机器学习中的特征选择

机器学习中的特征选择
机器学习中的特征选择

机器视觉系统——光源篇

机器视觉——光源篇收藏 一、为什么要使用光源 ?目的 将被测物体与背景尽量明显分别,获得高品质、高对比度的图像?地位 机器视觉三大技术(采像技术,处理技术,运动控制技术)之一?重要性 直接影响系统的成败,处理精度和速度 二、光源的种类 ?理想的光源应该是明亮,均匀,稳定的 ?视觉系统使用的光源主要有三种 高频荧光灯 光纤卤素灯 LED(发光二极管)照明 ?高频荧光灯 使用寿命约1500-3000小时 优点:扩散性好、适合大面积均匀照射 缺点:响应速度慢,亮度较暗 ?光纤卤素灯 使用寿命约1000小时 优点:亮度高 缺点:响应速度慢,几乎没有光亮度和色温的变化 ?LED灯

使用寿命约10000-30000小时 可以使用多个LED达到高亮度,同时可组合不同的形状 响应速度快,波长可以根据用途选择 三、LED光源的优势 ?可制成各种形状、尺寸及各种照射角度; ?可根据需要制成各种颜色,并可以随时调节亮度; ?通过散热装置,散热效果更好,光亮度更稳定; ?使用寿命长(约3万小时,间断使用寿命更长); ?反应快捷,可在10微秒或更短的时间内达到最大亮度; ?电源带有外触发,可以通过计算机控制,起动速度快,可以用作频闪灯;?运行成本低、寿命长的LED,会在综合成本和性能方面体现出更大的优势;?可根据客户的需要,进行特殊设计。 四、LED光源的颜色 ?主要颜色 红色 蓝色 绿色 白色 ?其他颜色 橙色 红外 紫外 五、照明技术的基础知识 1、照射光的种类

(1)直射光 主要来自于一个方向的光,可以在亮色和暗色阴影之间产生相对高的对比度图像。 (2)漫射光(扩散光) 各种角度的光源混合在一起的光。日常的生活用光几乎都是扩散光。 (3)偏振光 在垂直于传播方向的平面内,光矢量只沿某一个固定方向振动的光。通常是利用偏光板(片)来防止特定方向的反射。 (4)平行光 照射角度一致的光。太阳光就是平行光。发光角度越窄的LED直射光越接近平行光。 对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景。 2、六种照明技术 通用照明,背光,同轴(共轴),连续漫反射,暗域及结构光。(1)一般目的的照明 通用照明一般采用环状或点状照明。环灯是一种常用的通用照明方式,其很容易安装在镜头上,可给漫反射表面提供足够的照明。 (2)背光照明: 背光照明是将光源放置在相对于摄像头的物体的背面。这种照明方式与别的照明方式有很大不同因为图像分析的不是发水光而是入射光。背光照明产生了很强的对比度。应用背光技术时候,物体表面特征可能会丢失。例如,可以应用背光技术测量硬币的直径,但是却无法判断硬币的正反面。 (3)同轴照明: 同轴照明是与摄像头的轴向有相同的方向的光照射到物体的表面。同轴照明使用一种特殊的半反射镜面反射光源到摄像头的透镜轴方向。半反射镜面只让从物体表面反射垂直于透镜的光源通过。同轴照明技术对于实现扁平物体且有镜面特征的表面的均匀照明很有用。此外此技术还可以实现使表面角度变化部分高亮,因为不垂直于摄像头镜头的表面反射的光不会进入镜头,从而造成表面较暗。连续漫反射照明:连续漫反射照明应用于物体表面的反射性或者表面有复杂的角度。连续漫反射照明应用半球形的均匀照明,以减小影子及镜面反射。这种照明方式对于完全组装的电路板照明非常有用。这种光源可以达到170立体角范围的均匀照明。 (4)暗域照明: 暗域照明是相对于物体表面提供低角度照明。使用相机拍摄镜子使其在其视野内,如果在视野内能看见光源就认为使亮域照明,相反的在视野中看不到光源就是暗域照明。因此光源是亮域照明还是暗域照明与光源的位置有关。典型的,暗域照明应用于对表面部分有突起的部分的照明或表面纹理变化的照明。 (5)结构光:结构光是一种投影在物体表面的有一定几何形状的光(如线形、圆形、正方形)。典型的结构光涉及激光或光纤。结构光可以用来测量相机到光源的距离。多轴照明:在许多应用中,为了使视野下不同的特征表现不同的对比度,需要多重照明技术。

