His-Tag表达蛋白纯化原理

His-Tag表达蛋白纯化原理
His-Tag表达蛋白纯化原理

His-Tag 表达蛋白纯化原理

组氨酸标签蛋白的纯化

His-Tag 融合蛋白是目前最常见的表达方式,而且很成熟,它的优点是表达方便而且基本不影响蛋白的活性,无论是表达的蛋白是可溶性的或者包涵体都可以用固定金属离子亲和色谱去( IMAC )纯化。

2.1 IMAC(Immobilized Metal-ion affinity chromatography)

是Porath et

al.1975 年用固定IDA 作为配基的填料螯合过渡金属铜、镍、钴或锌离子,可以吸附纯化表面带组氨酸、色氨酸或半胱氨酸残基的蛋白,1987 年

Smith et al. 发现带有几个组氨酸或色氨酸小肽和螯合金属离子的IDA-sephadex

G-25 作用力更强,此前在1986 年他和他的合作者用

Ni2+-IDA-sephadex

G-25 亲和纯化在氨基端带组氨酸和色氨酸的胰岛素原。同

年1987 年Hochuli et

al. 发现带有相连组氨酸的多肽和Ni2+-NTA 填料作用力更强于普通的肽,1988 年他第一次用这样的方法纯化了带六个组氨酸标签的多

肽,无论是在天然还是变性条件下一次亲和纯化都得到很好效果,此后表达带六个组氨酸标签的蛋白配合IMAC 变得非常普遍,相对而言,不带标签的蛋白纯化就非常困难,所以表达带六个组氨酸标签的蛋白配合IMAC 纯化变成最常用而且最有效的研究蛋白结构和功能的有力手段。1986 年Porath et

al. 还发现Fe3+-IDA-sephadex

G-25 可以用于磷酸化蛋白的纯化,而后发现Ga3+-IDA 也有同样的效果,这样螯合这两种金属离子的填料就有效用于磷酸化多肽的富集和纯化,同时

IMAC 也可以用于纯化各种和金属离子结合的多肽,应用非常广泛。

市面常见的商品化IMAC 用于带六个组氨酸标签蛋白的配基有以下几种:2.2 影响IMAC 纯化结果的因素:

2.2.1 填料的种类:

不同填料厂家的填料有差别,所以使用过程最好能得到厂家的技术支持,因为不同的厂家填料不同,此外蛋白纯化个性很强,没有哪一个填料是能适合所有带六个组氨酸标签蛋白

的纯化,载量高和特异性好本身就是矛盾。

2.2.2 填料的配基种类、密度、金属离子种类

填料最简单的判断是螯合好同样的金属离子,哪家产品的颜色越深就意味着和蛋白的作用力越强,适用范围越广,载量也越高,纯化的好坏关键看纯化的条件,仅有填料的特异性是不够的,同样配基密度下IDA 填料的亲和力要比NTA 的强,所以NTA 上不能吸附的样品可以选择IDA 为配基的填料。

螯合金属离子和蛋白作用强弱为铜和镍离子的强,而锌和钴离子的弱。因此如果一个蛋白作用力强,想得到好的特异性可以选择螯合钴离子,它还有一个优点是不怕还原剂,特别时候有高浓度的还原剂。相同金属离子,IDA 的强于NTA 。螯合金属离子的价位越低和蛋白的作用力越强。同时镍离子是最常用的,如果有条件可以换不同金属离子以得到更好的效果,因为不同的金属离子有不同的选择性。因此要希望填料应用范围广就选择镍琼脂糖凝胶,如果是希望特异性好而且稳定就选择

镍NTA 琼脂糖凝胶.2.2.2 蛋白本身的结构和样品来源

IMAC 原理已经说明只要是带组氨酸、色氨酸或半胱氨酸残基的蛋白都可以被吸附,所以要想得到好的纯化效果,必须选择好纯化的条件,通常带组氨酸蛋白都可以在天然情况下被镍琼脂糖凝胶或镍NTA 琼脂糖凝胶吸附,但是如果标签折叠在蛋白内部不容易暴露,这样就

