软启动器工作过程中的谐波分析及抑制

软启动器工作过程中的谐波分析及抑制
软启动器工作过程中的谐波分析及抑制

软启动器工作过程中的谐波分析及抑制

本文来自2008年第10期“软起动”上 ,已经被阅读过302次

摘要:软启动技术是近几年发展起来的,将电力电子技术、微处理器技术和自动控制技术有机结合的一种新技术, 与传统降压启动控制技术相比有很多优点。本文从软启动器概念入手,分析软启动器谐波产生的原因及危害,在此基础上提出了抑制谐波的方法。

关键词:软启动器;谐波;危害;抑制

随着工业生产机械的不断发展,对电机的启动性能提出了越来越高的要求。三相鼠笼式异步电动机应用广泛,但启动电流大是一个突出的缺点,为了改善起动性能,降低起动电流,提升起动转矩,传统采用串联电抗器,自耦变压器等降压起动的方法,这些方法虽然能减少起动电流,但同时也使电动机的起动转矩减少,而且起动电流不连续,维修量大,即增加了成本,又降低了可靠性。

软启动器是一种就集软启动,软停车,轻载节能和多功能保护于一体的新型电机控制装备,国外称为Soft Starter。它不仅可以在整个启动过程中实现无冲击而平滑地启动电机,而且可以根据电动机负载的特性来调节启动过程中的参数,如限流值,启动时间,启动时间等。此外它还具有多种对电机的保护功能,从根本上解决了传统降压启动设备的诸多弊端。国外AB,ABB,施奈德,西门子等大公司均有相关产品。

1 软启动器原理及性能特点

软启动器的主要构成是串接于电源和被控电机之间的三相反并联晶闸管及其电子控制电路,现代软启动器基本上都采用了电力电子技术和微机控制技术,以单片机为中央控制器来完成测量及各种控制算法。因此,软启动器具备了很强的功能和灵活性。

图1 晶闸管软启动器主电路

整个启动过程是数字化程序软件控制下的自动运行。利用三对晶闸管的电子开关特性,通过启动器中的单片机控制其触发脉冲来改变触发角的大小,从而改变晶闸管的导通时间,装置输出电压按一定规律上升, 使被控电动机的电压由零升到全电压, 转速相应地由零平滑加速到额定转速的过程。它是电力电子技术与自动化控制技术的综合, 是将强电和弱电结合起来的控制技术。

软启动器的性能特点:①启动电压可调, 保证电机启动的最小启动转矩, 避免电机过热和能源浪费; ②控制电机平滑启动, 减少启动电流冲击; ③启动电流可根据负载情况调整, 减少启动损耗, 以最小的电流产生最佳的转矩; ④启动时间可调, 在该时间范围内, 电机转速逐渐上升, 避免转速冲击; ⑤保护传动机械, 清除转矩浪涌并降低冲击电流; ⑥恒定加减速, 不需要测速机, 即使当电机负载变化时也是如此;⑦自由停车和软停车可选, 软停车快慢可调; ⑧有相序、缺相、过热、启动过程过流、运行过程过流和过载的检测及保护, 其过流值和过载值可调。

2 软启动器的起动方式

目前的软启动器有以下几种起动方式:

①恒流软起动。起动时电动机起动电流保持恒定(即限定起动电流), 其电流限定值通常在电机额定电流的1.5~4.5 倍之间选择。

②斜坡电压软起动。顾名思义是电压由小到大斜坡线性上升, 它是将传统的降压起动从有级变成了无级。这种起动方式最简单, 不具备电流闭环控制, 仅控制晶闸管的导通

角, 便使起动电压以设定的速率增加, 然后再转为额定电压。其缺点是初始转矩小, 转矩特性抛物线型上升对拖动系统不利, 且起动时间长有损于电机。

③斜坡恒流软起动。起动初始阶段, 起动电流按设定的上升速率(斜率)逐渐增大, 到达设定值后, 保持恒流状态直至起动完毕。起动电流的上升速率可根据负载需要进行调整。电流上升的速率高, 则起动转矩大, 起动时间短。一般起动转矩可在额定转矩的5%~90%之间调整。起动时间可在2~30 s 之间调整。该起动方式最适用于风机、泵类负载, 是实际应用最多的软起动方式。

