test = readfis(''再仿真。

四.实验结果:

实验结果1:

从图中可以看出,小车位置以及摆杆角度都是发散的,开环系统不稳定。

实验结果2:

从图中可以看出,系统的快速性很好,过渡过程时间不超过3 秒,并且响应过程中只振荡了一次,超调量也非常小,基本满足最初的设计要求

实验结果3:

注;黄色为角度,红色为角速度。

从图中看出,系统的输出角度曲线可以跟踪目标信号,抗干扰性也比较好。

模糊控制系统的发展现状

模糊控制系统的发展现状 一、模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年美国的扎德创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理。1974 年英国的Mamdani首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生。 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域。从信息技术的观点来看, 模糊控制是一种基于规则的专家系统。从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器。 相对传统控制, 包括经典控制理论与现代控制理论。模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型,应用CRI等各类模糊推理方法,可以得到适合控制要求的控制量, 可以说模糊控制是一种语言变量的控制。

模糊控制具有以下特点: (1) 模糊控制是一种基于规则的控制。它直接采用语言型控制规则, 出发点是现场操作人员的控制经验或相关专家的知识, 在设计中不需要建立被控对象的精确数学模型, 因而使得控制机理和策略易于接受与理解, 设计简单, 便于应用; (2) 由工业过程的定性认识出发, 比较容易建立语言控制规则, 因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用; (3) 基于模型的控制算法及系统设计方法, 由于出发点和性能指标的不同, 容易导致较大差异; 但一个系统的语言控制规则却具有相对的独立性, 利用这些控制规律间的模糊连接, 容易找到折中的选择, 使控制效果优于常规控制器; (4) 模糊控制算法是基于启发性的知识及语言决策规则设计的, 这有利于模拟人工控制的过程和方法, 增强控制系统的适应能力, 使之具有一定的智能水平; (5) 模糊控制系统的鲁棒性强, 干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 除此, 模糊控制还有比较突出的两个优点: 第一, 模糊控制在许多应用中可以有效且便捷地实现人的控制策略和经验; 第二, 模糊控制可以不需被控对象的数学模型即可实现较好的控制,

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

一种基于双精度搜索算法的变论域模糊控制

Computer Engineering and Applications 计算机工程与应用 2015,51(19)1引言相对于传统控制方式,模糊控制(FC )凭借其不需对象模型、鲁棒性强、实时性好等优点广泛用于非线性、时变滞后系统中。然而模糊控制器实质上是插值器,插值精度与模糊规则数量紧密相关,提高精度必然以扩大规模为代价,导致其控制精度存在一定局限性[1]。变论 域模糊控制器(VUFC )不仅可以综合专家知识,而且在不增加规则数量的情况下,论域随误差变小而收缩并随误差增大而扩展,从一定程度上解决了控制精度和控制复杂度的矛盾[2]。理论上分析,VUFC 的决策速度与精一种基于双精度搜索算法的变论域模糊控制 刘培奇,田洋,孙阳阳 LIU Peiqi,TIAN Yang,SUN Yangyang 西安建筑科技大学信息与控制工程学院,西安710055 College of Information &Control Engineering,Xi ’an University of Architecture &Technology,Xi ’an 710055,China LIU Peiqi,TIAN Yang,SUN Yangyang.Variable universe fuzzy control based on double precision search https://www.360docs.net/doc/6813203754.html,puter Engineering and Applications,2015,51(19):260-264. Abstract :Aiming at the low accuracy and poor adaptation of variable universe fuzzy control,and when the control function is inherited to the offspring,there usually exists some distortion which lead to the error of the algorithms.A variable-universe fuzzy control method based on double precision search algorithm is put forward.With the global optimal solution of basic gravitational search algorithm,sequential quadratic programming is employed as a local search method to avoid being trapped into local optimum.This paper presents a double precision search algorithm with “global-local ”dual search mech-anism.Then the method adjusts the universe by the contraction-expansion factor and geometric proportional factors based on variable universe fuzzy control,and optimizes the parameters through double precision search algorithms to reduce the distortion of control function in the control process and improves the control https://www.360docs.net/doc/6813203754.html,parative experiments show that the stability of DPSA is prominent in the parameter optimization.The controller results in desirable convergence speed.The accuracy and effect are even better than those of other control ways. Key words :variable universe fuzzy control;double-precision search algorithm;contraction-expansion factor;geometric proportional factors 摘要:针对定式变论域模糊控制精度不高,自适应能力有限,控制函数在遗传到后代时存在畸变而造成算法本身误差等问题,设计了一种基于双精度搜索算法的变论域模糊控制器。在基本万有引力算法全局搜索的同时,采用序列二次规划进行局部搜索避免算法陷入局部最优,提出具有“全局-局部”双重搜索机制的双精度搜索算法。在变论域模糊控制基础上提出了一种利用伸缩因子、等比因子相互协调来调整论域的构想,且通过双精度搜索算法来寻优参数,降低控制过程中的函数畸变,从而进一步改善控制器性能。对比实验表明DPSA 在参数寻优中稳定性突出,控制器不但收敛速度快,且与其他控制方式相比,其精度和效果都有所提高。 关键词:变论域模糊控制;双精度搜索算法;伸缩因子;等比因子 文献标志码:A 中图分类号:TP273doi :10.3778/j.issn.1002-8331.1309-0211 基金项目:国家自然科学基金(No.51178373);陕西省教育厅自然科学计划项目(No.12JK0743)。 作者简介:刘培奇(1959—),男,博士,副教授,硕导,研究领域为人工智能,数据挖掘,计算机网络应用;田洋(1987—),女,硕士研 究生,研究领域为智能控制;孙阳阳(1987—),男,硕士研究生,研究领域为智能控制,先进控制在工业控制中的应用。E-mail :peiqiliu@https://www.360docs.net/doc/6813203754.html, 收稿日期:2013-09-16修回日期:2014-01-16文章编号:1002-8331(2015)19-0260-05 CNKI 网络优先出版:2014-02-24,https://www.360docs.net/doc/6813203754.html,/kcms/doi/10.3778/j.issn.1002-8331.1309-0211.html 260