机器视觉光源的选择

机器视觉光源选择 一、机器视觉光源分类 OPT机器视觉光源共有25大系列 1、环形光源(OPT-RI系列) 特点:环形光源提供不同角度照射,能突出物体的三维信息,有效解决对角照射阴影问题。高密度LED阵列,高亮度;多种紧凑设计,节省安装空间;可选配漫射板导光,光线均匀扩散。 使用:PCB基板检测;IC元件检测;显微镜照明;液晶校正;塑胶容器检测;集成电路印字检测;通用外观检测。 2、条形光源(OPT-LI系列) 特点:条形光源是较大方形结构被测物的首选光源;颜色可根据需求搭配,自由组合;照射角度和安装随意可调。 使用:金属、玻璃等表面检查;表面裂缝检测;LCD面板检测;线阵相机照明;图像扫描。 3、高均匀条形光源(OPT-LIT系列) 特点:高密度贴片LED,高亮度,高散射漫射板,均匀性好;良好的散热设计确保产品稳定性和寿命;安装简单、角度随意可调;尺寸设计灵活;颜色多样可选,可定制多色混合、多类型排布非标产品。 使用:电子元件识别和检测;服装纺织;印刷品质量检测;家用电器外壳检测;圆柱体表面缺陷检测;食品包装检测;灯箱照明;替代荧光灯。 4、条形组合光源(OPT-LIM系列) 特点:四边配置条形光,每边照明独立可控;可根据被测物要求调整所需照明角度,适用性广。 使用:PCB基板检测,IC元件检测;显微镜照明,包装条码照明;二次元影像测量。 5、同轴光源(OPT-CO系列) 特点:高密度排列LED,亮度大幅提高;独特的散热结构,延长寿命,提高稳定性;高级镀膜分光镜,减少光损失;成像清晰,亮度均匀。 使用:此系列光源最适宜用于反射度极高的物体,如金属、玻璃、胶片、晶片等表面的划伤检测;芯片和硅晶片的破损检测,Mark点定位;包装条码识别。 6、底部背光源(OPT-FL系列) 特点:用高密度LED阵列面提供高强度背光照明,能突出物体的外形轮廓特征,尤其适合作为显微镜的载物台;红白两用背光源、红蓝多用背光源,能调配出不同的颜色,满足不同被测物多色要求。 使用:机械零件尺寸的测量;电子元件、IC的引脚、端子连接器检测;胶片污点检测;透明物体划痕检测等。

机器视觉入门知识详解

机器视觉入门知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 啤酒厂采用的填充液位检测系统为例来进行说明: 当每个啤酒瓶移动经过检测传感器时,检测传感器将会触发视觉系统发出频闪光,拍下啤酒瓶的照片。采集到啤酒瓶的图像并将图像保存到内存后,视觉软件将会处理或分析该图像,并根据啤酒瓶的实际填充液位发出通过-未通过响应。如果视觉系统检测到一个啤酒瓶未填充到位,即未通过检测,视觉系统将会向转向器发出信号,将该啤酒瓶从生产线上剔除。操作员可以在显示屏上查看被剔除的啤酒 瓶和持续的流程统计数据。

机器人视觉引导玩偶定位应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 视觉检测在电子元件的应用:

工业相机,镜头,光源讲解(机械手CCD)

机器视觉(相机、镜头、光源)全面概括 1.1.1视觉系统原理描述 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 2.1.1视觉系统组成部分 视觉系统主要由以下部分组成 1.照明光源 2.镜头 3.工业摄像机 4.图像采集/处理卡 5.图像处理系统 6.其它外部设备 2.1.1.1相机篇 详细介绍: 工业相机又俗称摄像机,相比于传统的民用相机(摄像机)而言,它具有高的图像稳定性、高传输能力和高抗干扰能力等,目前市面上工业相机大多是基于CCD(Charge Coupled Device)或CMOS(Complementary Metal Oxide Semiconductor)芯片的相机。CCD是目前机器视觉最为常用的图像传感器。它集光电转换及电荷存贮、电荷转移、信号读取于一体,是典型的固体成像器件。CCD的突出特点是以电荷作为信号,而不同于其它器件是以电流或者电压为信号。这类成像器件通过光电转换形成电荷包,而后在驱动脉冲的作用下转移、放大输出图像信号。典型的CCD相机由光学镜头、时序及同步信号发生器、垂直驱动器、模拟/数字信号处理电路组成。CCD作为一种功能器件,与真空管相比,具有无灼伤、无滞后、低电压工作、低功耗等优点。CMOS图像传感器的开发最早出现在20世纪70 年代初,90 年代初期,随着超大规模集成电路(VLSI) 制造工艺技术的发展,CMOS 图像传感器得到迅速发展。CMOS图像传感器将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部像素的编程随机访问的优点。目前,CMOS图像传感器以其良好的集成性、低功耗、高速传输和宽动态范围等特点在高分辨率和高速场合得到了广泛的应用。、 分类:

