北京交通大学钢结构设计原理复习重点

北京交通大学钢结构设计原理复习重点
北京交通大学钢结构设计原理复习重点

.

第一章绪论

钢结构的特点:

1、轻质高强,承载力大

2、钢材材性好,可靠性高

3、工业化程度高

4、抗震性能好

5、气密水密性好

6、易于锈蚀

7、耐热性好,耐火性差

8、绿色环保无污染

钢结构的适用范围:

1、承受大荷载、动荷载的结构

2、大跨度或高度很大的结构

3、拼装式结构或需要移动的结构

4、对密封性要求高的结构

5、轻型结构

6、其他复杂造型结构

钢结构的主要形式:

1、大跨度结构

2、重型结构

3、高耸结构

4、多层与高层结构

5、密封结构

6、活动结构

7、轻型结构

钢结构设计的目的:保证整体结构和结构构件在充分满足功能要求的基础上安全、可靠地工作

功能要求:

1、安全性:承受作用,保持稳定,不倒塌

2、适用性:工作性能良好,满足使用要求

3、耐久性:随时间仍能满足使用要求

可靠度:结构在规定时间内、在规定条件下完成预定功能的概率。规定时间是指结构的设计使用年限;规定条件是指正常设计、正常施工、正常使用和维护的条件

功能的极限状态:结构或者结构的某一部分超过某一定特定状态后,就不能满足某一规定功能要求,则此特定状态称为功能的极限状态

承载能力极限状态(状态1):结构或构件达到最大承载能力或者达到不适合继续承载的变形的极限状态。如强度、稳定、疲劳破坏

正常使用极限状态(状态2):结构或构件达到正常使用或耐久性能(刚度、锈蚀等)的某项规定限值的状态。包含标准组合、频遇组合或准永久组合

第二章钢结构的材料

钢材的力学性能:强度、塑性、韧性、冷弯性能、耐久性

五项指标:抗拉强度、伸长率、屈服点、冷弯试验、常温(低温)冲击韧性

影响钢材力学性能的因素:化学成分、冶金缺陷与轧制过程、钢材硬化、温度影响、应力状态、加载速度

钢材的两种破坏形式:

1、塑性破坏:破坏前构件应力达到

u

f,变形大、持续时间较长。特征:破坏断口参差不齐,色暗,因晶体在剪切之下相互滑移呈纤维状

2、破坏前变形小,无明显破坏征兆,构件

破坏应力小于

y

f,均由应力集中而引起。特征:破坏断口平齐,晶粒往往在一个面断裂而呈光泽的晶粒状

疲劳破坏的定义:钢材在循环多次反复作用下裂纹生成、扩展以致断裂破坏的现象称为钢材的疲劳或疲劳破坏

疲劳破坏的发生条件:

1、受反复荷载作用

2、存在拉应力

3、应力集中程度较高。

疲劳破坏的三个阶段:裂纹的形成,裂纹的

.

缓慢发展和最后迅速断裂

疲劳破坏的影响因素:

1、应力种类

2、应力循环特征和应力幅

3、循环次数(疲劳寿命)

4、应力集中

疲劳强度:对于轧制钢材或非焊接结构,疲劳强度与最大应力、应力比、循环次数和缺口效应有关;而对于焊接结构,疲劳强度与应力幅、循环次数和缺口效应有关

应力幅:一次循环中最大应力与最小应力之差

钢材的静力强度对疲劳性能无显著影响。

钢材的选用原则:

1、结构或构件的重要性

2、荷载情况(静力荷载,动力荷载)

3、连接方法(焊接连接、螺栓连接)

4、结构所处的工作条件(环境温度,腐蚀等)

5、钢材的厚度

第三章钢结构的连接

连接按连接方法分类:焊接连接、铆钉连接、螺栓连接

连接按功能分类:受力性连接、缀连性连接、支撑性连接

不同连接的使用范围:

焊接:适于静力结构,对接焊缝适用于承受各种荷载的永久性结构

铆钉:内力较大,承受各种荷载的永久性结构

普通螺栓:内力较小,次要结构,临时结构,安装连接

摩擦型高强度螺栓:内力较大的永久性结构,直接承受动载的结构

承压型高强度螺栓:内力较大的永久性结构,间接承受动载的结构

不同连接的刚度:焊接>摩擦型>铆钉>承压型>普通螺栓

连接形式:按被连接件相互几何位置分为对接、搭接、顶接(T形、角接)

焊缝形式:对接焊缝、角焊缝

焊缝种类和连接形式是不同的概念同一类型的接头可以用两种焊缝实现

焊缝质量等级:

三级:外观检查,即焊缝实际尺寸是否符合设计要求;有无看得见的裂纹、咬边等缺陷。焊缝设计强度为基材的0.85倍

二级:外观基础上加无损检验。超声波检验焊缝20%的长度

一级:超声波检验每条焊缝的全长,以揭示焊缝内部缺陷

对接焊缝的计算:

1、受轴力作用:w

t

w

N

f

l t

σ=≤

焊缝计算长度

w

l——有引弧板时取几何长度l无引弧板时取几何长度减去焊口影响

2

w

l l t

=-

2、受剪力作用:w

w

v

w

VS

f

I t

τ=≤

3、受弯矩作用:w

t

w

M

f

W

σ=≤

4、弯矩、剪力和轴力同时作用:

正应力和剪应力都较大处要使用折算应力

1.1w

eq t

f

σ=≤

侧焊缝:平行受力方向的焊缝称为侧焊缝,应力性质:受剪应力作用,塑性好,强度偏低,约为端焊缝强度的75%。剪应力沿焊缝长度分布不均匀,两端大中间小。焊缝越长,分布越不均匀

端焊缝:垂直受力方向的焊缝称为端焊缝,应力性质:应力状态比较复杂,即非剪应力,亦非正应力,而是介于二者之间的一种应力有效截面(计算截面):直角角焊缝的实际

.

破坏面很不规则,计算中假定沿45°喉部截面破坏,该截面称为焊缝有效截面 焊脚尺寸:指焊跟至焊趾的尺寸f h

f h 值不能过大、过小:过小的角焊缝将导

致焊缝冷却过快易产生收缩裂纹等缺陷;过大会导致焊缝烧穿较薄的焊件,增加主体金属的翘曲和焊接残余应力

21.2f h t ≤≤ 1t 较厚焊件厚度 2t 较

薄焊件厚度 但对边缘施焊的角焊缝要求 ①当6 f t mm h t ≤≤

②当6 (1~2)f t mm h t mm >=- 焊缝长度不宜过小,也不能过大: 角焊缝的计算长度不得小于8f h 和40mm ,长度过小会使焊件局部加热严重,且起、落弧坑相距太近,以及可能产生缺陷,使焊缝不可靠

侧面角焊缝的计算长度也不宜过大,承受静荷载的侧面角焊缝计算长度不得大于60f h ,动荷载下不得大于40f h ,因为侧面角焊缝在弹性工作阶段沿长度方向受力不均,两端大而中间小。焊缝长度越长,应力集中系数越大。如果焊缝长度不是太大,焊缝两端达到屈服强度后,继续加载,应力会渐趋均匀。当焊缝长度达到一定的长度后,可能破坏首先发生在焊缝两端。(当实际长度大于以上数值时,计算时不与考虑;当内力沿侧焊缝全长分布时,不受上式限制) 仅采用两条侧焊缝时:

1、为了避免应力传递的过分弯折而使构件中应力不均,规范规定 w l b ≥

2、为了避免焊缝横向收缩时引起板件的 拱曲太大,规范规定 16b t ≤(较薄焊件厚度)

角焊缝的计算:

w f f ≤(静荷载时 1.22f β=,动荷载时 1.0f β=)

具体情况见书

残余应力的成因:焊接过程中,局部高温引起不均匀加热,部分区域出现塑性压缩,冷却时,焊缝附近钢材不能自由收缩,从而产生残余应力

残余应力产生的三个因素:

1、钢材本身有热胀冷缩的性质,且随温度升高屈服强度降低

2、焊接过程存在不均匀加热

3、刚才伸缩受到外界或内部因素的约束 残余应力的分布规律:

1、任意方向的残余应力在任意截面上的积分为零

2、在垂直焊缝截面上,焊缝截面及热影响区存在残余拉应力,约束区存在压应力

3、平行焊缝截面上,焊接残余应力与施焊顺序相关,分布复杂。 焊接残余应力的影响: 1、对结构静力强度无影响 2、降低结构刚度 3、降低结构稳定承载力

4、容易使钢构件发生脆断

5、降低材料疲劳强度 焊接应力和变形控制:

1、采用合理的焊接次序:跳焊、间断焊

2、焊缝均匀对称

3、焊后校直或给构件以一个和焊接变形相反的预变形

4、焊前预热、焊后热处理

规范禁止3条相互垂直的焊缝相交,为什么?

由于焊缝中存在三向应力,阻碍了塑性变形,在低温下使裂缝易发生和发展,加速构件的脆性破坏 螺栓的间距要求: 1、受力要求:

垂直受力方向:为了防止螺栓应力集中相互影响、截面削弱过多而降低承载力,螺栓的

.

边距和端距不能太小

顺力作用方向:为了防止板件被拉断或剪坏,端距不能太小

对于受压构件:为防止连接板件发生鼓曲,中距不能太大。 2、构造要求:

螺栓的边距和中距不宜太大,以免板件间贴合不密,潮气侵入腐蚀钢材。 受剪连接破坏形式: 1、螺栓杆被剪坏 2、孔壁的挤压破坏 3、板件被拉断

4、板件端部被剪坏(拉豁) :端距不小于2d 0

5、栓杆弯曲破坏:板叠厚度不超过5d 前三种通过计算避免,后两种通过构造解决 单个螺栓的抗剪承载力: 螺杆抗剪承载力设计值:2

4

b

b v

v v d N n f π=

承压承载力设计值:b

b c v

N d t f =?∑

单栓承载力:{}min

min ,b

b b v

c

N N N =

t ∑—在同一受力方向的承压构件的较小

厚度

普通螺栓群的单栓抗剪承载力的折减: 在1015l d >(0d 为孔径)时,要进行折减,因为螺栓群在轴力的作用下的受剪连接,螺栓群在长度方向各螺栓受力不均匀,两端大、中间小,当1015l d ≤时可不考虑这种不均匀性,当1015l d >时,连接进入弹塑性工作状态后,即使内力重分布,各个螺栓内力也难以均匀,故要进行折减 将螺栓承载力乘以折减系数:

1100101.10.7(15)1500.7(60)

l l d d l d η?

-≥>?

=??>?

扭矩作用下的计算假定: 1、连接板件绝对刚性,螺栓为弹 性体

2、扭矩使连接板绕螺栓群形心O 转动,各

螺栓所受剪力与螺栓至形心距离成正比,其方向与螺栓到形心的连线相垂直 拉力、剪力联合作用下:

1≤

防止孔壁压坏:1b

v c V N N n

=≤

三种螺栓受剪型连接的传力机理: 普通螺栓依靠螺栓抗剪和孔壁承压来传递外力;摩擦型是依靠被夹紧板束接触面的摩擦力传力,以摩擦力被克服和被连接件的构件发生相对滑移作为破坏的极限状态;承压型是依靠螺栓受剪和孔壁承压来传递外力,以螺栓受剪破坏或孔壁承压破坏作为承载力极限状态 摩擦型螺栓承载力:

抗剪承载力:0.9b

v f N n P μ=??

抗拉承载力:0.8b

t N P =

抗剪、抗拉承载力:1v t b b v t N N N N ????

+≤ ? ?????

承压型螺栓承载力: 抗剪承载力:

2

4

b b v

v

v d N n f π=、b

b c v N d t f =?∑

{}min

min ,b

b b v

c N N N =

抗拉承载力:2

4

b b e t

t d N f π?=

抗剪、

1≤ 同时防止孔壁承压破坏: 1.2

b

c v N N ≤

*用承压型高强螺栓连接轴心拉杆时,可否直接承受动载?