④脉冲恒流软起动。这种起动方式在起动初始阶段有一个较大的起动冲击电流, 该电流值大于设定的恒流值, 从而能产生较大的起动冲击转矩去克服较大的静摩擦阻转

矩, 使设备能够起动, 然后进入恒流起动阶段, 直至起动结束。显然, 这种起动方式的起动转矩大, 适用于重载起动, 如皮带运输机、磨煤机的带载起动。

3.软启动器谐波的产生

软启动器采用三对反并联的晶闸管实现交流调压。由于晶闸管是典型的非线性器件,在使用过程中会产生大量的谐波,将对设备的稳定运行及电网造成不良影响。

谐波产生的根本原因是非线性负载所致。如今随着电力电子装置的大量应用,它已成为最主要的谐波源。

谐波皆由具有非线性伏安特性的设备引起。理想正弦电压加在非线性的设备上,就会产生非正弦电流,成为谐波源。例如工频电压为,式中U为工频电压有效值即工频。作用于电流—电压特性为的非线性

时不变电阻两端时,产生的电流为:,可见,输入电压为频率ω1的正弦波,而输出电流则是包含有ω1和3ω1两种频率成分的非正弦波。

谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍。由于谐波频率总是高于基波,因此称为高次谐波。高次谐波叠加在基波之上就会使波形发生畸变,使正弦波变成非正弦波。随着电力电子技术的发展,各种新型用电设备不断投入使用,各种非线形负载日益增加,导致大量谐波电流注入电网。谐波在电网中的存在,会对多种电气设备造成损害,在有些地方甚至直接威胁电网的安全运行。

4. 谐波的危害

对于容量小的系统,谐波产生的干扰不能忽略,谐波电流和谐波电压的出现,对公用电

应用ADS软件设计镜像抑制混频器

应用ADS 软件设计镜像抑制混频器 丁武伟 航空工业总公司第零一四中心,471009 摘要 本文论述了应用ADS 软件设计二极管电阻性混频器的过程,应用谐波平衡法对混频器的非线性特性进行了分析,给出了C 波段镜像抑制混频器的设计例子。 关键词:二极管电阻性混频器设计 ADS 软件 谐波平衡法 非线性分析 镜像抑制 混频器 概述 近年来,随着微波器件与技术的快速发展,在雷达和通信等领域,接收系统普遍采用了低噪声放大器作为前级,大大降低了系统的噪声系数,提高了灵敏度。混频器对接收系统的影响和作用似乎越来越小,事实并非如此。对于单边带系统,特别是中频较低的单边带系统来讲,镜像噪声会对噪声带来很大影响。所谓镜像信号边带是有用信号边带相对于本振信号对称的另一个边带,它与本振混频后产生的中频信号与信号边带产生的中频信号相同。对于单边带系统,当低噪声放大器频带较宽,且中频不高时,镜像噪声会通过混频器进入系统,造成系统噪声系数恶化。因此,在低噪声放大器频带较宽,且中频不高的单边带系统中,必须使用镜像抑制混频器。镜频抑制度表示对镜像噪声的抑制程度,镜频抑制度β定义为: 'G G =β 其中 G 信号边带增益 G ’ 镜像边带增益 则微波接收机噪声系数与镜频抑制度的关系为: )1 1log(10)(β +=dB M 其中 M(dB) 微波接收机噪声系数的恶化量 表1为镜频抑制度与噪声系数恶化量的数据

镜像抑制混频器设计 1镜像抑制混频器的主要技术指标 信号频率 3.6GHz 本振频率 3.8GHz 中频频率 200MHz 噪声系数 15dB 镜像抑制度 15dB 2镜像抑制混频器的组成 镜像抑制混频器电原理图如图1。 3dB正交耦合器 射频端口VS 同相功率分配器平衡混频器 1 平衡混频 器 2 本振VL VL1 VL23 412VS1 VS2 Z0=503dB中正交耦合56 78 频输出电路 下边带中频输出上边带中频输出 图1 由图1可知镜像抑制混频器由两个平衡混频器、一个射频正交耦合器、一个中频正交耦合器和一个同相功率分配器组成。 3平衡混频器设计 我们采用移相90°的平衡混频器,它由这几部分组成:3 dB 支节耦合器 混频二极管 阻抗匹配网络 射频短路线和中频滤波器。 用ADS 软件的S 参数仿真功能很容易设计出幅度和相位满足要求的3 dB 支节耦合器。电路仿真原理图如图2,仿真结果如图3。