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

机器视觉照明光源技术要点分析

机器视觉照明光源技术要点分析 摘要:目前,机器视觉技术已经广泛应用在各种领域。照明光源在机器视觉系统中非常关键,它直接关系着原始图像的质量,进而影响机器视觉系统的整体处理效果。基于此,本文首先介绍了机器视觉照明光源系统的发展现状,接着介绍了其照明光源,然后研究了机器视觉照明技术,最后展望了LED照明光源技术。 关键词:机器视觉;照明;光源;要点 机器视觉系统通过相机及摄像机等进行目标图像信号的采集,并利用图像处理软件处理目标图像信号,通过计算机实现对目标的跟踪、检测、识别及判断,最终检测出产品缺陷。在机器视觉系统中,程序算法和图像质量会影响其质量和处理速度,其中图像质量主要由摆放物体的位置、目标表面情况及光源来决定。优质的光源可以将目标突出,有助于计算机对高质量图像的分析和处理。所以,照明光源技术直接影响着机器视觉系统的正常运行。 1介绍机器视觉光源技术的发展 自上世纪中期,人们提出了机器视觉概念,但是直至1985年,随着图像处理技术的发展,机器视觉技术才开始真正发展起来。进入21世纪后,随着机器视觉技术在各种设备及生产线中的广泛应用,一些厂商才逐渐意识到在生产效率和产品质量的提高方面,机器视觉检测技术的重要性,从而机器视觉技术开始迅速发展。当下,中国的机器视觉企业已达到300多家,机器视觉系统的专业集成商有60多家,涵盖了各种机器视觉相关产品。 近年来,人们逐渐认识到了在机器视觉系统中,照明光源的重要性,国内外已经涌现了一些专门进行机器视觉照明光源开发的企业。相较于我国,国外已经具有成熟的机器视觉照明光源技术,比如日本的CCS企业制作的LED光源已广泛应用于各个领域。美国的AI企业应用其先进的机器视觉照明光源技术,已经实现了对机器视觉系统的完善。他们的光源各有所长,日本的精致小巧,而美国的结实耐用。现在,我国的机器视觉光源代表制造商有上海纬朗与东莞康视达及OPT等,它们主要引入国外产品类型,并结合用户要求,开发部分专用产品。总之,目前机器视觉光源已经进入了快速发展阶段。 2 机器视觉照明光源 理想的光源应具有稳定、均匀、明亮的特点。但是光源种类繁多,可根据发光器件将其划分为LED灯、卤素灯、氙灯及荧光灯等。目前LED光源是发展导向。它具有体积小、功耗低、发光效率高、发光稳定、寿命长、响应速度快及易形成各种形状的光源等优点。 LED光源是本世纪的第四代光源,逐渐替代了白炽灯和荧光灯等传统光源。LED借助其独特的优点,被广泛应用在景观照明、信号灯、显示屏及指示灯等各个领域,已经深入到人们的日常生活中。因为通过发光装置、硅和摄像机的光谱响应,获得的光谱范围中,红外区域是其最有效的能量转换区域,故大部分固态相机都选择响应光谱中的近红外区域,所以,红外LED光源能用作其照明光源。最近,人们正在深入研究半导体发光材料,不断开发和应用新材料,及完善LED制造工艺,研发出了颜色种类繁多、超亮的LED光源,其发光效果增强了约一千多倍,而且能显示出所有的颜色种类,而最关键的是这种超亮的白光LED,使LED应用领域有可能跨越到高效照明光源行业。 3 研究机器视觉照明光源技术 机器视觉照明旨在利用合适的光源,将光线射向被测物体,使背景和被测部分的对比突显出来。通过优质的照明,可以提高系统的整体分辨率,精简软件运算,使系统稳定性和精度得以提高;照明不适合时,则会出现许多问题,例如曝光过度、花点及眩光等,进而会造成许多重要信息被隐藏;阴影会导致边缘误检;均匀性不好、信噪比不高则会给图像阈值选择带来困难,降低系统稳定性等。