模糊控制详细讲解实例之欧阳歌谷创作

一、速度控制算法: 欧阳歌谷(2021.02.01) 首先定义速度偏差-50 km/h≤e(k)≤50km/h,-20≤ec(i)=e(k)-e(k-1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>-eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

模糊控制规则表生成程序

模糊控制规则表生成程序 %偏差E的赋值表 E=[1.0 0.8 0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.8 1.0]; %偏差变换率EC的赋值表 Ec=[1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0]; %输出U的赋值表 u=[1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师___________ 日期20门年9月20日 在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)

的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意头重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: ⑴模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点 是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 ⑵由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控 制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

⑶基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同, 容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 ⑷模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人 工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 ⑸模糊控制系统的鲁棒性強,干扰和参数变化对控制效果的影响被大大减 弱,尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值之间的差值e及其变化率仝,输出变量为电机的电压变化量u。图2为电机调试输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 OOOr / s时,电机能很快稳定运行于2 OOOr / s;当设定转速下降到1 OOOr / s时,转速又很快下降到1 OOOr / s稳定运 行。

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

模糊控制程序实例学习资料

5.2.2.6 模糊控制器设计实例 1、单输入模糊控制器的设计 【例5.12】已知某汽温控制系统结构如图5.10所示,采用喷水减温进行控制。设计单输入模糊控制器,观察定值扰动和内部扰动的控制效果。 R = 图5.10 单回路模糊控制系统 按表5-2确定模糊变量E 、U 的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main.m 所示,仿真结果如图5.11所示。 设温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,选择e 、u 的等级量论域为 {3,2,1,0,1,2,3}E U ==---+++ 量化因子2) 5.1(5.13 2=--?= K 。 选择模糊词集为{NB,NS,ZO,PS,PB },根据人的控制经验,确定等级量E ,U 的隶属函数曲线如图5-8 所示。根据隶属函数曲线可以得到模糊变量E 、U 的赋值表如表5-3所示。 图5-8 E ,U 的隶属函数曲线 -3 -2 -1 1 2 3

