分子生物学

分子生物学
分子生物学

操纵子:原核生物中由一个或多个相关基因以及转录、翻译、调控原件组成的基因表达单元。内含子:一个基因中非编码DNA片段,它分开相邻的外显子,内含子是阻断基因线性表达的序列。

外显子:是真核生物基因的一部分,它在剪接后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。

弱化子:原核生物操纵子中能显著减弱甚至终止转录作用的一段核苷酸序列,该区域能形成不同的二级结构,利用原核微生物转录与翻译的偶联机制对转录进行调节。

顺式作用元件:是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率,顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。

顺式作用:顺式作用元件对基因表达起调控作用的过程。

增强子:增加同它连锁的基因转录频率的DNA序列,因为它能强化转录的起始,又称强化子。

反义RNA:为大肠杆菌编码许多小分子mRNA,它们能也不同的mRNA结合,从而在翻译水平上正调控和负调控,可能关闭SD序列和释放SD序列,由于这些小分子通过与反义RNA 进行碱基配对结合来行使功能。

重叠基因:是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上基因的组成部分;重叠基因有多种重叠方式。常见于细菌和噬菌体的基因组中。核糖开关:mRNA一些非编码区的序列折叠成一定的构象,这些构象的改变应答于体内的一些代谢分子,从而通过这些构象的改变达到调节mRNA转录的目的

回文序列:双链DNA中的一段倒置重复序列;两条链从5 ‘到3 ‘方向阅读序列一致,从3‘到5‘方向的序列一致

转座子:插入序列,复合型转座子。效应:引起突变,产生新的基因,产生染色体畸变,引起生物进化

魔斑核苷酸:细菌生长过程中在缺乏氨基酸供应时产生的一个应急产物。主要是三磷酸鸟苷合成的四磷酸鸟苷和五磷酸鸟苷。主要功能是干扰RNA聚合酶与启动子结合的专一性,诱发细菌的应急反应,帮助细菌在不良环境条件下得以存活。

反式作用因子:是指能结合在各类顺式作用元件核心序列上参与调控基因转录效率的蛋白质或RNA。RNA聚合酶是催化基因转录最主要的酶。

基因沉默:真核生物中由双链RNA诱导的识别和清除细胞中非正常RNA的一种机制;分为转录水平基因沉默和转录后基因沉默。

RNA干扰:是指双链RNA诱发的、同源mRNA高效特异性降解技术,而使相应基因表达沉默。

单顺反子mRNA:只编码一种蛋白质的mRNA。

原核生物染色体的特征:结构简单,存在转录单元,有重叠基因。

DNA的修复:错配修复,切除修复,重组修复,DNA的直接修复,SOS反应。

玉米中的转座子:自主性,具有自主剪接和转座的功能;非自主性,单独存在时是稳定的,当基因组中存在与非自主性转座子同家族的自主性转座子时,才具备转座功能。

RNA的转录:是按5'→3'方向合成的,以DNA双链中的反义链为模板,根据碱基配对原则,合成的RNA带有与DNA编码链相同的序列。包括模板识别、转录起始、转录延伸、转录终止。真核生物mRNA的特征:1.5'端存在帽子结构,常常被甲基化,使mRNA免遭核酸酶的破坏2.具有多(A)尾巴。

蛋白质的生物学合成:氨基酸活化、肽链的起始、伸长、终止,新合成多肽链的折叠和加工。

内含子的剪接:内含子特点:长度和序列没有共同性,一般有16-46个核苷酸;位于反密码子下游;内含子和外显子没有保守序列。tRNA核酸内切酶切割前体分子中的内含子,RNA 连接酶将外显子部分连接在一起

真核生物染色体的组成:明显核结构,组蛋白和非组蛋白,染色质和核小体。

特征:1分子结构相对稳定

2,能够自我复制,使亲子代之间保持连续性

3能够指导蛋白质的合成,控制整个生命过程

4,能够产生可遗传的变异。

重叠基因的重叠方式:1,一个基因完全在另一个基因里面,如基因a在基因b中

2.部分重叠,如基因k和基因c部分重叠

3.两个基因只有一个碱基对的重叠

DNA的二级结构:指两条多核苷酸链反向平行盘绕所生成双螺旋结构。1.DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的。2.DNA分子中的核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。碱基通过氢键相结合,形成碱基对,A和T配对,G和C 配对,A-U。

真核生物三种RNA聚合酶的特点

RNA聚合酶Ⅰ位于核仁里,转录产物是45SrRNA,经剪接修饰后生成除5SrRNA外的各种rRNA。rRNA与蛋白质组成的核糖体是蛋白质合成的场所。

RNA聚合酶Ⅱ位于核质上,在核内转录生成hnRNA,经剪接加工后生成的mRNA被运送到胞质中作为蛋白质合成的模板。

RNA聚合酶Ⅲ位于核质上,转录产物是tRNA,5SrRNA,snRNA,其中snRNA参与RNA的剪接双螺旋模型的意义:改模型揭示了DNA作为遗传物质的稳定性特征;确认了碱基配对的原则,这是DNA复制,转录和反转录的分子基础,亦是遗传信息的传递和表达的分子基础。