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

机器视觉系统中镜头的选用技巧

热点论坛 Column 专栏 29 2006年2月刊 自动化博览 Selection Technique of Lens in Machine Vision System 1 概述 光学镜头一般称为摄像镜头或摄影镜头,简称镜头,其功能就是光学成像。镜头是机器视觉系统中的重要组件,对成像质量有着关键性的作用,它对成像质量的几个最主要指标都有影响,包括:分辨率、对比度、景深及各种像差。镜头不仅种类繁多,而且质量差异也非常大,但一般用户在进行系统设计时往往对镜头的选择重视不够,导致不能得到理想的图像,甚至导致系统开发失败。本文的目的是通过对各种常见镜头的分类及主要参数介绍,总结各种因素之间的相互关系,使读者掌握机器视觉系统中镜头的选用技巧。 2 机器视觉系统中常用镜头的分类 (1) 根据有效像场的大小划分 把摄影镜头安装在一很大的伸缩暗箱前端,并在该暗箱后端安装一块很大的磨砂玻璃,当将镜头光圈开至最大,并对准无限远景物调焦时,在磨砂玻璃上呈现出的影像均位于一圆形面积内,而圆形外则漆黑、无影像。此有影像的圆形面积称为该镜头的最大像场。在这个最大像场范围的中心部位,有一能使无限远处的景物结成清晰影像的区域,这个区域称为清晰像场。照相机或摄影机的靶面一般都位于清晰像场之内,这一限定范围称为有效像场。由于视觉系统中所用的摄像机的靶面尺寸有各种型号,所以在选择镜头时一定要注意镜头的有效像场应该大于或等于摄像机的靶面尺寸,否则成像的边角部分会模糊甚至没有影像。 根据有效像场的大小分类见表1。 表1 分类 (2) 根据焦距分类 根据焦距能否调节,可分为定焦距镜头和变焦距镜头两大类。依据焦距的长短,定焦距镜头又可分为鱼眼镜头、短焦镜头、标准镜头、长焦镜头、超长焦五大类。需要注意的是焦距的长短划分并不是以焦距的绝对值为首要标准,而是以像角的大小为主要区分依据,所以当靶面的大小不等时,其标准镜头的焦距大小也不同。变焦镜头上都有变焦环,调节该环可以使镜头的焦距值在预定范围内灵活改变。变焦距镜头最长焦距值和最短焦距值的比值称为该镜头的变焦倍率。变焦镜头有可分为手动变焦和电动变焦两大类。 变焦镜头由于具有可连续改变焦距值的特点,在需要经常改变摄影视场的情况下非常方便使用,所以在摄影领域应用非常广泛。但由于变焦距镜头的透镜片数多、结构复杂,所以最大相对孔径不能做得太大,致使图像亮度较低、图像质量变差,同时在设计中也很难针对各种焦距、各种调焦距离做像差校正,所以其成像质量无法和同档次的定焦距镜头相比。 实际中常用的镜头的焦距是从4毫米到1000毫米的范围内有很多的等级,如何选择合适焦距的镜头是在机器视觉系统设计时要考虑的一个主要问题。光学镜头的成像规律可以根据两个基本成像公式即牛顿公式和高斯公式来推导,对于机器视觉系统的常见设计模型,一般是根据成像的放大率和物距这两个条件来选择合适焦距的镜头的,在此给出一组实用的计算公式: ? 放大率:m=h’/h=L’/L ;? 物距:L = f(1+1/m); 有效像场尺寸 3.2mm ×2.4mm (对角线4mm ) 4.8mm ×3.6mm (对角线6mm )6.4mm ×4.8mm (对角线8mm )8.8mm ×6.6mm (对角线11mm )12.8mm ×9.6mm (对角线16mm )21.95mm ×16mm (对角线27.16mm )10.05mm ×7.42mm (对角线12.49mm )36mm ×24mm 40mm ×40mm 80mm ×60mm 82mm ×56mm 240mm ×180mm 电视摄像镜头电影摄影镜头照相镜头 镜头类型 1/4英寸摄像镜头 1/3英寸摄像镜头1/2英寸摄像镜头2/3英寸摄像镜头1英寸摄像镜头 35mm 电影摄影镜头 16mm 电影摄影镜头135型摄影镜头127型摄影镜头120型摄影镜头中型摄影镜头大型摄影镜头 机器视觉系统 中镜头的选用技巧 王亚鹏(1972-) 男,河北安平人,现就职于中国大恒(集团)有限公司北京图像视觉技术分公司任副总工程师、开发部经理,研究方向为机器视觉、模式识别。 (中国大恒(集团)有限公司北京图像视觉技术分公司,北京 100080) 王亚鹏 机器视觉