难纯化,如果镍琼脂糖凝胶都不能吸附,可以在样品和平衡缓冲液中加1-2M 脲,这样蛋白结构相对松散,也许能吸附而蛋白不会变性,对于本身就是变性的蛋白如果8M 脲不能吸附,改用6M 盐酸胍溶解样品就可以被吸附,因为盐酸胍可以打开脲打不开的结构使得标签能暴露。当然如果有二硫键最好加1-2mMDTT 也可以更好解决吸附的问题。此外也可以把标签换到另外一端。

2.2.3 缓冲体系,pH 及盐浓度

对于一些作用力弱的蛋白不能选择带氮原子的的一些缓冲体系,如Tris-HCl 等,适当提高缓冲液pH 可以增加吸附效果,同样原理可以降低pH 洗脱一些咪唑洗不去的杂带。为避免由于电荷作用的干扰,平衡缓冲液中需要加0.1-1M 氯化钠,而在平衡缓冲液添加00.1-0.5% 吐温或者triton 可以降低

由于疏水相互作用导致的非特异吸附

2.2.4 表面活性剂及其他添加剂

添加一些表面活性剂可以增加蛋白的溶解度,降低疏水相互作用,这样使纯化的结果更好,在实验表明在平衡缓冲液中加0.5-1% 的吐温可以使电泳的背景更清

晰,杂带减少。对一些难溶解的样品也可以加乙醇或者甘油。在变性条件下有时会在样品中添加还原剂如巯基乙醇或者二巯基苏木糖醇,它们如果浓度过高或者上样量过大,会导致镍离子还原甚至脱落,使填料失效,如果要在这样的环境下,那最好选择螯合价位高的填料如镍NTA 琼脂糖凝胶或降低还原剂的浓度,通常

1-2mM 是没问题的。如果一定要选择高浓度的还原剂,也可以把镍离子还成钴离子,它不怕还原,把普通的镍琼脂糖凝胶还成钴离子即可。

以下是破碎及提取、纯化操作和常见问题解决方法:

破碎方法

样品的处理对纯化是很重要的,重要的原则是破碎要温和,不能使蛋白断裂或者降解,否则一些片段同样也带有标签,

这样增加了纯化的难度。需要注意的问题是超声破碎温度,强度,时间

大肠杆菌的破碎方法:

1)收集培养发酵液,4 度7000-8000g 离心10 分钟,收集沉淀的菌体(如果不是马上破碎可以放-70 度冷冻,但是最好能保存成

小块或者薄片,这样好用。)

2)取1-2 克菌体加10ml 破碎缓冲液(pH7.4 的50mM 磷酸缓冲液含0.5M NaCl ,0.5mg/ml 溶菌酶,1mM PMSF ,1mM MgCl2 ,1.7units/ml Benzonase, 其中的菌酶,1mM PMSF ,1.7units/ml

Benzonase 现加)在冰上混合45 分钟,如果pH 不在7-8 ,需要用0.5M

NaOH 一边搅拌一边滴加.如果溶菌酶10mg/ml 混合时间可以缩短到10 分钟.

3)把混合菌体在冰水中用超声探头破碎20 秒种,总共四次,中间间隔要保持2 分钟冷却破碎液,检测pH, 如果不在7-8,

还是用0.5M

NaOH 一边搅拌一边滴加去调.如果菌体的为50-500 克,可以高压破碎的方法,缓冲液同上,体积为1 升,破碎三次,压力为800 bar.

4) 破碎的液4 度12000g 离心10 分钟,如果要让溶液更澄清,可以4 度50000g 离心30 分钟,这时候可以把上清和沉淀分别留样,跑电泳,如果只沉淀中有目标蛋白,那就用变性条件下去提取。

5) 破碎离心的上清加2M 咪唑溶液0.12ml 使终浓度为

20mM,样品的总体积为10ml。过柱子的样品最好过0.45 ^m 的滤膜,避免堵柱。

2.可溶性蛋白的纯化

1 )平衡缓冲液:pH7 . 4 的50mM 磷酸缓冲液含0.5M NaCl ,含20mM 咪唑。

2) 洗脱缓冲液:pH7.4的50mM磷酸缓冲液含0.5M NaCI , 含

500mM 咪唑。

3) 取1ml 镍琼脂糖凝胶FF 或镍NTA 琼脂糖凝胶FF 预装柱,用10ml 平衡缓冲液平衡,然后取破碎上清10ml 样品以0.5ml/min 上样,然后2ml/ 管分管收集。