●细菌的应急反应:

1.细菌有时会碰到紧急状况,比如氨基酸饥饿时,不是缺少一两种氨基酸,而是氨基

酸的全面匮乏。为了紧缩开支,渡过难关;细菌会产生一个应急反应;包括生产各种RNA、糖、脂肪和蛋白质在内几乎全部生化反应过程均被停止。实施这一应急反应的信号是鸟苷四磷酸(PPGPP)和鸟苷五磷酸(PPPGPPP),产生这两种物质的诱导物是空载RNA.

2.当氨基酸饥饿时,细胞中便存在大量的不带氨基酸的tRNA,这种空载的tRNA会激

活焦磷酸转移酶,使鸟苷四磷酸(PPGPP)大量合成,其浓度可增加10倍以上,鸟苷四磷酸(PPGPP)的出现会关闭许多基因,当然也会打开一些合成氨基酸的基因,以应付这种紧急状况。一般认为RNA聚合酶有不同的构型。这些构象可以识别不同的启动子区,鸟苷四磷酸(PPGPP)与RNA聚合酶结合会使它的某些构象稳定下来,从而改变基因转录的效率。同时基因转录起始点附近有一些保守序列,它们可能是鸟苷四磷酸(PPGPP)有关调节蛋白的结合位点。当这些序列与鸟苷四磷酸(PPGPP)结合后,就不能与RNA聚合酶相结合,使基因被关闭。鸟苷四磷酸(PPGPP)和鸟苷五磷酸(PPPGPPP)的作用范围十分广泛;它们不是只影响一个或几个操纵子,而是影响一大批;所以它们是超级调控因子。

●PCR技术:

PCR :又称多聚酶链式反应,如果设计一对寡聚核苷酸引物与目的DNA互补,以至于能被DNA聚合酶相向延伸,那么该引物结合的模板区就可以通过变性,引物退火和聚合的循环来大量扩增,这反应称为PCR,是分子生物学中一种克隆及基因分析的必要工具

原理:DNA复制

前提:一段已知目的基因的核苷酸序列

原料:模板DNA;DNA引物;四种脱氧核苷酸;热稳定DNA聚合酶(Taq酶);离子过程:变性、退火、延伸三步曲

变性:加热至90~95℃双链DNA解链成为单链DNA

退火:冷却至55~60℃部分引物与模板的单链DNA的特定互补部位相配对和结合延伸:加热至70~75℃以目的基因为模板,合成互补的新DNA链

PCR过程:在第一个循环中,目的DNA在加热至95℃,典型的为60s左右的条件下分解成两条链。当降温至55℃(约30s)时,引物实现与模板DNA退火,实际退火温度依引物长度和序列而定。退火后再升温至72℃,以进行最后的聚合反应。这一步需要消耗反应中的dNTP,并需要Mg离子。在第一次聚合反应中,不同的目标分子从引物位点开始扩增不同长度,直至第二次循环开始第二次循环,温度再次升高至95℃,使新合成的分子变性。第二次退火时,反应液中的另一引物与新合成链结合,经聚合反应扩增模板至第一个引物的末端。所以在第二次循环后,就合成了新的正确长度的分子。在之后的循环,正确长度的分子在长度各异的分子中占优势,且每次循环中数量会增加两倍。如果PCR效率为100%,n次循环后单个目的分子就会扩增2的n次方。实际中通常循环为20-40。

PCR引物设计原理:为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA 序列。引物的优劣直接关系到PCR的特异性与成功与否。

PCR引物的设计原则:1. 引物应用核酸系列保守区内设计并具有特异性。

2.产物不能形成二级结构。

3. 引物长度一般在15~30碱基之间。

4. G+C含量在40%~60%之间。

5. 碱基要随机分布。

6. 引物自身不能有连续4个碱基的互补。

7. 引物之间不能有连续4个碱基的互补。

8. 引物5′端可以修饰。

9. 引物3′端不可修饰。

10. 引物3′端要避开密码子的第3位。

●乳糖操纵子:

(1)乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P 和一个调节基因I.