机器视觉光源选型

机器视觉光源 在机器视觉系统中,获得一张高质量的可处理的图像是至关 重要。系统之所以成功,首先要保证图像质量好,特征明显。一个机器视觉项目之所以失败,大部分情况是由于图像质量。? 目的:将被测物体与背景尽量明显分别,获得高品质、高对比度的图?地位 :机器视觉三大技术(采像技术,处理技术,运动控制技术)之一 · 重要性:直接影响系统的成败,处理精度和速度 透明矿泉水瓶表面日期检测,通过打光使得原本不易区分的字符与背景区分开来,取得图像对比度。

色温波长照度灰度值 色温是按绝对黑体来定义的,绝对黑体的辐射和光源在可见区的辐射完全相同时,此时黑体的温度就称此光源的色温。低色温光源的特征是能量分布中,红辐射相对来说要多些,通常称为“暖光”;色温提高后,能量分布中,蓝辐射的比例增加,通常称为“冷光”。指波在一个振动周期 内传播的距离。也就 是沿着波的传播方向, 相邻两个振动位相相 差2π的点之间的距 离。波长λ等于波速V 和周期T的乘积,即λ =VT。同一频率的波 在不同介质中以不同 速度传播,所以波长 也不同。 光照强度是指单位面 积上所接受可见光的 能量,简称照度[1] , 单位勒克斯(Lux或 Lx)。为物理术语, 用于指示光照的强弱 和物体表面积被照明 程度的量。 指黑白图像中点的颜 色深度,范围一般从 0到255,白色为255, 黑色为0,故黑白图 片也称灰度图像,在 医学、图像识别领域 有很广泛的用途。 关键词基本概念

基本概念波长 VLight光源标准波长为: 红光:625nm 绿光:525nm 蓝光:425nm 紫外:375nm 红外:850nm/940nm

工业相机镜头的参数与选型

工业相机镜头的参数与选型

————————————————————————————————作者:————————————————————————————————日期: ?

工业相机镜头的参数与选型 一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /F1.4代表最大孔径为5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Le ica、M42x1、M75x0.75等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;

焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,?) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个

机器视觉光源打光技术

CCS打光培训 概念: 1、直射光:直接照射物体的光。直射光的特点是被照物体后面会产生影子。晴天太阳光为 直射光。 2、扩散光:各种角度的光混合在一起的光。扩散光照射被照物体不会产生阴影,如无影灯 灯光就为扩散光,阴天的太阳光经过云层反射也是扩散光。 3、平行光:光的照射方向一致,光线平行的光。 4、偏振光:所有的光的振幅平面皆为同一平面的光,叫做偏振光。 5、直反射(镜面反射): 6、漫反射: 7、明视场:直接反射光进镜头。并不是说视野里物体亮就是明视场,物体亮度都是相对的, 光源亮度高也会使暗视场的物理比较明亮。 8、暗视场:散射光进镜头。 光的穿透性和反射性:波长长的光(红外光)穿透性好;波长短的光反射性好。穿透塑料薄膜检查物体首选红外;观测玻璃上灰尘划痕首选紫外。 扩散比率:反射能力。扩散比率高的光穿透性差。 人眼看不到红外光和紫外光,但是相机能够测到红外和紫外;相机对红外和紫外的感光也是有限的,要参照相机的感光特性曲线;紫外照射有些物体可以发出荧光。 常用照明方式:明视场、暗视场、背光照明。 一般相机都是装在被测物正上方,所以当使用同轴光的时候,是明视场;使用低角度光的是暗视场。 测试物体轮廓尺寸多选背光照明方式。 光源颜色的选择: 1、用光的穿透性或扩散特性。 2、被测物是彩色:什么颜色的物体反射什么颜色的光,相机观察就是亮色(白色);吸收 其他颜色的光,相机观察就是暗色(黑色)。波长接近,吸收的少;波长相差大,吸收的多。 3、即使相同颜色的物体,由于材质不同,对光的反射特性也不同。短波长光照射不同材质 物体,反光率差异大;长波长光照射,反光率差异相对小。 偏光板和偏光滤镜: 作用:1、消除反光干扰: 利用原理:镜面反射中入射光为偏振光,反射光也是偏振光;漫反射中入射光是偏振光,反射光非偏振光。 例子:取玻璃窗中玩具的图像,视野里会有玻璃反射的光源影像,造成干扰。光源上装偏光板,镜头上装偏光滤镜。偏振光经玻璃反射仍为偏振光,利用偏光滤镜过滤掉这些偏振光即可消除光源影像干扰;玩具上为漫反射,总有一部分漫反射光到镜头里,即可成像。 缺点:亮度会被削减。 2、辨别材质:同一束偏振光经过不同材质折射,振幅面角度改变大小不同。这样再经过偏光板的过滤得到的图像亮度就不同(体现在相机上就是颜色不同),即可区分不同材