依据人手动控制的一般经验,可以总结出一些控制规则,例如: 若误差E 为O ,说明温度接近希望值,喷水阀保持不动; 若误差E 为正,说明温度低于希望值,应该减少喷水; 若误差E 为负,说明温度高于希望值,应该增加喷水。 若采用数学符号描述,可总结如下模糊控制规则: 若E 负大,则U 正大; 若E 负小,则U 正小; 若E 为零,则U 为零; 若E 正小,则U 负小; 若E 正大,则U 负大。 写成模糊推理句: if E=NB then U=PB if E=NS then U=PS if E=ZO then U=ZO if E=PS then U=NS if E=PB then U=NB 由上述的控制规则可得到模糊控制规则表,如表5-4所示。 表5-4 模糊控制规则表 模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域E 到控制量论域U 的模糊关系R 。 按着上述控制规则,可以得到该温度偏差与喷水阀门开度之间的模糊关系R : ()()()()() E U E U E U E U E U R E U NB PB NS PS ZO ZO PS NS PB NB - - =?=?????U U U U 计算模糊关系矩阵R 的子程序如F_Relation_1.m 所示。 %模糊关系计算子程序F_Relation_1.c function [R,mfe,mfu,ne,nu,Me]=F_Relation_1 %#############################输入模糊变量赋值表(表5-3)############################ ne=7;%等级量e 的个数 nu=7;%等级量u 的个数 Me=[0 0 0 0 0 0.5 1;0 0 0 0 1 0.5 0;0 0 0.5 1 0.5 0 0; 0 0.5 1 0 0 0 0;1 0.5 0 0 0 0 0]; Mu=Me; %##定义模糊变量及其语言值 1=PB,2=PS,3=O,4=NS,5=NB ,并输入模糊控制规则表(表5-4)## mfc=5;%模糊变量E 的语言值个数,控制规则表列数

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力 模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。 因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots 和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

模糊控制算法c程序

由于项目需要,需要模糊控制算法,之前此类知识为0,经过半个多月的研究,终于有的小进展。开始想从强大的互联网上搜点c代码来研究下,结果搜遍所有搜索引擎都搜不到,以下本人从修改的模糊控制代码,经过自己修改后可在,运行!输入e表示输出误差,ec表示误差变化率,经过测试具有很好的控制效果,对于非线性系统和数学模型难以建立的系统来说有更好的控制效果!现将其公开供大家学习研究! #include <> #include"" #define PMAX 100 #define PMIN -100 #define DMAX 100 #define DMIN -100 #define FMAX 100 /*语言值的满幅值*/ int PFF[4]={0,12,24,48}; /*输入量D语言值特征点*/ int DFF[4]={0,16,32,64}; /*输出量U语言值特征点*/ int UFF[7]={0,15,30,45,60,75,90}; /*采用了调整因子的规则表,大误差时偏重误差,小误差时偏重误差变化*/ /*a0=,a1=,a2=,a3= */ int rule[7][7]={ //误差变化率 -3,-2,-1, 0, 1, 2, 3 // 误差 {-6,-6,-6,-5,-5,-5,-4,}, // -3 {-5,-4,-4,-3,-2,-2,-1,}, // -2 {-4,-3,-2,-1, 0, 1, 2,}, // -1 {-4,-3,-1, 0, 1, 3, 4,}, // 0 {-2,-1, 0, 1, 2, 3, 4,}, // 1 { 1, 2, 2, 3, 4, 4, 5,}, // 2 { 4, 5, 5, 5, 6, 6, 6}}; // 3 /**********************************************************/ int Fuzzy(int P,int D) /*模糊运算引擎*/ { int U; /*偏差,偏差微分以及输出值的精确量*/ unsigned int PF[2],DF[2],UF[4]; /*偏差,偏差微分以及输出值的隶属度*/ int Pn,Dn,Un[4]; long temp1,temp2; /*隶属度的确定*/ /*根据PD的指定语言值获得有效隶属度*/