4) 用15ml 平衡缓冲液洗去未吸附的样品,流速1-2ml/min ,

2ml/ 管收集。

5) 用5 ml 洗脱缓冲液洗去未吸附的样品,流速1-2ml/min ,2ml/ 管收集。

蛋白质的纯化方法

蛋白质纯化的方法 蛋白质的分离纯化方法很多,主要有: (一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。 影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。 蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

His蛋白纯化原理 方法和问题分析

组氨酸(His)标签蛋白的纯化 His-Tag融合蛋白是目前最常见的表达方式,而且很成熟,它的优点是表达方便而且基本不影响蛋白的活性,无论是表达的蛋白是可溶性的或者包涵体都可以用固定金属离子亲和色谱(IMAC)纯化。 IMAC(Immobilized Metal-ion affinity chromatography)是Porath et 年用固定IDA作为配基的填料螯合过渡金属铜、镍、钴或锌离子,可以吸附纯化表面带组氨酸、色氨酸或半胱氨酸残基的蛋白,1987年Smith et al. 发现带有几个组氨酸或色氨酸小肽和螯合金属离子的IDA-sephadex G-25作用力更强,此前在1986年他和他的合作者用Ni2+-IDA-sephadex G-25亲和纯化在氨基端带组氨酸和色氨酸的胰岛素原。同年1987年Hochuli et al.发现带有相连组氨酸的多肽和Ni2+-NTA填料作用力更强于普通的肽,1988年他第一次用这样的方法纯化了带六个组氨酸标签的多肽,无论是在天然还是变性条件下一次亲和纯化都得到很好效果,此后表达带六个组氨酸标签的蛋白配合IMAC变得非常普遍,相对而言,不带标签的蛋白纯化就非常困难,所以表达带六个组氨酸标签的蛋白配合IMAC 纯化变成最常用而且最有效的研究蛋白结构和功能的有力手段。1986年Porath et al.还发现Fe3+-IDA-sephadex G-25可以用于磷酸化蛋白的纯化,而后发现Ga3+-IDA也有同样的效果,这样螯合这两种金属离子的填料就有效用于磷酸化多肽的富集和纯化,同时IMAC也可以用于纯化各种和金属离子结合的多肽,应用非常广泛。 Ni柱中的氯化镍可以与有HIs(组蛋白)标签的蛋白结合,也可以与咪唑结合。 步骤是:过柱子前可以选择Ni柱重生,也就是往柱子里倒氯化镍,一个柱长体积就行了,然后平衡柱子,拿你自己的buffer,给蛋白提供最适的环境,我一般平衡4个柱长,然后蛋白上样,你可以让他自己挂,这样挂柱子的效果好一些,如果流速太慢,可以加个恒流泵,但是一定不能太快,太快挂柱效果差,当然你也可以选择循环挂柱,就是恒流泵的一头接你装蛋白的烧杯,从柱子中留下来的液体还用同一个烧杯接回去。挂完之后,按理想来讲,你的蛋白在Ni柱中与Ni就结合了,杂蛋白多数在烧杯里,留下来了,当然肯定有少量杂蛋白也挂上了,这时候你要,拿咪唑和你的buffer配,一般从0 20mM 40mM。。。。100mM 这样洗脱(当你不知道你的蛋白大概在什么时候出来的时候)我指的是咪唑的终浓度。咪唑加入之后,会和蛋白争夺与Ni的结合位点,杂蛋白、你的目的蛋白,会在不同的浓度被洗脱下来,洗完之后,你可以用400mM咪唑洗柱子,清理一切蛋白,然后平衡几次,是否选择重生你自己定咯~然后放上20%乙醇保存柱子就可以咯~过的蛋白用不同的管子收下,然后SDS-page检测在哪个管子里。 市面常见的商品化IMAC用于带六个组氨酸标签蛋白的配基有以下几种: 一、组氨酸(His)标签蛋白的纯化步骤: 大肠杆菌的破碎方法: 1)收集培养发酵液,4度7000-8000g离心10分钟,收集沉淀的菌体(如果不是马上破碎可以放-70度冷冻,但是最好能保存成小块或者薄片,这样好用。) 2)取1-2克菌体加10ml破碎缓冲液(的50mM磷酸缓冲液含NaCl,ml溶菌酶,1mM PMSF,1mM MgCl2,ml Benzonase,其中的菌酶,1mM PMSF,ml Benzonase现加)在冰上混合45分钟,如果pH不在7-8,需要用NaOH一边搅拌一边滴加.如果溶菌酶10mg/ml混合时间可以缩短到10分钟.