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

串联电抗器抑制谐波

串联电抗器如何抑制谐波 关键字:串联电抗器谐波抑制电抗率选择无功补偿电抗器 前言 随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。 电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。在地区的配电和变电系统中,选择主要电能质量污染源和对电能质量敏感的负荷中心设立电能质量控制枢纽点,在这些点进行在线电能质量监测、采取相应的电能质量改善措施显得格外重要。 在并联电容器装置接入母线处的谐波“污染”暂未得到根本整治之前,如果不采取必要的措施,将会产生一定的谐波放大。在并联电容器的回路中串联电抗器是非常有效和可行的方法。串联电抗器的主要作用是抑制高次谐波和限制合闸涌流[1],防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。但是串联电抗器绝不能与电容器组任意组合,更不能不考虑电容器组接入母线处的谐波背景。文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。 电抗器参数的计算 1 基本情况介绍 某110kV变电所新装两组容量2400kvar的电容器组,由生产厂家提供成套无功补偿装置,其中配置了电抗率为6%的串联电抗器,容量为144kvar。电容器组投入运行之后,经过实测发现,该110kV变电所的10kV母线的电压总畸变率达到4.33%,超过公用电网谐波电压(相电压)4%的限值[2],其中3次谐波的畸变率达到3.77%,超过公用电网谐波电压(相电压)3.2%的限值[2]。

电力电子装置的谐波危害及抑制

随着电力电子技术的快速发展,电力电子装置越来越多地应用于冶金、化工、煤炭和运输等诸多领域,已成为实现生产自动化的重要基础设备。然而,随着这些电力电子装置的广泛应用,将大量的谐波和无功功率注入电网,使电网的电能质量下降,引起“电网污染”问题,这已成为阻碍电力电子技术发展的重大障碍之一。因此,认识和分析电力电子装置谐波产生的原因及其危害,探讨综合治理的方法,抑制谐波污染,提高电网功率因数已成为电力电子技术中的一个重大研究课题。 谐波的危害 电网中日益严重的谐波污染常常对设备的工作产生严重的影响,其危害一般表现为: 1)谐波电流使输电电缆损耗增大,输电能力降低,绝缘加速老化,泄漏电流增大,严重的甚至引起放电击穿。 2)使电动机损耗增大,发热增加,过载能力、寿命和效率降低,甚至造成设备损坏。 3)容易使电网与用作补偿电网无功功率的并联电容器发生谐振,造成过电压或过电流,使电容器绝缘老化甚至烧坏。 4)谐波电流流过变压器绕组,增大附加损耗,使绕组发热,加速绝缘老化,并发出噪声。 5)使大功率电动机的励磁系统受到干扰而影响正常工作。 6)影响电子设备的正常工作,如:使某些电气测量仪表受谐波的影响而造成误差,导致继电保护和自动装置误动作,对邻近的通信系统产生干扰,非整数和超低频谐波会使一些视听设备受到影响,使计算机自动控制设备受到干扰而造成程序运行不正常等。 电力电子装置中的谐波产生 电网中的谐波主要是由各种大容量功率变换器以及其他非线性负载产生的,其中主要的谐波源是各种电力电子装置,如整流装置、交流调压装置等,这其中,整流装置所占的比例最大,它几乎都是采用带电容滤波的二极管不控整流或晶闸管相控整流,它们产生的谐波污染和消耗的无功功率是众所周知的;除整流装置外,斩波和逆变装置的应用也很多,而其输入直流电源也来自整流装置,因此其谐波问题也很严重,尤其是由直流电压源供电的斩波和逆变装置,其直流电压源大多是由二极管不控整流后经电容滤波得到的,这类装置对电网的谐波污染日益突出。 谐波的抑制 为了抑制电网中的谐波,减小谐波的危害,在加强科学化、法制化管理的同

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要 求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功 率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 P WM 控制原理………………………………………… 4.2.2.2滞环比较控制方

谐波分析方法对比

谐波分析方法对比 随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法 2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置 (1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。