(2)阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。

(3)CAP的正调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡糖糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

(4)协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。葡萄糖抑制了lac操纵子基因的表达。半乳糖将在

gal操纵子的作用下再转化成葡萄糖。

葡萄糖效应(答到乳糖操纵子里面)

1.当葡萄糖缺乏时,大肠杆菌细胞内的cAMP水平上升,CRP结合到cAMP上。CRP-cAMP复

合物可结合到紧邻RNA聚合酶结合位点上游的乳糖操纵子的启动子。Plac上的CRP的结合引起DNA链发生90度弯曲,这就增强了RNA聚合酶与启动子的结合,使转录效率提高了几倍。2.当葡萄糖(G)存在时,大肠杆菌不需要乳糖这样的替代碳源。因此,乳糖操纵子不会被激活。这种调节由CRP介导,但以二聚体形式存在的CRP蛋白自身不能独立与DNA结合,也不能调节转录。G会降低cAMP的水平。

●弱化子模型

1.RNA聚合酶启动色氨酸操纵子的转录

2,在转录约90nt以后RNA聚合酶暂停在第一个二级结构处。

3,核糖体开始于新生的mRNA结合,启动前导肽的合成

4,RNA,从暂停状态解除,继续转录

5、RNA聚合酶到达潜在终止子区域时,是继续转录还是停止转录取决于取决于紧随其后的核糖位的位置。

6、如果细胞缺乏色氨酸,核糖体就会停留在2个连续的色氨酸密码子的位置,等待色氨酸tRNA进入A位,那么1区被隔离在核糖体内,无法与2区配对,2区和3区在4区被转录之前发生配对,使后面转录出的4区以单链的形式存在,这就组织了3区和4区形成终止子的结构,转录继续。

7、如果细胞色氨酸含量充足,核糖体能连续的翻译出前导肽,就会覆盖2区,阻止2区和3区的配对,于是4区转录之后,就自发的与3区形成终止子结构,导致转录的提前结束。产生约140bp的产物。

●衰减子对色氨酸操纵子的表达调控(色氨酸操纵子调节模型)

色氨酸操纵子结构:色氨酸操纵子包含操纵基因O启动子P,及5个结构基因A、B、C、D、E.E与O之间有一段前导序列L.色氨酸操纵子上游存在调节基因R,编码阻遏蛋白.

衰减调控:L中含有4段特殊序列:序列1编码一个前导肽,前导肽的第10、11位是色氨酸;序列2-3或序列3-4可形成茎环结构.3-4茎环结构是一个转录终止子结构,称为衰减子.

当色氨酸缺乏时,前导肽的翻译停滞于色氨酸密码处,序列2-3形成茎环结构,使序列3、4不能形成衰减子结构,结构基因得以完全转录;当色氨酸充足时,核糖体快速翻译前导肽,并对序列2形成约束,使序列3-4形成衰减子结构,下游的结构基因不被转录.

●真核基因表达的转录水平调控:

1.在真核细胞中,一条成熟的mRNA链只能翻译出一条多肽链,原核生物中常见的多基因操纵子形式在真核细胞中比较少见。

2.真核细胞的DNA与组蛋白和大量非组蛋白结合,只有一小部分DNA是裸露的。

3.高等真核细胞DNA中大部分不转录,真核细胞中有一部分由几个或几十个碱基组成的DNA 序列,在整个基因组中重复几百次甚至上百万次。

4.真核生物能够有序地根据生长发育阶段的需要进行DNA片段重排,还能在需要时增加细胞内某些基因的拷贝数。

5.原核生物中,转录的调节区都很小,大都位于转录起始位点上游不远处,调控蛋白结合到调节位点上可直接促进或抑制RNA聚合酶对它的结合。真核生物中,基因转录的调节区则大得多,它们可能远离核心启动子几百个甚至上千个碱基对。

6.真核生物的RNA在细胞核中合成,只能经转运穿过核膜,到达细胞质基质后,才能被翻译成蛋白质。

7.许多真核生物的基因只有经过复杂的成熟和剪接过程,才能顺利翻译成蛋白质。

miRNA和siRAN的区别

区别:1,miRNA是内源,siRAN是外源导入。2,miRNA不能介导靶mRNA的降解,但可以把靶mRNA不完全互补,阻抑蛋白质的翻译。

共同点:1,形成需要Dicer酶,。2,形成的复合体有相同的蛋白质组成。3、人工的siRAN 在体内产生类似miRNA的功能,内源的miRNA在靶mRNA完全互补的前提下,也能变现出间接靶mRNA的干涉效应,所以两者可能有几本相同的作用用途。