蛋白表达纯化实验步骤

蛋白表达纯化实验步骤(待改进) 1、取适当相应蛋白高表达的动物组织提total-RNA。 2、设计蛋白表达引物。引物要去除信号肽,要加上适当的酶切位点和保护碱基。 3、RT-PCR,KOD酶扩增获取目的基因c DNA. 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5α感受态细菌中扩增,提质粒。 6、将质粒转化入表达菌株,挑菌检测并保种。表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至OD=0.6左右,加入IPTG,浓度梯度从25μM 到1m M。37度诱导过夜(一般3h以上即有大量表达)。 2)SDS-PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带。 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。 甘油是用0.22μm过滤除菌的,储存浓度一般是30%-60%,使用时自己计算用量。 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。2. 保种可以取一部分分成50μl一管,每次用一管,避免反复冻融。 8、包涵体检测。方案见附件2 9、如有上清表达,则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1.5,约5h左右,视菌种

蛋白质纯化与结晶的原理

蛋白质纯化与结晶的原理 获得蛋白质的晶体结构的第一个瓶颈,就是制备大量纯化的蛋白质(>10 mg),其浓度通常在10 mg/ml 以上,并以此为基础进行结晶条件的筛选。运用重组基因的技术,将特定基因以选殖(clone)的方式嵌入表现载体(expression vector)内,此一载体通常具有易于调控的特性。之后再将带有特定基因的载体送入可快速生长的菌体中,如大肠杆菌(Escherichia coli),在菌体快速生长的同时,也大量生产表现载体上的基因所解译出之蛋白质。一般而言纯度越高的蛋白质比较有机会形成晶体,因此纯化蛋白质的步骤就成为一个重要的决定因素。 在取得高纯度的蛋白质溶液后,接下来就是晶体的培养。蛋白质晶体与其他化合物晶体的形成类似,是在饱和溶液中慢慢产生的,每一种蛋白质养晶的条件皆有所差异,影响晶体形成的变量很多,包含化学上的变量,如酸碱度、沈淀剂种类、离子浓度、蛋白质浓度等;物理上的变数,如溶液达成过饱和状态的速率、温度等;及生化上的变数,如蛋白质所需的金属离子或抑制剂、蛋白质的聚合状态、等电点等,皆是养晶时的测试条件。截至目前为止,并无一套理论可以预测结晶的条件,所以必须不断测试各种养晶溶液的组合后,才可能得到一颗完美的单一晶体(图一) 。 蛋白质晶体的培养,通常是利用气相扩散法(Vapor Diffusion Method) 的原理来达成;也就是将含有高浓度的蛋白质(10-50 mg/ml)溶液加入适当的溶剂,慢慢降低蛋白质的溶解度,使其接近自发性的沈淀状态时,蛋白质分子将在整齐的堆栈下形成晶体。举例来说,我们将蛋白质溶于低浓度(~1.0 M) 的硫酸铵溶液中,将它放置于一密闭含有高浓度(~2.0 M)硫酸铵溶液的容器中,由气相平衡,可以缓慢提高蛋白质溶液中硫酸铵的浓度,进而达成结晶的目的(图二)。 蛋白质晶体在外观上与其他晶体并无明显不同之处,但在晶体的内部,却有很大的差异。一般而言,蛋白质晶体除了蛋白质分子外,其他的空间则充满约40 %至60 %之间的水溶液,其液态的成分不仅使晶体易碎,也容易使蛋白质分子在晶格排列上有不规则的情形出现,造成晶体处理时的困难及绕射数据上的搜集不易等缺点。但也由于高含水量的特性,让蛋白质分子在晶体内与水溶液中的状态,极为相似。所以由晶体所解出的蛋白质结构,基本上可视为自然状态下的结构。 蛋白质结构解析的方法简介 到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射和NMR。近年来还出现了一种新的方法,叫做Electron Microscopy。其中X射线的方法产生的更早,也更加的成熟,解析的数量也更多,我们知道,第一个解析的蛋白的结构,就是用x晶体衍射的方法解析的。而NMR方法则是在90年代才成熟并发展起来的。这两种方法各有优点和缺点。 首先来说一下,这两种方法的一般的步骤和各自的优点和缺点。电子显微镜(electron microsco py)作为一种新型的技术,目前的应用还是非常少,并且比较狭窄,我可能等到最后在给它作些