发展战略-模糊逻辑与模糊控制技术的发展 精品

模糊逻辑与模糊控制技术的发展 宁廷群1 肖英辉1任惠英2 (1山东科技大学机电学院山东青岛 266510 2山东兖矿集团机械制修厂山东邹城 273500)The Development of Fuzzy Logic and Fuzzy Control Technology 摘要:针对现代工业控制领域的模糊控制技术的新发展,综合介绍了当代该领域的基本理论和发展现状,展望了未来的发展应用。 关键词:模糊控制;应用发展;自适应控制。 Abstract: This paper introduces the development of fuzzy logic and fuzzy control technology in modern control domain, and discusses the basic theory and main development in integration. At last it gives some prospects. Key words: fuzzy control, development and application, adaptive control 一、引言 在现代工业控制领域,伴随着计算机技术的突飞猛进,出现了智能控制的新趋势,即以机器模拟人类思维模式,采用推理、演绎和归纳等手段,进行生产控制,这就是人工智能。其中专家系统、模糊逻辑和神经网络是人工智能的几个重点研究热点。相对于专家系统,模糊逻辑属于计算数学的范畴,包含有遗传算法,混沌理论及线性理论等内容,它综合了操作人员的实践经验,具有设计简单,易于应用、抗干扰能力强、反应速度快、便于控制和自适应能力强等优点。近年来,在过程控制、建摸、估计、辩识、诊断、股市预测、农业生产和军事科学等领域得到了广泛应用。为深入开展模糊控制技术的研究应用,本文综合介绍了模糊控制技术的基本理论和发展状况,并对一些在电力电子领域的应用作了简单介绍。 二、模糊逻辑与模糊控制 1、模糊逻辑与模糊控制的概念 1965年,加州大学伯克利分校的计算机专家Lofty Zadeh提出“模糊逻辑”的概念,其根本在于区分布尔逻辑或清晰逻辑,用来定义那些含混不清,无法量化或精确化的问题,对于冯˙诺依曼开创的基于“真-假”推理机制,以及因此开创的电子电路和集成电路的布尔算法,模糊逻辑填补了特殊事物在取样分析方面的空白。在模糊逻辑为基础的模糊集合理论中,某特定事物具有特色集的隶属度,他可以在“是”和“非”之间的范围内取任何值。而模糊逻辑是合理的量化数学理论,是以数学基础为为根本去处理这些非统计不确定的不精确信息。 模糊控制是基于模糊逻辑描述的一个过程的控制算法。对于参数精确已知的数学模型,我们可以用Berd图或者Nyquist图来分析家其过程以获得精确的设计参数。而对一些复杂系统,如粒子反应,气象预报等设备,建立一个合理而精确的数学模型是非常困难的,对于电力传动中的变速矢量控制问题,尽管可以通过测量得知其模型,但对于多变量的且非线性变化,起精确控制也是非常困难的。而模糊控制技术仅依据与操作者的实践经验和直观推断,也依靠设计人员和研发人员的经验和知识积累,它不需要建立设备模型,因此基本上是自适应的,具有很强的鲁棒性。历经多年发展,已有许多成功应用模糊控制理论的案例,如Rutherford,Carter 和Ostergaard分别应用与冶金炉和热交换器的控制装置。 2、分析方法探讨 工业控制系统的稳定性是探讨问题的前提,由于难以对非线性和不统一的描述,做出判断,因此模糊控制系统的分析方法的稳定性分析一直是一个热点,综合近年来各位学者的发表的论文,目前系统稳定性分析有以下集中: 1、李普亚诺夫法:基于直接法的离散时间(D-T)和连续时间模糊控制的稳定性分析和设计方法,相对而言起稳定条件比价保守.

模糊控制程序设计报告

模糊控制程序设计报告 自研112班 麻世博 2201100387 题目:已知被控对象为0.51()101 s G s e s ?=+。假设系统给定为阶跃值r =30,采样时间为0.5s ,系统的初始值r(0)=0。试分别设计: (1)常规的PID 控制器; (2)常规的模糊控制器; 分别对上述2种控制器进行Matlab 仿真,并比较控制效果 解答: 1 常规PID 控制器的设计与SIMULINK 仿真 如图1所示,使用SIMULINK 工具对已知系统的PID 控制系统进行仿真。 图1 PID 控制系统的SIMULIK 仿真 其中PID 控制器为离散型,采样时间T=0.5s ,参数P=14,I=3,D=0。阶跃信号幅值为30,被控对象传递函数为0.51()101 s G s e s ?=+。 该系统的阶跃响应如图2。

图2 PID控制系统的输出 该控制系统上升时间T r=1.5s,调节时间T s=8s,超调量σ%=70%,没有稳态误差。 该系统中PID控制器的输出曲线如图3。 图3 PID控制器的输出曲线 输出最大值为465,最小值为-208。 2 模糊控制器的设计 在本文中,我通过MATLAB提供的模糊逻辑工具箱(Fuzzy Logic Toolbox)编辑隶属函数、控制规则,设计了一个双输入单输出的模糊控制器,如下图所示。