医学分子生物学讲义复习重点

分子生物学 1.ORF 答:ORF是open reading frame的缩写,即开放阅读框架。在DNA链上,由蛋白质合成的起始密码开始,到终止密码为止的一个连续编码列,叫做一个开放阅读框架。 2.结构基因 答:结构基因(structural genes)可被转录形成mRNA,并翻译成多肽链,构成各种结构蛋白质或催化各种生化反应的酶和激素等。 3.断裂基因 答:基因是核酸分子中贮存遗传信息的遗传单位,一个基因不仅仅包括编码蛋白质或 RNA 的核酸序列,还包括保证转录所必需的调控序列、位于编码区 5 ' 端与 3 ' 端的非编码序列和内含子。真核生物的结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因(split gene)。 4.选择性剪接 答:选择性剪接(也叫可变剪接)是指从一个mRNA前体中通过不同的剪接方式(选择不同的剪接位点组合)产生不同的mRNA剪接异构体的过程,而最终的蛋白产物会表现出不同或者是相互拮抗的功能和结构特性,或者,在相同的细胞中由于表达水平的不同而导致不同的表型。 5.C值 答:基因组的大小通常以其DNA的含量来表示,我们把一种生物体单倍体基因组DNA的总量成为C值(C value)。 6.生物大分子 答:生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。常见的生物大分子包括蛋白质、核酸、脂类、糖类。 7.酚抽提法 答:酚抽提法最初于1976年由Stafford及其同事提出,通过改良,以含EDTA、SDS及无DNA酶的RNA酶裂解缓冲液破碎细胞,经蛋白酶K处理后,用pH8.0的Tris饱和酚抽提DNA,重复抽提至一定纯度后,根据不同需要进行透析或沉淀处理获得所需的DNA样品。 8.凝胶过滤层析 答:凝胶过滤层析也称分子排阻层析或分子筛层析,利用凝胶分子筛对大小、形状不同的分子进行层析分离,是根据分子大小分离蛋白质混合物最有效的方法之一。 9.多重PCR 答:多重PCR技术是在一个反应体系中加入多对引物,同时扩增出多个核酸片段,由于每对引物扩增的片段长度不同,可用琼脂糖凝胶电泳或毛细管电泳等技术加以鉴别。 10.荧光域值 答:荧光阈值是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,一般荧光阈值的设置是基线荧光信号的标准偏差的10倍。 11.退火 答:温度突然降至37-58℃时,变性的DNA单链在碱基互补的基础上重新形成氢

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学基础知识要点

Northern blot:是DNA/RNA的杂交,它是一项用于检测特异性RNA的技术,RNA混合物首先按照它们的大小和相对分子量通过变性琼脂糖凝胶电泳加以分离,凝胶分离后的RNA 通过southern印迹转移到尼龙膜或硝酸纤维素膜上,再与标记的探针进行杂交反应,通过杂交结果分析可以对转录表达进行定量或定性。它是研究基因表达的有效手段。与Southern blot 相比,它的条件更严格些,特别是RNA容易降解,前期制备和转膜要防止Rnase的污染。实验步骤:1.用具的准备2.用RNAZaP去除用具表面的RNase酶污染3.制胶4. RNA样品的制备5.电泳6.转膜7.探针的制备8.探针的纯化及比活性测定9.预杂交10.探针变性11.杂交12.洗膜13.曝光14.去除膜上的探针15.杂交结果 半定量PCR要求比普通PCR更严格一些,另外往往通过转膜后的同位素杂交检测或凝胶成像后的灰度测定比较样品间的差异。 半定量RT-PCR一般是在没有条件做实时PCR 的情况下使用,用于测定体内目的基因的表达增加减少与否,即通过目的基因跑出来的电泳带与管家基因(如β-actin)的电泳带的相对含量比较,观测目的基因表达增减,另外还要做一个β-actin的内参照对照。 实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1.实时荧光定量PCR无需内标 2.内标对实时荧光定量PCR的影响 Sybr green(荧光染料掺入法)和Taqman probe(探针法) 检测两种蛋白质相互作用方法 1共纯化、共沉淀,在不同基质上进行色谱层析 2蛋白质亲和色谱基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。 3免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高4 Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 1.酵母双杂交 2.GSTpull-down实验 3.免疫共沉淀 4.蛋白质细胞内定位 RACE是基于PCR技术基础上由已知的一段cDNA片段,通过往两端延伸扩增从而获得完整的3'端和5'端的方法 1.此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有 利用价值的信息 2.节约了实验所花费的经费和时间。 3.只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长 基因特异性引物(GSPs)应该是: 23-28nt 50-70%GC Tm值≥65度,Tm值≥70度可以获得好的结果 注意事项 1.cDNA的合成起始于polyA+RNA。如果使用其它的基因组DNA或总RNA,背景会很高

【期末复习总结】基础分子生物学.doc

【期末复习总结】基础分子生物学 基础分子生物学 第一章 1. DNA的发现 Avery的肺炎双球菌转化实验 Hershey和Chase的噬菌体侵染细菌试验 2. 基因工程操作的工具 限制性内切酶。DNA连接酶。运载体。 3. 原核生物的基因组和染色体结构都比较简单,转录和翻译在同一时间和空间内发生,基因表达的调控主要发生在转录水平。 真核生物转录和翻译过程在时间和空间上都被分隔开,且在转录和翻译后都有复杂的信息加工过程,其基因表达的调控可以发生在各种不同的水平上。其基因表达调控主要表现在信号传导研究、转录因子研究及RNA 剪辑3个方面。 弟一早 1. 原核细胞染色体: 一般只有一条大染色体且大都带有单拷贝基因,除少数基因外(如rRNA基因)。整个染色体DNA儿乎全部由功能基因和调控序列所 组成。 几乎每个基因序列都与它所编码蛋白质序列呈线性对应关系。