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

蛋白纯化的基本思路

蛋白质的提取和纯化-- 选择分离材料及预处理蛋白质的提取和纯化-- 选择分离材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。 蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。 蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。 微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:( 1 )得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体 含有的生化物质,如蛋白质、核酸和胞内酶等。植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。 细胞的破碎 1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3 体积,盖紧筒盖,将调速器先拨至最慢处, 开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。 2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。 3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料, 用大肠杆菌制备各种酶,常选用50-100 毫克菌体/毫升浓度,在1KG 至10KG 频率下处理10-15 分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。 4、反复冻融法:将细胞在-20 度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。 5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破 坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。 无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物 降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

His-Tag蛋白纯化步骤

变性条件下从大肠杆菌中纯化多聚组氨酸标签蛋白(主要以包涵体的形式表达)的样品制备 1、用1× PBS重悬细胞沉淀(约每毫升沉淀加5ml 1× PBS),并按上述方法进行超声破菌。 2、12000 rpm离心10 min收集包涵体。若有必要,用1 × PBS洗包涵体几次。 3、用Binding/Wash Buffer(约每毫升沉淀加5ml 1× PBS)溶解包涵体,并在室温下孵育30~60分钟。若使沉淀充分溶解,有必要进行机械或超声均质。 4、12000rpm离心30min,取上清至一干净管中。 His标签蛋白的重力纯化流程 1ml柱子的总体积为10ml,只需加入介质。如果样品体积大于柱子体积,可重复利用,注意不要超过树脂的结合能力。 1、平衡柱子的工作温度。应在室温或4℃下进行纯化。 2、取出底帽,倒出多余的液体,直立固定好柱子,让柱子顶部朝上。 3、用2倍树脂体积的Binding/Wash Buffer平衡柱子,以0.5~1 ml/min的流速过柱。 4、从柱子上部加入经Binding/Wash Buffer处理的大肠杆菌裂解物或蛋白提取物,收集流出液。若需要,让流出液重新过柱一次,以最大限度地提高结合力。 5、用两倍树脂体积的Binding/Wash Buffer洗涤树脂并收集流出液。重复该步骤,用一新的收集管收集流出液。直到流出液的吸光度在280 nm基线处。 6、用两倍树脂体积的Elution Buffer将His标签蛋白从树脂上洗脱下来。重复此步骤两次,并单独收集每次洗脱出来的液体。 7、用Modified Coomassie Bradford Assay Kit(No SK3041)。洗脱的蛋白可直接进行SDS-PAGE分析。 注意:洗脱获得的蛋白可用凝胶过滤(如No BSP090 gravity Desalting Column)或透析去除咪唑以便后续应用。SDS-PAGE分析前,含6M盐酸胍的样品必须用含8 M尿素的缓冲液透析。 就地清洗方案 如果背压增加或观察到树脂明显污染,通常进行完全性能恢复流程。由于所有的NI-IDA树脂的高螯合强度和低金属浸出率,就地清洗前不需要进行stripping。我们建议使用下面的方法,以清除污染物,如沉淀的蛋白、疏水结合蛋白和脂蛋白。 程序 1、用15倍树脂体积的0.5 M NaOH清洗柱子。考虑到需要30min的接触时间,因此需相应地调整流量(如用0.5 M NaOH溶液以0.5ml/min的流速洗1ml的NI-IDA柱,需要相当于15ml总体积的量)。 2、用10倍树脂体积的1 × PBS重新平衡后,树脂可马上使用。若要保存柱子,可加入20~30%乙醇或10~100mM氢氧化钠进行4℃保存。 通过洗脱(stripping)和离子重填装进行再生