机器视觉光源的选择

机器视觉光源的选择 机器视觉光源选择 一、机器视觉光源分类 OPT机器视觉光源共有25大系列 1、环形光源(OPT-RI系列) 特点:环形光源提供不同角度照射,能突出物体的三维信息,有效解决对角照射阴影问题。高密度LED阵列,高亮度;多种紧凑设计,节省安装空间;可选配漫射板导光,光线均匀扩散。 应用:PCB基板检测;IC元件检测;显微镜照明;液晶校正;塑胶容器检测;集成电路印字检测;通用外观检测。 2、条形光源(OPT-LI系列) 特点:条形光源是较大方形结构被测物的首选光源;颜色可根据需求搭配,自由组合;照射角度与安装随意可调。 应用:金属、玻璃等表面检查;表面裂缝检测;LCD面板检测;线阵相机照明; 图像扫描。 3、高均匀条形光源(OPT-LIT系列) 特点:高密度贴片LED高亮度,高散射漫射板,均匀性好;良好的散热设计确保产品稳定性和寿命;安装简单、角度随意可调;尺寸设计灵活;颜色多样可选,可定制多色混合、多类型排布非标产品。 应用:电子元件识别与检测;服装纺织;印刷品质量检测;家用电器外壳检测;圆柱体表面缺陷检测;食品包装检测;灯箱照明;替代荧光灯。 4、条形组合光源(OPT-LIM系列) 特点:四边配置条形光,每边照明独立可控;可根据被测物要求调整所需照明角度,适用性广。

应用:PCB基板检测,IC元件检测;显微镜照明,包装条码照明;二次元影像测量。 5、同轴光源(OPT-CO系列) 特点:高密度排列LED亮度大幅提高;独特的散热结构,延长寿命,提高稳定性;高级镀膜分光镜,减少光损失;成像清晰,亮度均匀。 应用:此系列光源最适宜用于反射度极高的物体,如金属、玻璃、胶片、晶片等表面的划伤检测;芯片和硅晶片的破损检测,Mark点定位;包装条码识别。 6 底部背光源(OPT-FL系列) 特点:用高密度LED阵列面提供高强度背光照明,能突出物体的外形轮廓特征,尤其适合作为显微镜的载物台;红白两用背光源、红蓝多用背光源,能调配出不同的颜色,满足不同被测物多色要求。 应用:机械零件尺寸的测量;电子元件、IC的引脚、端子连接器检测;胶片污点检测;透明物体划痕检测等。 7、侧部背光源(OPT-FLC系列) 特点:多次散射发光,局部和整体均匀性都很好;尺寸定制灵活,可以做到较大面积;超薄设计,最薄产品可做到6mm 应用:大面积电路板电子器件检测与识别;透视尺寸测量;LCD坏点检测。 8、平行背光源(OPT-FP系列) 特点:采用精确光路设计,出射光接近理想平行光,整体结构紧凑。 应用:可以作为背光源用于高精度尺寸测量,也可配合同轴光学系统,用于检测光滑平整表面的细小划伤、碰伤等缺陷。 9、线形光源(OPT-LS系列) 特点:超高亮度;采用柱面透镜聚光;适用于各种流水连续检测场合。 应用:线阵相机照明专用;AOI检测;镀膜、玻璃表面破损、内部杂质检则。 10、线形同轴光源(OPT-LSC系列) 特点:大功率LED,高亮度,保证高度检测的需要;独特分光镜结构,减少光损失;适用于各种流水线连续检测场合。 应用:线阵相机照明专用;薄膜、玻璃表面破损、内部杂质检测;高速印刷质量检测。 11、点光源(OPT-PI系列) 特点:大功率LED体积小,发光强度高;光纤卤素灯的替代品,尤其适合作为镜头的同轴光源等;高效散热装置,大大提高光源的使用寿命。 应用:配合远心镜头使用;用于芯片检测,Mark点定位;晶片及液晶玻璃底基 校正。 12、球积分光源(OPT-RID系列) 特点:具有球积分效果的半球面内壁,均匀反射从底部360度发射出的光线, 使整个图象的照度十分均匀;红、白、蓝、绿、黄等多种颜色可选;可调制出任何颜色。 应用:适合于曲面,表面凹凸不平的工件检测;适合于表面反光较强的物体表面检

工业相机镜头的参数和选型

工业相机镜头的参数与选型 一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /F1.4代表最大孔径为 5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、 2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;

焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,?) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个

机械设备振动特性分析

机械设备振动特性分析 佟德纯 教授 一 振动波形变换 设备的振动监测与诊断,振动波形的分析,提取表征状态信息的特征量是最常用的有效方法之一,振动波形的分析主要有两种:一是时域分析,即将振动作为时间τ(秒)的函数x(τ)来观测。二是频域分析,即按傅立叶变换方法将x(τ)变换成频率f (赫芝)的函数X(f)。这个变换关系和过程可用空间简图来表示,见图5.1。 图5.1 振动波形分析 1. 振动的时域波形特征量 (1) 均值x :描述振动过程的静态成分,又称为直流分量,即 ?=T dt t x T x 0)(1 (5.1) 式中T —平均时间(样本长度),以秒或毫秒计。 (2) 绝对值平均x ,即 dt t x T x T ?=0)(1 (5.2) (3) 均方值2x :表示振动的平均能量或平均功率的指标,即 ?=T dt t x T x 022)(1 (5.3) (4) 均方根值(有效值)rms X :描述振动的有效正振幅,即 ?=T rms dt t x T X 0 2)(1 (5.4) (5) 方差2x σ :描述振动偏离均值散布情况,其标准差σx 表示振动的动态分量 ,即 []?-=T x dt x t x T 02 2 )(1σ (5.5) 为了进一步理解上述振动特征量的物理意义,特用模拟电路表示特征量的运算过程,具

体如图5.2所示。 图5.2 振动特征量的运算电路 3. 复杂周期振动的分解 复杂的周期振动)()(nT t x t x T +=都可用傅立叶级数的形式展开,即分解成若干个 谐波(简谐)振动之各,即 ∑∑∞=∞=++=++=1 010)cos()sin cos (2n n n n n n T t n A A t n b t n a a x θωωω (5.6) 式中 ω为角频率,T f ππω220== 0A 为直流分量,200a A = n A 为n 阶谐波的振幅,)2,1(,?????=+=n b a A n n n n θ为n 阶谐波的相角,)2,1(),(???=-n a b arctg n n n θ 由(5.6)式可知,复杂的周期振动)(t x τ是由直流分量0A 和各次谐波振动 )3,2,1(,???=n A n 所组成。这就是振动信号的频率分析,又称谐波分析,是振动监测与诊断的基本方法之一。 示例:柴油机扭振分析 柴油机是六缸四冲程星形连接,点火次序如图5.3所示。转速n=195rpm ,即基频f 0

视觉光源.

视觉光源 做机器视觉,一定会涉及到光源,它在机器视觉中有重要的作用,直接影响到图像的质量,进而影响到系统的性能。 所以我们说光源起到的作用:就是获得对比鲜明的图像。 图像的质量好坏,也就是看图像边缘是否锐利,具体来说: 1、将感兴趣部分和其他部分的灰度值差异加大 2、尽量消隐不感兴趣部分 3、提高信噪比,利于图像处理 4、减少因材质、照射角度对成像的影响 控制光源反射方图像的边缘锐利程度对比 常用的有LED光源、卤素灯(光纤光源)、高频荧光灯。 先简单介绍一下后面两种。 卤素灯也叫光纤光源,因为光线是通过光纤传输的,适合小范围的高亮度照明。它真正发光的是卤素灯炮,功率很大,可达100多瓦。高亮度卤素灯炮,通过光学反射和一个专门的透镜系统,进一步聚焦提高光源亮度。卤素灯还有一个名字叫冷光源,因为通过光纤传输之后,出光的这一头是不热的。适合对环境温度比较敏感的场合,比如二次元量测仪的照明。但它的缺点就是卤素灯炮寿命只有2000小时左右。

高频荧光灯,发光原理和日光灯类似,只是灯管是工业级产品,并且采用高频电源,也就是光源闪烁的频率远高于相机采集图象的频率,消除图像的闪烁。适合大面积照明,亮度高,且成本较低。但需要隔一定时间换灯管一定要进口的才过关,国内的高频做的不行,老有闪烁,国外最快可做到60KHz。 相对来说,目前LED光源最常用。主要有如下几个特点: 1、使用寿命长,10000-30000小时。 2、由于LED光源是采用多颗LED排列而成,可以设计成复杂的结构,实现不同的光源照射角度。