图4 模糊控制器概览 2.1 隶属度函数的确立。 选择偏差E和偏差变化率EC作为控制器的输入,控制量U为输出。取E、EC和U的模糊子集为{NB, NM, NS, ZO, PS, PM, PL} ,它们的论域为{-3, -2, -1, 0, 1, 2, 3}。在 MATLAB的命令窗口输入命令Fuzzy,进入模糊逻辑编辑窗口。取输入量E、EC的隶属函数为高斯型(gaussmf),输出U的隶属函数为三角形(trimf),如下图所示。 图5 输入模糊变量E的隶属度函数

智能控制技术现状与发展

摘要:在此我综述智能控制技术的现状及发展,首先简述智能控制的性能特点及主要方法;然后介绍智能控制在各行各业中的应用现状;接着论述智能控制的发展。智能控制技术的主要方法,介绍了智能控制在各行各业中的应用。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 关键词:智能控制应用自动化 浅谈智能控制技术现状及发展 在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。 一、智能控制的性能特点及主要方法 1.1根据智能控制的基本控制对象的开放性,复杂性,不确定性的特点,一个理想的智能控制系统具有如下性能: (1)系统对一个未知环境提供的信息进行识别、记忆、学习,并利用 积累的经验进一步改善自身性能的能力,即在经历某种变化后,变化后的

离散论域模糊控制表的离线计算

离散论域模糊控制表的离线计算 一、题目 已知单变量两维输入,一维输出模糊控制器,其两维输入为E,EC,一维输出为I,论域均为E,EC,I∈{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6},E的论域划分为{NB,NM,NS,NZ,PZ,PS,PM,PB},共8个模糊子集,其各自的隶属度函数如表1所示。EC和I的论域划分为{NB,NM,NS,ZE,PS,PM,PB},共7个模糊子集,它们的隶属度函数都如表2所示。已知控制规则表如表3所示,试求解输出控制表(如当e=-6,ec=-6时,求输出i=?,最终输出的控制表格式如如表4所示)。其中输入采用单点模糊法,输出清晰量采用加权平均法进行解模糊,可以用MATLAB编程计算。 各变量的隶属度函数以及控制规则表如下: 表3 控制规则表

二、基本原理 这是一个二输入、单输出的模糊控制器的设计,主要包括输入模糊化、模糊推理、解模糊等基本过程,现在叙述如下: 1、输入模糊化 在本实验实际过程中采用单点模糊集合的方法实现输入的模糊化,例如e 为离散论域E={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6},则x *=,0的输入模糊集合可表示为: 00000010000006543210123456 A = ++++++++++++------ 2、模糊推理 设某一时刻偏差为e *,偏差变化量为ec *,则可根据由各条规则给出的模糊蕴含关系进行合成推理运算,得到相应的输出控制量的模糊值: * * * **1 1 1 **1 (){()}{()[()]} {[()][()]} m n m n m n l l l l l l l l m n l l l l l U e and ec R e and ec R e and ec A and B C e A C ec B C ???* ===?====→=→→ 其中,m 和n 分别表示e 和ec 的论域所划分的模糊自己的个数,在本实验中,m=8,n=7,对应着本题目中规定的56条控制规则。控制器设计的核心就是对上式进行编程。 3、解模糊 本实验采用加权平均的方式解模糊,其精确值的计算公式如下: 101 ()n i i i n i i z k z df z k ==== ∑∑ 三、实验程序: 实验最终采用的程序如文件program 中fuc1.m 所示,fuc1_1.m 和fuc1_2.m 为了说明程序优化使用。就本题目而言,三个程序都可以解决问题。Maxmin.m 是最大最小合成函数,供fuc1_1.m 运行时调用。各个excel 表格说明如下:Input1_Terms_Membership.xlsx 、Input2_Terms_Membership.xlsx 、Output_Terms_Membership.xlsx 分别为两个输入变量以及输出变量的隶属度函数表,用于在MA TLAB 执行程序的时候读入,Output_Result.xlsx 为程序运行结果。 本实验采用的程序如下:

模糊控制算法的研究

模糊控制算法的研究 0842812128夏中宇 模糊控制概述 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 模糊控制概况 模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh 创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。 模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 模糊控制的基本理论 所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。 1.知识库

相关文档
最新文档