2. 真核生物 真核生物染色体中相对分子质量一般大大超过原核生物,并结合有大 量的蛋白质DNA具体组成成分为:组蛋白、非组蛋白、DNAo 其蛋白质与相应DNA的质量之比约为2:lo 5. 组蛋白 组蛋白是染色体的结构蛋白,其与DNA组成核小体。根据其凝胶电泳 性质可将其分为HL H2A、H2B、H3及H4。 6. 组蛋白的特性: 进化上极端保守性。其中H3、H4最保守,H1较不保守。 无组织特异性. 肽链上氨基酸分布的不对称性. 组蛋白的修饰作用。包括甲基化、乙基化、磷酸化及ADP核糖基化等。 富含赖氨酸的组蛋白H5. 7. 非组蛋白 色体上除了存在大约与DNA等量的组蛋白以外,还存在大量的非组蛋白。 组蛋白的量大约是组蛋白的60%?70%,非组蛋白的组织专一性和种属专一性。 组蛋白包括酶类、骨架蛋白、核孔复合物蛋白以及肌动蛋白、肌球蛋白等。它们也可能是染色质的组成成分。 类常见的非组蛋白: HMC蛋白。一般认为可能与DNA的超螺旋结构有关。

分子生物学期末考试重点

1.定义重组DNA技术 将不同的DNA片段按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 2.说出分子生物学的主要研究内容 1.DNA重组技术 2.基因表达研究调控 3.生物大分子的结构功能研究 4.基因组、功能基因组与生物信息学研究 3.简述DNA的一、二、三级结构 一级:4种核苷酸的连接及排列顺序,表示了该DNA分子的化学成分 二级:2条多核苷酸连反向平行盘绕所形成的双螺旋结构 三级:DNA双螺旋进一步扭曲盘绕所形成的特定的空间结构 4.原核生物DNA具有哪些不同于真核生物DNA的特征? ①DNA双螺旋是由2条互相平行的脱氧核苷酸长链盘绕而成,多核苷酸的方向由核苷酸间的磷酸二酯键的走向决定,一条是5---3,另一条是3---5②DNA双螺旋中脱氧核糖和磷酸交替连接,排在外侧构成基本骨架,碱基排在内侧③两条链上的碱基通过氢键相结合,形成碱基对 5.DNA双螺旋结构模型是由谁提出的?沃森和克里克 6.DNA以何种方式进行复制,如何保证DNA复制的准确性? 线性DNA的双链复制:将线性复制子转变为环状或者多聚分子,在DNA末端形成发卡式结构,使分子没有游离末端,在某种蛋白质的介入下在真正的末端上启动复制。环状DNA 复制:θ型、滚环型、D型 ①以亲代DNA分子为模板进行半保留复制,复制时严格按照碱基配对原则 ②DNA聚合酶I 非主要聚合酶,可确保DNA合成的准确性

③DNA修复系统:错配修复、切除修复、重组修复、DNA直接修复、SOS系统 7.简述原核生物DNA复制特点 只有一个复制起点,复制起始点上可以连续开始新的DNA复制,变现为虽只有一个复制单元,但可以有多个复制叉 8.真核生物DNA的复制在哪些水平上受到调控? 细胞生活周期水平调控;染色体水平调控;复制子水平调控 9.细胞通过哪几种修复系统对DNA损伤进行修复? 错配修复,恢复错配;切除修复,切除突变的碱基和核苷酸片段;重组修复,复制后的修复;DNA直接修复,修复嘧啶二聚体;SOS系统,DNA的修复,导致变异 10.什么是转座子?分为哪些种类? 是存在于染色体DNA上可自主复制和移动的基本单位。可分为插入序列和复合型转座子11.什么是编码链?什么是模板链? 与mRNA序列相同的那条DNA链称为编码链,另一条根据碱基互补配对原则指导mRNA 合成DNA链称为模板链 12.简述RNA的种类及其生物学作用 mRNA:编码了一个或多个多肽链序列。 tRNA:把mRNA上的遗传信息变为多肽中的氨基酸信息。 rRNA:是核糖体中的主要成分。 hnRNA:由DNA转录生成的原始转录产物。 snRNA:核小RNA,在前体mRNA加工中,参与去除内含子。 snoRNA:核仁小RNA,主要参与rRNA及其它RNA的修饰、加工、成熟等过程。scRNA:细胞质小RNA在蛋白质合成过程起作用。