谐波抑制的方法及其特点

电力系统谐波抑制方法及其特点分析 随着电力电子技术的发展,接入电网的整流、换流设备和其他各种非线性负荷设备日益增加,这些电气设备产生大量的谐波电流注入电网,危及电力设备、用户设备和电力系统的安全运行。必须采取措施,抓紧治理,抑制电力系统谐波,把电网中的谐波含量控制在允许范围之内[1]。 电力系统谐波抑制是改善电能质量、净化电网的一个重要方面。对谐波抑制的方法主要有三种途径:第一种是在谐波源上采取措施,从改进电力电子装置入手,使注入电网的谐波电流减少,也就是最大限度地避免谐波的产生;第二种是在电力电子装置的交流侧利用LC无源滤波器和电力有源滤波器对谐波电流分别提供频域谐波补偿和时域谐波补偿。这类方法属于对已产生的谐波进行有效抑制的方法;第三种就是改善供电环境[2]。 1、降低谐波源的谐波含量 降低谐波源的谐波含量也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用,并避免因加装消谐装置而引发的其它负面影响。具体方法有: 1.1 增加换流装置的脉动数 换流装置是电网中的主要谐波源之一,其产生的谐波主要集中在特征谐波,非特征谐波含量通常很少,特征频谱为:n=kp士1,则可知脉动数p增加,n也相应增大,而工n、工l/n,故谐波电流将减少。因此,增加整流脉动数,可平滑波形,减少谐波。例如:当脉动数由6增加到12时,可有效的消除幅值较大的低频项,从而使谐波电流的有效值大大降低。 1.2 利用脉宽调制(PWM)技术 PWM技术,就是在所需的频率周期内,通过半导体器件的导通和关断把直流电压调制成等幅不等宽的系列交流电压脉冲,可达到抑制谐波的目的。若要消除某次特定谐波,可在控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性,根据输出波形的傅里叶级数展开式,使需要消除的谐波幅值为零,基波幅值为给定量,组成非线性超越方程组计算各个开关通断时刻,达到消除指定谐波和控制基波幅值的目的。PwM技术的优点是在载波频率高时,输出中所含低次谐波分量很小,从而提供了功率因数。目前被采用的PWM技术有最优脉宽调制(OPWM)、改进正弦脉宽调制、△调制、跟踪型PWM和自适应PWM控制等。 1.3 三相整流变压器采用Y,d(Y/△)或D,y(△/Y)的接线方式 这种接线方式可抑制3的倍数次的高次谐波,也可作为隔离变压器使用。以△/Y形接线方式为例:当高次谐波电流从晶闸管反串到变压器副边绕组内时,其中3的倍数次高次谐波电流无路可通,所以自然就被抑制而不存在。但将导致铁心内出现3的倍数次高次谐波磁通(三相相位一致),而该磁通将在变压器原边绕组内产生3的倍数次高次谐波电动势,从而产生3的倍数次的高次谐波电流。因为它们相位一致,只能在三角形绕组内产生环流,将能量消耗在绕组的电阻中,故原边绕组端子上不会出现3的倍数次的高次谐波电动势,不致使谐波注入公共电网。作为隔离变压器使用时,可使3N次谐波电流与配电系统相隔离。这种接线形式的优点是可以自然消除3的整数倍次的谐波。 1.4 采用多电平变流技术 也称整流电路的多重化,即将多个方波叠加,以消除次数较低的谐波,从而

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

变频器谐波滤波器

设备电源谐波滤波器 DNF-电源谐波滤波器是专为变频器、伺服、中频炉、UPS(或其他含3相6脉整流电路)开发的三相电力系统设备就地谐波抑制解决方案,适用于任何3相6脉整流电路,可以降低其谐波电流畸变率以符合相关标准规定限值。 DNF-电源谐波滤波器的选型方法简单,只要知道设备的工作电压和功率,即可直接选型。现场安装不需要任何调试,即装即用,并且不需要现场维护。 次、11次、13次等奇次谐波),而且能够滤除各种非特征谐波(间谐波); 9.改善设备的EMC电磁兼容性,降低峰值电流,提高设备的抗浪涌能力; 10.性能稳定、可靠性高,维护成本低; 11.选用简单:仅需要知道负载的额定工作电压和功率即可; DNF-电源谐波滤波器产品使用说明 安装在各种含有3相6脉整流设备(如变频器、伺服、中频炉、UPS等)电源输入端; 使谐波畸变率THDI≤16%或10%,适应不同地区标准 串联安装在上述设备的电源输入线上, 广泛应用各种工业场合。

DNF-电源谐波滤波器主要技术指标 额定工作电压:3相,400VAC ±10% 工作频率:50Hz ±1HZ (默认值) /60Hz ±1HZ 过载能力: 承受150%额定电流,1分钟,每小时一次 总谐波失真THID:满载状态下,THDI≤16%或10%。 功率因数:在50% ~ 100%负荷范围内,0.95-1 环境温度:-25°C ~ +40°C 满载运行 +50°C ~ +70°C 降额运行 海拔高度:<1000米 湿度:5%-85% (无结露) 防护等级: IP20 / IP00 DNF无源谐波滤波器系统连接图

附:IEEE-519标准关于諧波電壓及電流失真之限制 短路比Isc/IL 总谐波失真THD Isc/IL: < 20时 THD ≤ 5% ; Isc/IL: 20 < 50时 THD ≤8% Isc/IL: 50 < 100时 THD ≤ 12% ; Isc/IL: 100<1000时 THD ≤15% Isc/IL: > 1000 时 THD ≤20% DNF无源谐波滤波器 THDI 与 负载率 关系曲线图 设备外形尺寸图