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

Protocol蛋白质纯化步骤

Protocol 蛋白质纯化方法(镍柱) 柱前操作 1.IPTG诱导后,收菌,8000rpm/min(r/m)离心10min; 2.用Binding Buffer(BB)溶解(每100ml原菌液加BB 20ml),超声裂解30min(工作:5s,停止:5s),1500r/m离心10min,去除杂质; 3.取上清,12000r/m离心20min, 得包涵体; 4.用含2M尿素的BB洗包涵体,12000r/m离心20min,(上清做电泳);??? 5.用含6M尿素的BB溶解包涵体,12000r/m离心20min,(上清做电泳); 6.对照电泳结果,将上清或包涵体溶解液上柱; 平衡柱子(柱体积:V) 7. 3V(3倍柱体积)ddH2O(洗乙醇); 8. 5V Charge Buffer(CB); ??? 9. 3V BB; 柱层析 10.上样; 11. 10V Washing Buffer(WB); 12. 6V Elute Buffer(EB); 13.分管收集,每管1~2ml. 各种缓冲液配方 1. 8×BB: 4M NaCl, 160mM Tris-HCl, 40mM imidazole(咪唑),pH=7.9 1000ml NaCl: 58.44×4=233.76g Tris-HCl: 121.14×160×10-3=19.3824g Imidazole: 68.08×40×10-3=2.7232g 2. 8×CB: 400mM NiSO4 1000ml NiSO4: 262.8×400×10-3=105.12g 3. 8×WB: 4M NaCl, 160mM Tris-HCl, 480mM imidazole, pH=7.9 1000ml NaCl: 233.76g, Tris-HCl:19.3824g, Imidazole: 32.6784g 4. 4×EB: 2M NaCl, 80mM Tris-HCl, 4M imidazole, pH=7.9 1000ml NaCl: 118.688g, Tris-HCl:9.6912g, Imidazole: 272.32g 5. 6M 尿素 1000ml 尿素:60.06×6=360.36g

蛋白质纯化与结晶的原理获得蛋白质的晶体结构的第一个

中国试剂网 3.15.2.19 蛋白质纯化与结晶的原理 获得蛋白质的晶体结构的第一个瓶颈,就是制备大量纯化的蛋白质(>10mg),其浓度通常在10mg/ml以上,并以此为基础进行结晶条件的筛选。运用重组基因的技术,将特定基因以选殖(clone)的方式嵌入表现载体(expression vector)内,此一载体通常具有易于调控的特性。之后再将带有特定基因的载体送入可快速生长的菌体中,如大肠杆菌(Escherichia coli),在菌体快速生长的同时,也大量生产表现载体上的基因所解译出之蛋白质。一般而言纯度越高的蛋白质比较有机会形成晶体,因此纯化蛋白质的步骤就成为一个重要的决定因素。 在取得高纯度的蛋白质溶液后,接下来就是晶体的培养。蛋白质晶体与其他化合物晶体的形成类似,是在饱和溶液中慢慢产生的,每一种蛋白质养晶的条件皆有所差异,影响晶体形成的变量很多,包含化学上的变量,如酸碱度、沉淀剂种类、离子浓度、蛋白质浓度等;物理上的变数,如溶液达成过饱和状态的速率、温度等;及生化上的变数,如蛋白质所需的金属离子或抑制剂、蛋白质的聚合状态、等电点等,皆是养晶时的测试条件。截至目前为止,并无一套理论可以预测结晶的条件,所以必须不断测试各种养晶溶液的组合后,才可能得到一颗完美的单一晶体。 蛋白质晶体的培养,通常是利用气相扩散法(Vapor Diffusion Method)的原理来达成;也就是将含有高浓度的蛋白质(10~50mg/ml)溶液加入适当的溶剂,慢慢降低蛋白质的溶解度,使其接近自发性的沈淀状态时,蛋白质分子将在整齐的堆栈下形成晶体。举例来说,我们将蛋白质溶于低浓度(~1.0M)的硫酸铵溶液中,将它放置于一密闭含有高浓度(~2.0M)硫酸铵溶液的容器中,由气相平衡,可以缓慢提高蛋白质溶液中硫酸铵的浓度,进而达成结晶的目的。 蛋白质晶体在外观上与其他晶体并无明显不同之处,但在晶体的内部,却有很大的差异。一般而言,蛋白质晶体除了蛋白质分子外,其他的空间则充满约40%至60%之间的水溶液,其液态的成分不仅使晶体易碎,也容易使蛋白质分子在晶格排列上有不规则的情形出现,造成晶体处理时的困难及绕射数据上的搜集不易等缺点。但也由于高含水量的特性,让蛋白质分子在晶体内与水溶液中的状态,极为相似。所以由晶体所解出的蛋白质结构,基本上可视为自然状态下的结构。