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。 6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面 存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。(3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA 链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。

分子生物学试验基础知识

分子生物学实验基础知识 分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也是分子水平研究疾病发生机制、基因诊断和基因治疗的方法。转化(trans formation)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采用的手段。基因重组的目的之一是基因克隆(gene clone),基因克隆可理解为以一分子基因为模板扩增得到的与模板分子结构完全相同的基因。使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。 外来基因引起细胞生物性状改变的过程叫转化(transformation),以噬菌体把外源基因导入细菌的过程叫转染(transfection)。利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的过程叫转导(transduction)。一个或一组基因从一处转移到基因组另一处的过程叫转位(transposition),这些游动的基因叫转位子。 一、基因工程的常用工具 (一)载体 载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。 质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合。质粒有严紧型和松弛型之分。严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。质粒经过改造品种繁多,常用的有pBR322、pUC系列等。这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Ap r、抗四环素Tc r等)或大肠埃希菌部分乳糖操纵子(E.coli LacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达。质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点。 常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统。噬菌体应和相应的宿主细胞配合使用。以上载体各有特点,便于选择,灵活应用。 (二)工具酶

分子生物学终极复习资料汇总

《分子生物学》复习题 1、染色体:是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定 形态、结构特征的物体。携带很多基因的分离单位。只有在细胞分裂中才可见的形态单位。 2、染色质:是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA 组成的复合结构,因其易被碱性染料染色而得名。 3、核小体:染色质的基本结构亚基,由约200 bp的DNA和组蛋白八聚体所组 成 4、C值谬误:一个有机体的C值与它的编码能力缺乏相关性称为C值矛盾 5、半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中, 一条链来自6、亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制 6、DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基 因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 7、半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的 合成是不连续的,故称半不连续复制。 8、引发酶:此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引 物(Primer)。实质是以DNA为模板的RNA聚合酶。 9、转坐子:存在与染色体DNA上可自主复制和位移的基本单位。 10、多顺反子:一种能作为两种或多种多肽链翻译模板的信使RNA,由DNA 链上的邻近顺反子所界定。 11、基因:产生一条多肽链或功能RNA所必需的全部核甘酸序列。 12、启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。 13、增强子:能强化转录起始的序列 14、全酶:含有表达其基础酶活力所必需的5个亚基的酶蛋白复合物,拥有σ因子。 (即核心酶+σ因子) 15、核心酶:仅含有表达其基础酶活力所必需亚基的酶蛋白复合物,没有σ因子。 16、核酶:是一类具有催化功能的RNA分子 17、三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物。 18、SD序列:mRNA中用于结合原核生物核糖体的序列。30S亚基通过其

基础分子生物学(生物科学专业用)

基础分子生物学 三、选择题 1、RNA 合成的底物是------ ---------。 A dATP, dTTP , dGTP , d CTP BATP, TTP , GTP , CTP C ATP ,GTP, CTP,UTP D 、GTP, CTP,UTP,TTP 2.模板DNA的碱基序列是3′—TGCAGT—5′,其转录出RNA碱基序列是:A.5′—AGGUCA—3′ B.5′—ACGUCA—3′ C.5′—UCGUCU—3′ D.5′—ACGTCA—3′ E.5′—ACGUGT—3′ 3、转录终止必需。 A、终止子 B、ρ因子 C、DNA和RNA的弱相互作用 D上述三种 4、在转录的终止过程中,有时依赖于蛋白辅因子才能实现终止作用,这种蛋白辅因子称为---- -----。 A σ因子 B ρ因子 C θ因子 D IF因子 5.识别RNA转转录终止的因子是: A.α因子 B.β因子 C.σ因子 D.ρ因子 E.γ因子 6.DNA复制和转录过程有许多异同点,下列DNA复制和转录的描述中错误的是: A.在体内以一条DNA链为模板转录,而以两条DNA链为模板复制 B.在这两个过程中合成方向都为5′→3′ C.复制的产物通常情况下大于转录的产物 D.两过程均需RNA引物 E.DNA聚合酶和RNA聚合酶都需要Mg2+ 7、核基因mRNA 的内元拼接点序列为。 A、AG……GU B、GA……UG C、GU……AG D、UG……GA 8、真核生物mRNA分子转录后必须经过加工,切除---------,将分隔开的编码序列连接在一起,使其成为蛋白质翻译的模板,这个过程叫做RNA的拼接。 A 外显子 B 启动子 C 起始因子 D 内含子 9、在真核生物RNA polⅡ的羧基端含有一段7个氨基酸的序列,这个7肽序列为Tyr-Ser-Pro-Thr-Ser-Pro-Ser ,被称作。 A C末端结构域 B 帽子结构 C Poly(A)尾巴 D 终止子 10.真核生物RNA的拼接需要多种snRNP的协助,其中能识别左端(5’)拼接点共有序列的snRNP 是: A.U1 snRNP B.U2 snRNP C.U5 snRNP E.U2 snRNP+ U5 snRNP 四、是非题 1、所有的启动子都位于转录起始位点的上游。( X ) 2、RNA分子也能像蛋白酶一样,以其分子的空间构型产生链的断裂和和合成所必须的微环境。(对) 3、真核生物的mRNA中的poly A 尾巴是由DNA编码,经过转录形成的。( X ) 4、在大肠杆菌RNA聚合酶中,β亚基的主要功能是识别启动子。( X ) 5、所有起催化作用的酶都是蛋白质。( X ) 五、问答题