不能直接承受动荷载,承压型高强螺栓允许被连接件之间发生滑动,滑动后依靠栓干抗剪和承压径传递剪力,他的允许的外力有可能大于所受摩擦力,产生相对滑移,在动荷载作用下就存在循环应力,就可能存在疲劳

.

破坏

*摩擦型高强度螺栓本身不存在疲劳破坏问题,原因何在?

因为高强摩擦型螺栓之间是摩擦传递内力,破坏准则是克服摩擦力,它的摩擦力是大于螺栓所受到的外力,螺栓不会产生滑移,就不存在循环应力,也就没有疲劳破坏,一旦产生滑移高强摩擦性螺栓就算被破坏

第四章轴心受力构件

受拉构件也需要进行刚度验算的原因:

?避免自重下的挠曲

?避免动载作用下振动过大

?防止运输、安装过程中偶然碰撞引起杆件变形

解释概念:压杆的整体稳定性、压杆的局部稳定性、格构式压杆的换算长细比

压杆的整体稳定性:轴心受压杆件维持其原有平衡状态的能力

压杆的局部稳定性:在外压力作用下,截面的某些部分(板件),不能继续维持平面平衡状态而产生凸曲现象,称为局部失稳

格构式压杆的换算长细比:当构件绕虚轴发生弯曲失稳时,因为剪力要由比较柔弱的缀材负担,剪切变形较大,导致构件产生较大的附加侧向变形,这对构件临界力的降低是不可忽略的,故用加大的长细比来代替进行计算,为换算长细比

实际轴心压杆与理想轴心压杆有哪些区别?

1)材料为弹塑性材料,且材质不均匀

2)存在残余应力、初弯曲、初偏心等缺陷轴心受压构件的失稳模式:

弯曲失稳:只发生弯曲变形,截面只绕一个主轴旋转,杆纵轴由直线变为曲线,是双轴对称截面常见的失稳形式

扭转失稳:失稳时除杆件的支撑端外,各截面均绕纵轴扭转,是某些双轴对称截面可能发生的失稳形式

弯扭失稳:单轴对称截面绕对称轴屈曲时,杆件发生弯曲变形的同时必然伴随着扭转理想轴压杆件的基本假设:

1、截面几何中心(形心)和物理中心(质心)

始终重合

2、杆件轴线(截面形心的连线)笔直

3、轴力作用线与杆件轴线始终重合

临界力的求解步骤:

1、令结构偏离初始平衡位置,产生一可能变形

2、分析受力情况,作隔离体受力图

3、由平衡条件建立稳定分析的特征方程

4、由特征方程求解临界荷载

欧拉临界应力:

2

2

cr

E

π

σ

λ

=

实际轴心受压构件:

杆件不可避免的存在初弯曲、初偏心、残余应力以及材质不均匀等初始缺陷,导致杆件稳定性与理想轴心压杆有很大区别。其中初弯曲、初偏心称为几何缺陷,材质不均匀和残余应力称为力学缺陷

残余应力的影响:

残余应力使临界荷载下降,影响程度与构件截面形状尺寸、残余应力的分布和大小以及构件屈曲时的弯曲方向等有关

残余应力对弱轴的影响更大

边缘纤维屈服准则:

边缘屈服准则以有初偏心和初弯曲的压杆为模型,以截面边缘应力达到屈服点为承载能力的极限状态。此种方法应用于薄壁构件的稳定计算,原因是薄壁构件的板厚很小,不宜考虑截面塑性发展,而且残余应力的影响也比较小。此外,对于格构式压杆对虚轴的稳定计算,由于塑性不可能深入发展,因此也按照边缘屈服准则进行计算

.