电力系统谐波分析

海南大学 课程论文 题目:电力系统谐波分析 学号: B0736039 姓名:陈肖前 年级: 07电气1班 学院:机电与工程学院 系别:电气系 专业:电气工程及其自动化 指导教师:王海英 完成日期: 2010 年 06月 15 日

摘要 谐波对电力系统和用电设备产生了严重的危害及影响,而小波变换为电力系统谐波信号分析提供了有力的分析工具。与Fourier变换相比,小波变换是时间频率的局部化分析,它通过伸缩平移运算对信号逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 本设计探讨了小波变换的基本原理之后,就如何应用小波工具箱对系统的谐波信号进行了分析。主要内容如下: 首先,采用小波变换进行谐波检测的方法进行了系统仿真,通过仿真验证了小波分析具有时域和频域的双重分辨率,能够较好的解决傅立叶分析所不能解决的问题。 其次,在谐波分析中,采用小波分析算法,不仅能正确的得到各次谐波,而且对用傅立叶分析没法解决的有关信号的暂态分量的提取,暂态分量时间的定位,电压、电流波形的间断、突起、凹陷和瞬态分量的检测都具有较好的效果。 最后MATLAB仿真的结果验证了本文的分析方法的正确性和有效性。基本达到了实验目的。 关键词:谐波分析小波理论MATLAB

Abstract Harmonics have a serious danger and affect in the power system and electrical equipment, but wavelet transform can provides a powerful analytical tool for harmonics signal analysis. Compared with the Fourier transform, wavelet transform is the localized analysis of time frequency, which refines the signal multi-scale by scalabling and shifting operation step-by-step. Finally it meets the requirement of high-frequency time and low-frequency frequency subdivided, and of automatically adapting to time-frequency signal analysis. It can focus on arbitrary particulars of signal , solving the difficult problems of the Fourier transform. It is a major breakthrough in science method since the Fourier transform. Someone praised wavelet transform as the “mathematical microscope”. After discussing the basic principles of wavelet transform, this Design discussed how to use the wavelet toolbox to analy the harmonic signals. They are as follows: Firstly, the Harmonic Detection method was simulated by Wavelet Transform, and the simulation shows that the Wavelet Transform has double resolutions in both time and frequency domains, which can solve the problem that the Fourier Transform can't do well. Secondly, we could not only correctly get various orders of harmonics, but also effectively solve how to draw the transient component of the signal ,and how to locate the time of transient component of the signal ,and solve the problem of intermittent and Processes and depression of the voltage and current wave, and solve how to detect transient component,and the Fourie are not available. Finally,MATLAB simulation results verify the correctness and effectiveness of the analytical methods. It achieves the basic purpose of the experiment. Key words: Harmonic measurement Wavelet theory MATLAB

家用电器的谐波分析与抑制

图1 无源滤波电路图 2 T DA 4817G 管脚排列与管脚功能图 图3 T DA 4817G 应用电路图 家用电器的谐波分析 与抑制 浣喜明 湘潭机电高等专科学校(411101) 本文分析了家电产品对电网谐波的影响,介绍了功率因数的有源和无源校正方法。 关键词:家用电器 电网谐波 PF C 家用电器中采用电力电子线路取代传统电路,使其性能得到了很大的改善,但是它也产生大量的高次谐波注入电网,使电压、电流波形畸变,功率因数下降(严重时可降至0.6左右),这导致供电线路和变压器过热,用电器的额定值降低,常常引发设备事故。1 家用电器对电网谐波的影响 电网中存在非线性负载,这是产生高次谐波的主要原因。 各种家用电器中往往包含有可控或不可控的整流电路和大容量滤波电容等非线性元件,整流过程中二极管的导通角很小,它使输入交流电流不再呈正弦波,而是大幅度的尖脉冲,这种波形的电流,其基波分量很小,含有大量的高次谐波并注入电网。 电视机、影碟机、录相机、微型计算机等家用电器大都采用开关电源,它的变换频率高,电流波形为非正弦波,是家用电器中主要的谐波源。 随着家用空调器、电冰箱、电烤箱、微波炉等大功率电器的日益普及,电网三相低压不平衡的现象越来越严重,这也会使电网电流波形畸变,产生有害的谐波。 2 家用电器谐波的抑制措施 抑制谐波实质上是进行功率因数校正(Pow er F acto r Cor rection,简称 PF C )。功率因数校正分为无源校正和有源校正。 2.1 家用电器功率因数的无源校正 在电路中加入LC 滤波器来消除电流谐波、提高功率因数的方法称为无源校正。一种常用的无源滤波电路如图1所示,图中L 1、L 2、C 1、C 2和二极管D 5、D6、D7、C3、C4组成电源滤波器,这种电 路功率因数可达0.95,总电路谐波含量小于20%,它电路简单、成本低、适合各种家用电器的功率因数校正,但其谐波含量高、装置体积大是它的缺点。2.2 家用电器功率因数的有源校正 为了克服无源校正的缺点,在传统整流电路中加入有源开关,通过控制开关的通断强迫输入电流跟随输入电压变化,从而获得接近于1的功率因数,这种方法称为有源校正。 西门子公司生产的T DA 4817G 是一种性能价格比很高的单片P FC 控制IC ,适合几十至几百伏安的小功率家用电器的功率因数校正。它采用DIP 8封装,其 管脚排列与管脚功能如图2所示。 T DA 4817G 由误差放大器、电流比较器、零电流检测器、单象限乘法器、逻辑电路驱动器、内部电源等组成,是典型的变化频率断续工作电流型PF C 控制IC 。图3是T D A 4817G 的典型应用电路。理论和实际都证明,经T DA 4817G 校正后,输入交流电流与交流电压的波形均为平滑的正弦波,且相位同步。该电路作为一种升压变换电路,输入电压220V ,输出电压380~450V ,功率容量40~300W ,电路总谐波畸变 T HD 小于8%,线路功率因数大于0.99,效率可达 ?10?1 1998 家用电器科技 □综 述