肿瘤分子生物学讲义

肿瘤分子生物学讲义 第一节概述 (1) 第二节肿瘤的发生机制 (4) 第三节癌基因及其致癌的分子机制 (5) 第四节抑癌基因及其抑癌的分子机制 (9) 第五节肿瘤转移相关基因 (11) 第六节肿瘤的预防和治疗 (13) 第一节概述 一、肿瘤及肿瘤分子生物学的概念 肿瘤(tumor)是一类疾病的总称,它们的基本特征是细胞增殖与凋亡失控,扩张性增生形成新生物。肿瘤可分为良性肿瘤(benign tumor)和恶性肿瘤(malignant tumor)。 良性肿瘤生长缓慢,虽可增长至相当大的体积,但仍保留正常细胞的某些特性,通常在瘤体外有完整的包膜,手术切除后患者预后良好。绝大多数良性肿瘤基本上是无害的,不引起或很少引起宿主损伤。不过有极少数良性肿瘤因其靠近生命中枢或能合成大量生物活性物质也可能杀伤宿主。例如,脑膜上生长缓慢的良性肿瘤通过压迫使得生命中枢萎缩破坏,最终导致宿主死亡;胰岛细胞良性肿瘤可以分泌大量胰岛素而引起体内胰岛素过量,导致低血糖和死亡。 恶性肿瘤统称为癌症(cancer),它不同于良性肿瘤的最重要的特性是能侵袭周围组织,疾病晚期癌细胞发生远端转移,破坏受侵袭的脏器,最终使机体衰亡,但如能在侵袭转移前切除癌瘤,一般预后明显改善。由于技术水平的限制,目前临床诊断的癌症患者多处于中晚期。加上不良生活方式如吸烟、过度饮酒、不合理饮食习惯,以及环境污染增加等因素,在刚过去的20世纪,世界各国许多常见癌症的发病率在总体上呈上升趋势,或维持在高水平,在我国的情况亦大致如此。目前除几种较少见的癌症如妇科的宫颈癌、绒癌等的死亡率有明显下降外,多数常见恶性肿瘤死亡率还处于令人忧心的高位态势下。有研究者预测,在21世纪癌症仍将是危害人类健康的主要疾病之一,故应引起预防、临床和基础研究者的高度关注。 恶性肿瘤几乎在所有类型的细胞中均可发生。根据组织学来源,癌症的起源可分为三种:癌(carcinoma)起源于上皮细胞,大部分成人癌症属此类;淋巴瘤起源于脾和淋巴结等的淋巴细胞;肉瘤(sarcoma)起源于间叶组织如结缔组织、骨和肌肉等。以上在各种实质性组织、脏器中发生的癌症属实体肿瘤(solid tumor)。白血病起源于骨髓造血细胞,恶性细胞存在于流动的血液中,属液体肿瘤(liquid tumor)。 肿瘤分子生物学,就是用分子生物学的理论和技术来研究肿瘤的一门科学,是医学和生物学的一门交叉学科 二、肿瘤的生物学特征 1、癌症是体细胞遗传病 就本质而论,癌症是一种遗传学疾病或体细胞遗传学疾病,可简称为遗传病。在癌细胞中发生的遗传学变异有:基因内的碱基替代、缺失、插入和基因扩增等,以及染色体的数量和结构的改变,如非整倍体、易位等;表遗传学改变有:DNA甲基化型式改变、组蛋白修饰和染色质改型等。这些改变引起了肿瘤抑制基因灭活和原癌基因的活化,它们所产生的恶性表型通过有丝分裂能在细胞世代间传递。上述过程均发生在体细胞,这是占全部癌症中绝大多数的、散发性癌症的发生模式。遗传性癌综合征不同于其他一些遗传病,它遗传的仅是癌易感性,还需要体细胞的多次击中才能产生恶性表型。 基因组内存在两类癌相关基因:一类基因直接调控细胞增殖与凋亡、运动与黏着,以及细胞基质的改型等,并参与细胞的信号转导,结果得以维持正常组织细胞的自稳性。当这些基因缺陷造成上述过程失衡,随着细胞各种恶性特征的积累,最终癌症发生。这些基因包括癌基因、肿瘤抑制基因中把关基因(gatekeeper gene);另一类基因并不直接调控细胞的增殖和凋亡,而是影响第一类癌相关基因的突变速率的管护基因(caretaker gene),这包括各类DNA修复基因,还包括代谢酶多态性在内的一组修饰基因(modifier gene)。 2、癌细胞的恶性生物学特征