3、有多种颜色可选,包括红、绿、蓝、白,还有红外、紫外。针对不同检测物体的表面特征和材质,选用不同颜色,也就是不同波长的光源,达到理想效果。 下面我们具体讨论以下LED光源的分类。 LED光源可以分为2大类:一类是正面照明,一类是背面照明。 正面照明用于检测物体表面特征,背面照明用于检测物体轮廓或通明物体的纯净度。 正面光源按照光源结构分,有环形灯、条形灯、同轴灯和方形灯。当然环形灯用得最多,包括直射环形,漫反射环形,Dome灯等。 我们说直接照射环形、漫反射环形、Dome灯,这三种的区别如下。 比如直接照射环形,适合不反光物体的检测; 漫反射环形,适合反光物体检测。 直射环形(垂直照射)

机器视觉光源选型

光源选型 背景:机器视觉光源是构建机器视觉系统首要考虑的因素,一个合适的视觉光源能够对整个机器视觉检测项目起到事半功倍的作用。 目的:为了使视觉检测过程变得更加的方便,效果更加的明显,效率更加的高,才有了光源的选型。 光源的基本要素: 对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景。 亮度:当选择两种光源的时候,最佳的选择是选择更亮的那个。当光源不够亮时,可能有三种不好的情况会出现。第一,相机的信噪比不够;由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,光源的亮度不够,必然要加大光圈,从而减小了景深。另外,当光源的亮度不够的时候,自然光等随机光对系统的影响会最大。 鲁棒性:另一个测试好光源的方法是看光源是否对部件的位置敏感度最小。当光源放置在摄像头视野的不同区域或不同角度时,结果图像应该不会随之变化。方向性很强的光源,增大了对高亮区域的镜面反射发生的可能性,这不利于后面的特征提取。在很多情况下,好的光源需要在实际工作中与其在实验室中的有相同的效果。好的光源需要能够使你需要寻找的特征非常明显,除了是摄像头能够拍摄到部件外,好的光源应该能够产生最大的对比度、亮度足够且对部件的位置变化不敏感。光源选择好了,剩下来的工作就容易多了!机器视觉应用关心的是反射光(除非使用背光)。物体表面的几何形状、光泽及颜色决定了光在物体表面如何反射。机器视觉应用的光源控制的诀窍归结到一点就是如何控制光源反射。如何能够控制好光源的反射,那么获得的图像就可以控制了。因此,在机器视觉应用中,当光源入射到给定物体表面的时候,明白光源最重要的方面就是要控制好光源及其反映。 光源可预测:当光源入射到物体表面的时候,光源的反映是可以预测的。光源可能被吸收或被反射。光可能被完全吸收(黑金属材料,表面难以照亮)或者被部分吸收(造成了颜色的变化及亮度的不同)。不被吸收的光就会被反射,入射光

机器视觉工业镜头计算方法

机器视觉工业镜头计算方法(一) 2012年8月1日艾菲特光电 一、机器视觉中工业镜头的计算方式 1、WD 物距工作距离(Work Distance,WD)。 2、FOV 视场视野(Field of View,FOV) 3、DOV 景深(Depth of Field)。 4、Ho:视野的高度 5、Hi:摄像机有效成像面的高度(Hi来代表传感器像面的大小) 6、PMAG:镜头的放大倍数 7、f:镜头的焦距 8、LE:镜头像平面的扩充距离 二、相机和镜头选择技巧 1、相机的主要参数: 感光面积SS(Sensor Size) 2、镜头的主要参数: 焦距FL(Focal Length) 最小物距Dmin(minimum Focal Distance) 3、其他参数: 视野FOV(Field of View) 像素pixel FOVmin=SS(Dmin/FL) 如:SS=6.4mm,Dmin=8in,FL=12mm pixel=640*480 则:FOVmin=6.4(8/12)=4.23mm 4.23/640=0.007mm 如果精度要求为0.01mm,1pixels=0.007mm<0.01mm 结论:可以达到设想的精度 三、工业相机传感器尺寸大小:(单位:mm) (3.2mm×2.4mm);1/3″:(4.8mm×3.6mm);1/2″:(6.4mm×4.8mm); (8.8mm×6.6mm);1″:(12.8mm×9.6mm);

四、CCD相机元件的尺寸 型号高度比长度(mm)宽度(mm)对角线(mm)1/6" 4:3 1.73 2.3 2.878 1/4" 4:3 2.4 3.2 4 1/3" 4:3 3.6 4.8 6 1/2" 4:3 4.8 6.4 8 1/1.8" 4:3 5.3 7.2 8.9 2/3" 4:3 6.6 8.8 11 1" 4:3 9.6 12.8 16 4/3" 4:3 13.5 18 22.5 五、线阵传感器尺寸(单位:mm)

相关文档
最新文档