高频开关变换器中EMI产生的机理及其抑制方法

高频开关变换器中EMI产生的机理及其抑制方法 1 前言 开关电源具有体积小、重量轻、效率高等特点,广泛用于通信、自动控制、家用电器、计算机等电子设备中。但是,其缺点是开关电源在高频条件下工作,产生非常强的电磁干扰(Electromagnet ic Inte rf erence,EMI),经传导和辐射会污染周围电磁环境,对电子设备造成影响。本文从开关电源的电路结构、器件进行分析,探讨了电磁干扰产生的机理及其抑制方法。 2 开关电源电磁干扰(EMI)产生的机理 开关电源的电磁干扰,按耦合途径来分,可分为传导干扰和辐射干扰。按噪声干扰源可分为两大类:一类是外部噪声,例如通过电网传输过来的共模和差模干扰、外部电磁辐射对开关电源控制电路的干扰等;另一类是开关电源自身产生的电磁干扰,如开关管、整流管的电流尖峰产生的谐波及电磁辐射干扰。 其中外部噪声产生的影响可以通过电源滤波器进行衰减,本文不做讨论,仅讨论开关电源自身产生的电磁噪声。 常规交流输入的开关电源主要结构可以分为四大部分,其框图如图1所示。 其中输入与整流滤波部分、高频逆变部分、输出整流与滤波部分是产生电磁干扰的主要来源。以下将通过对各部分电压、电流波形的分析,阐明电磁噪声产生的原因。 2.1 工频整流器引起的电磁噪声 一般开关电源为容式滤波,在输入与整流滤波部分电磁噪声主要是由整流过程中造成的电流尖峰、电压波动所引起的。正弦波电源经过电源滤波器进行差模、共模信号衰减后,由整流桥整流、电解电容滤波,得到的电压作为高频逆变部分的输入电压。由于滤波电容的存在,使整流器不象纯整流那样一组开通半个周期,而是只在正弦电压高于电容电压时才导通,造成电流波形非常陡峭,同时电压波形变得平缓。电流、电压的波形如图2所示。 根据Fourier级数,图中的电流、电压波形可分解为直流分量和一系列频率为基波频率整数倍的正弦交流分量之和。通过电磁场理论以及试验结果表明,谐波(特别是高次谐波)会产生传导干扰和辐射干扰。通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰,在空间产生电场、磁场向外辐射产生的干扰称之为辐射干扰。 2.2 变压器与开关管引起的电磁噪声 逆变部分是开关稳压电源的核心,用以实现变压、变频以及完成输出电压的调整,主要有开关管和高频变压器组成。电磁噪声主要是由于变压器的漏感、分布电容以及开关管的开通、关断造成。开关电源中的高频变压器用作隔离和变压,变压器在理论分析时,通常认为是理想变压器,但是在实际应用中变压器存在漏感,而且在高频的情况下,还要考虑变压器层间的分布电容。高频变压器的等效电路模型如图3所示。