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

GST标签蛋白纯化原理

G S T标签蛋白纯化原理 SANY GROUP system office room 【SANYUA16H-

在实验中有过被高等教育的教授骂过:别人让你吃屎,你就去吃屎么?或者稍微高级点的问候声:你有脑子么? 请稍微忽视当事人的失落、自尊心碎一地的感受,苦难不是一种财富,对苦难的反思才是一种财富。在实验时,或许着急按照步骤一步一步的做下来,而没有肯定的问自己:为什么要这样做?为什么要加这样的试剂?所以忽视了一些看似无关紧要的细节,坏结果便发生了。 回归原理部分,回归解决若干个为什么的问题,让我们的实验更加规范化。所以在接下来若干个专题阐述GST 标签蛋白纯化的实验时,生物日记实验室部落首先搞清楚GST 蛋白纯化的原理。 ——当别人问为什么时,你知道为什么么 GST 标签蛋白纯化原理 重组标签蛋白纯化利用谷胱甘肽的结构能够和GST (谷胱甘肽S-转移酶)的结合位点互补,谷胱甘肽通过SH 基团与琼脂糖介质上的环氧乙烷基团通过环氧激活特异性偶联在琼脂糖介质上,带有GST 标签蛋白纯化原理 Justwhywhywhy

GST的标签蛋白与琼脂糖介质上交联的谷胱甘肽配体互补性结合,这种可逆性的结合在温和、非变性的条件下通过加入还原型谷胱甘肽洗脱下来,杂质通过结合缓冲液被洗脱去除,从而分离目的蛋白。如果需要将GST标签从目的蛋白上除去,则可将蛋白酶结合到柱子上,在标签蛋白与谷胱甘肽结合时使用蛋白酶位点特异性切割,也可在洗脱之后再酶切。另外,蛋白质的性质、载体的选择、宿主菌、表达和纯化的条件不同都能使最终标签蛋白的产量有很大的差别。 目的基因的表达在选择合适的表达载体时,应该注意载体的克隆位点、蛋白酶切位点、标签的位置、编码框等多种因素。 载体的选择 pGEX载体可用于构建可诱导、高水平表达目的基因片段,带有GST标签蛋白通过特定的目的基因或者基因片段插入到pGEX的多克隆位点,在pGEX载体上带有laclp基因,该基因表达产物作为抑制剂结合在tac启动子的操纵子区,而在乳糖类似物IPTG的诱导下,目的基因能够在tac启动子的调控下表达目的蛋白。 宿主菌的选择 在选择宿主菌时,大部分大肠杆菌都能够克隆和表达pGEX载体,如果要获得全长的标签蛋白,一些特殊的工程菌即蛋白酶Lon、OmpT等缺失的菌种能够保护目的蛋白不被宿主菌降解,获得全长的标签蛋白,并且产量也可能更高。

相关文档
最新文档