分子生物学作业(完整版)

分子生物学作业 第一次 1、Promoter:(启动子)一段位于结构基因5…端上游、能活化RNA聚合酶的DNA序列,是RNA聚合酶的结合区,其结构直接关系转录的特异性与效率。 2、Cis-acting element:(顺式作用元件)影响自身基因表达活性的非编码DNA序列,组成基因转录的调控区包括:启动子、增强子、沉默子等 一、简述基因转录的基本特征。(作业)P35 二、简述蛋白质生物合成的延长过程。P58 肽链的延伸由于核糖体沿mRNA5 ′端向3′端移动,开始了从N端向C端的多肽合成。 起始复合物,延伸AA-tRNA,延伸因子,GTP,Mg 2+,肽基转移酶 每加一个氨基酸完成一个循环,包括: 进位:后续AA-tRNA与核糖体A位点的结合 起始复合物形成以后,第二个AA-tRNA在EF-Tu作用下,结合到核糖体A位上。 通过延伸因子EF-Ts再生GTP,形成EF-Tu?GTP复合物,参与下一轮循环。 需要消耗GTP,并需EF-Tu、EF-Ts两种延伸因子。 转位:P位tRNA的AA转给A位的tRNA,生成肽键; 移位:tRNA和mRNA相对核糖体的移动; 核糖体向mRNA3’端方向移动一个密码子,二肽酰-tRNA2进入P位,去氨酰-tRNA 被挤入E位,空出A位给下一个氨酰-tRNA。移位需EF-G并消耗GTP。 三、真核细胞mRNA分子的加工过程有哪些?P40 1、5’端加帽 加帽指在mRNA前体刚转录出来或转录尚未完成时,mRNA前体5’端在鸟苷酸转移酶催化下加G,然后在甲基转移酶的作用下进行甲基化。 帽子的类型 0号帽子(cap1) 1号帽子(cap1) 2号帽子(cap2) 2、3’端的产生和多聚腺苷酸花 除组蛋白基因外,真核生物mRNA的3?末端都有poly(A)序列,其长度因mRNA种类不同而变化,一般为40~200个A 。 大部分真核mRNA有poly(A)尾巴,1/3没有。 带有poly(A)的mRNA称为poly(A)+, 不带poly(A)的mRNA称为poly(A)-。 加尾信号: 3?末端转录终止位点上游15~30bp处的一段保守序列AAUAAA。 过程: ①内切酶切开mRNA3?端的特定部位; ②多聚A合成酶催化加poly(A)。 3、RNA的剪接

分子生物学实验基础

分子生物学实验基础 分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也是分子水平研究疾病发生机制、基因诊断和基因治疗的方法。转化(transforma tion)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采用的手段。基因重组的目的之一是基因克隆(gene clone),基因克隆可理解为以一分子基因为模板扩增得到的与模板分子结构完全相同的基因。使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。 外来基因引起细胞生物性状改变的过程叫转化(transformation),以噬菌体把外源基因导入细菌的过程叫转染(transfection)。利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的过程叫转导(transduction)。一个或一组基因从一处转移到基因组另一处的过程叫转位(transposition),这些游动的基因叫转位子。 一、基因工程的常用工具 (一)载体 载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(p lasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。 质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合。质粒有严紧型和松弛型之分。严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。质粒经过改造品种繁多,常用的有pBR322、pUC系列等。这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Apr、抗四环素Tcr等)或大肠埃希菌部分乳糖操纵子(E.coli LacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达。质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点。 常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统。噬菌体应和相应的宿主细胞配合使用。以上载体各有特点,便于选择,灵活应用。

分子生物学知识点

分子生物学知识点Last revision on 21 December 2020

一、名词解释: 1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA片段,编码具有生物功能的产物包括RNA和多肽链。 2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程。 3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响。如GAPDH、β-肌动蛋白基因。 4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段。 5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。如:乳糖操纵子、色氨酸操纵子等。 6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子(转录因子)。 7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA序列。是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控。 8. Ct值:即循环阈值(cycle threshold,Ct),是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。(它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和(或)相对定量。) 9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链(包括DNA和DNA,DNA和RNA,RNA和RNA)相互结合形成杂合双链的特

分子生物学总结完整版

分子生物学总结完整版 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、 DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、 Tm(熔链温度): DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、 C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分

9、 DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为 3、4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0、34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列1 1、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成: 由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复

相关文档
最新文档