电力系统谐波分析及抑制技术研究

电力系统谐波分析及抑制技术研究 发表时间:2018-04-11T09:51:58.123Z 来源:《电力设备》2017年第32期作者:杜占科杨正张彬[导读] 摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。 (国网新疆电力公司阿克苏供电公司新疆阿克苏市 843000)摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。因此,如何抑制电网谐波引起了广泛的讨论。本文论述了当前电力系统谐波的产生的主要原因,并分析了电力谐波的危害,提出了几种电力谐波的抑制技术,为电力系统谐波问题提供帮助。 关键词:电力系统;谐波;危害;滤波器;抑制在电力系统用电,输电,发电等过程中,谐波已成为不可避免的问题,其已危及电力产生和输送以及用电方的安全运行。鉴此,分析谐波并最大限度地抑制谐波成为电力系统工作的重要课题。下面,就电力系统谐波及其危害进行详细分析,并提出有效的抑制谐波措施。 1.电力系统的谐波 (1)用电技术方面。在现代电力系统中,随着人们节能意识的加强以及电力电子技术的发展,众多通过电力电子开关、以非正弦电流方式高效用电的新型非线性负载得到了广泛的应用。这些以非正弦电流方式用电的新型非线性负载已经成为当今电力负载中最主要的谐波源。1992年,日本电气学会对其国内产生谐波的行业按比例进行了一个统计,除楼宇中的部分照明电源、冶金行业的电弧炉外,其他行业的谐波源大多来自电力电子装置,根据日本电气学会的统计,其比例高达90%。从表中还可以看出,来自楼宇的谐波源所占比例高达40.6%,其谐波主要由办公及家用电器等产生。可见,谐波畸变不再是工业设备所特有的现象,如今谐波现象已经蔓延到电力升降机、不间断电源、电视机、个人计算机等商业和居民用电设施中的电子设备。 (2)发电技术方面。由于当今社会对常规化石能源的需求日益增加,能源耗尽的危机日益严重,人们开始追求对清洁、无污染的新能源的开发利用。在电力生产中,许多利用清洁无污染的可再生能源发电的发电方式,如风能发电、太阳能发电、燃料电池发电等发电方式得到了越来越广泛的应用。这些新型电源大多以非正弦、非工频的方式供电,而传统公用电网是以三相电压、电流的对称正弦要求为发电与用电的品质指标。传统公用电网为了接纳非正弦、非工频的新型电源,一般通过电力电子电能转换装置将非正弦、非工频的电源转换为正弦、工频的交流电源,从而实现不同频率的电源或电网的同步运行。比如在输送风电的过程中,一般采用变频装置将风电接入电网,在此过程中,变频装置将会向电网注入一定数量的谐波,使得电网谐波来源更加复杂。 (3)输电技术方面。为了提高电压质量和系统的稳定性以及解决大容量远距离输电等问题,柔性交流输电技术和高压直流输电技术得到极大的发展和应用。柔性交流输电技术和高压直流输电技术以电力电子技术为支撑,通过电力电子装置实现对电网运行方式的灵活控制、调节,以实现对电能的安全、高效、经济输送。这些电力电子装置主要包括:用于提供无功功率补偿以改进电网电压控制和系统稳定性的静态无功补偿器(SVC);用于提高输电线路输电容量和改善线路运行情况的可控串联补偿装置(TCSC);用于电网潮流控制的统一潮流控制器(UPFC)以及用于高压直流输电技术的高压直流换流器等。上述电力电子装置大多数具有一个共同特性,就是产生谐波。因此,在使用这些装置对输电技术进行改造时,对其产生的谐波不得不进行一个详细的评估。 2.谐波的危害 谐波注入电力系统将会严重恶化电网的电气运行环境,危害电力系统的安全、稳定运行,同时,还会对电网电气设备以及用户用电设备的安全造成危害。 首先,对整个电网来说,谐波的产生与输送,将在输电网中增大网损,降低电能传输的效率;谐波电流在线路中引起畸变压降,降低了电网的电压质量;新型非线性负载的间断性用电方式降低了电源电压的工作效能;谐波电流恶化交流电能传输中的电气环境,易引发系统崩溃。 其次,对电网中的电气设备而言,因为电网中的电气设备是按工频、正弦电流工作方式设计的,谐波电流流过将会影响其最佳工作状态。例如:谐波电流会对电机、变压器等电磁设备的绕组及铁芯引起额外发热,使损耗增加,降低电磁设备的使用寿命;谐波电流会影响功率处理器、互感器的测量精度,引起电力测量的误差;谐波电流有可能造成继电保护装置、自动控制装置的工作紊乱;谐波电流的存在还可能会降低断路器、熔断器等设备的开断能力。 此外,随着工业控制技术的发展,工业生产中许多精密仪器、复杂的控制系统等对电能质量的要求也越来越高。谐波电流对其造成的影响,有可能会使工业生产造成巨大的经济损失。 3.电力系统的谐波抑制技术 如前文所述,电力系统谐波造成低劣的供电电能质量,严重危害电力系统的安全稳定运行和电网电气设备、用户用电设备的安全。在现有的技术水平下,为避免谐波的危害,保障电网及用户的利益,对电力系统的谐波抑制,已经成为电气工程学科的一个热门研究领域。目前对电力系统谐波抑制的方法主要可以分为预防性电力谐波抑制技术和补救性电力谐波抑制技术两种方法。 3.1预防性电力谐波抑制技术 预防性电力谐波抑制技术是指在设计构建系统或设备的过程中,通过选取合理的线路结构及元件参数,避免产生谐波或减少谐波。常见的预防性电力谐波抑制技术有如下几种:(1)利用设备的电气特性。该方法主要是对电气设备采用有效的接线方法或结构形式来减少或消除接入电力系统的设备所产生的谐波。比如对于变压器来说,其绕组采用三角形的接线方式能隔断3倍频谐波电流的流通。 (2)配电网重构。对多个谐波源同时接入电网的情况,可通过对配电网重构的方法,实现降低公共连接点总的谐波限值。这种方法是通过对配电网中的负荷进行再分配,限制负荷中非线性负荷的比例,控制非线性负荷产生的谐波电流在一定的范围内,使公用母线上的谐波电流限值不超过电力部门制定的标准。该方法只是达到降低谐波限值的目的,并没有达到谐波隔离的效果,谐波电流仍会注入电网中,有可能对电网及其他用户造成损害。显然,这并不是一种合理的谐波抑制的方法。(3)多脉波整流技术和高功率因数PWM整流技术。多脉波整流技术是将两个或更多个相同结构的整流电路按一定的规律组合,将整流电路进行移相多重联结,利用各整流负载的谐波电流相位差,使其相互叠加后可削弱或抵消电源输入端的部分谐波电流。例如12脉波整流技术可以有效削弱5次和7次谐波,24脉波整流技术可以有效消除11次和13次谐波。随着技术的发展,多脉波整流技术的脉波数可以达到一个很高的值,但同时也使系统结构更为复杂,需要对其可靠性、经济性等因素进行全面衡量。

利用ADS设计镜频抑制混频器的实例步骤.

应用ADS设计混频器 1.概述 图1为一微带平衡混频器,其功率混合电路采用3dB分支线定向耦合器,在各端口匹配的条件下,1、2为隔离臂,1到3、4端口以及从2到3、4端口都是功率平分而相位差90°。 图1 设射频信号和本振分别从隔离臂1、2端口加入时,初相位都是0°,考虑到传输相同的路径不影响相对相位关系。通过定向耦合器,加到D1,D2上的信号和本振电压分别为: D1上电压 1-1 1-2 D2上电压 1-3 1-4 可见,信号和本振都分别以相位差分配到两只二极管上,故这类混频器称为 型平衡混频器。由一般混频电流的计算公式,并考虑到射频电压和本振电压的相位差,可以得到D1中混频电流为:

同样,D2式中的混频器的电流为: 当时,利用的关系,可以求出中频电流为: 主要的技术指标有: 1、噪音系数和等效相位噪音(单边带噪音系数、双边带噪音系数; 2、变频增益,中频输出和射频输入的比较; 3、动态范围,这是指混频器正常工作时的微波输入功率范围; 4、双频三阶交调与线性度; 5、工作频率; 6、隔离度; 7、本振功率与工作点。 设计目标:射频:3.6 GHz,本振:3.8 GHz,噪音:<15。 2.具体设计过程 2.1创建一个新项目 ◇ 启动ADS ◇ 选择Main windows

◇ 菜单-File-New Project,然后按照提示选择项目保存的路径和输入文件名 ◇ 点击“ok”这样就创建了一个新项目。 ◇ 点击,新建一个电路原理图窗口,开始设计混频器。 2.2 3dB定向耦合器设计 ◇ 里面选择类“Tlines-Microstrip”

◇选择,并双击编辑其中的属性,,这是微带线基板的参数设置,其中的各项的物理含义,可以参考ADS的帮助文档。 ◇选择,这是一个微带传输线,选择,这是一个三叉口。 ◇按照下图设计好电路图 图2 3dB耦合器 其中50 ohm传输线的线宽w=0.98mm,四分之一波长长度为10.46mm,35ohm传输线的线宽为w=1.67mm,四分之一波长长度为10.2mm。MTEE是三端口器件,有三个参数W1,W2,W3具体是有定义的,可以此参考ADS帮助文档。 ◇选择类“Simulation-S_Param”并把仿真器和“Term”拉出来放好。

相关文档
最新文档