最大强度准则(压溃准则):

以有初始缺陷的压杆为依据,考虑塑性深入截面,以构件最后破坏时所能达到的最大压力值作为压杆的承载能力极限。实际钢压杆的整体稳定承载力的计算通常采用最大强度准则

轴心受压构件的稳定系数?为什么要按截面形式和对应轴分成四类?同一截面关于两个形心主轴的截面类别是否一定相同? 由于各种缺陷对不同截面、不同对称轴的影响不同,所以?λ-曲线(柱子曲线),呈相

当宽的带状分布,为减小误差以及简化计算,规范在试验的基础上,依截面形式、失稳方

向、板件厚度、制造加工方式确定给出了四条曲线(四类截面),符合概率既满足可靠度又满足经济的要求 不一定相同

实际轴心受压构件整体稳定的实用计算方法:

1、根据截面形状和加工方法确定截面分类

(),,,a b c d

2、计算截面特性A ,x i ,y i

3、根据计算长度ox l ,oy l 计算长细比

/x ox x l i λ=,/y oy y l i λ=

4、按()max

,x y λλ=查表得稳定系数?

对于双轴对称十字形截面,为了防止扭转屈曲,x λ,y λ取值不得小于5.07/b t 其他注意事项:

1、无对称轴截面(单面连接的不等边角钢除

外)不宜用作轴心受压构件

2、格构式截面中的槽形截面分肢,计算其绕对称轴(y 轴)的稳定性时,不考虑扭转效应,直接用y λ查稳定系数 ?

3、单面连接的单角钢轴心受压构件,考虑强度折减系数后,可不考虑弯扭效应的影响 影响压杆整体稳定承载力的因素:

与杆件的长度,边界条件,外荷载,材料的强度,长细比,计算长度,实际长度以及构件两端的约束关系,回转半径以及构件截面尺寸等有关

局部稳定的设计原则:

压杆发在发生整体失稳之前,板件不能局部失稳,即要求板件的临界应力不低于构件的临界应力

工形截面局部稳定的要求: 翼缘:

(

1

100.1f

b t λ≤+ 腹板:(

0250.5w h t λ≤+其中,30100λ≤≤为最大长细比 轴压构件的局部稳定不满足时可采取以下措施:

1、增加板件厚度

2、对于H 形、工字形和箱形截面,当腹板高厚比不满足以上规定时,在计算构件的强度和稳定性时,腹板截面取有效截面,即取腹板计算高度范围内两侧各

20t 部分,但计算构件的稳定系

数时仍取全截面

3、对于H 形、工字形和箱形截面腹板高厚比不满足以上规定时,也可以设纵向加劲肋来加强腹板

实腹轴心受压构件设计: 基本要求: ? 满足强度 ? 刚度 ? 整体稳定 ? 局部稳定

截面选择的基本原则:

1、宽肢薄壁:截面面积的分布应尽量开展,以增加截面的惯性惯性矩和回转半径,提高它的整体稳定性和刚度;

2、等稳定性:使两个主轴方向的稳定系数(长细比)大致相等

.

3)、便于与其他构件进行连接;

4、尽可能构造简单,制造省工,取材方便。 格构式轴心压杆为什么采用换算长细比验算绕虚轴的总体稳定性?

对于格构式压杆,当绕曲轴失稳时,因肢件之间并不是连续的板而是每隔一定距离用缀条或缀板联系起来。构件的剪切变形较大,剪力造成的附加挠曲影响不能忽略,在格构式压杆的设计中,对虚轴失稳的计算,常以加大长细比的办法来考虑剪切变形的影响,加大以后的长细比称为换算长细比 格构柱的设计要求:

1、构件设计—绕实轴稳定性,绕虚轴稳定性

2、柱肢设计—绕强轴稳定性,绕弱轴稳定性

3、缀材设计—缀条稳定性,缀板强度

4、缀材连接设计—焊缝强度,螺栓强度 缀条柱绕虚轴的换算长细比:

0x λ=A ——整个构件的横截面的毛面积 A 1——构件截面中垂直于x 轴各斜缀条的毛截面面积之和

缀板柱绕虚轴的换算长细比:

0x λ=1λ为单个柱肢绕弱轴的长细比,焊接时,计

算长度缀板之间的净距离;当缀板用螺栓或铆钉连接时,计算长度取缀板边缘螺栓中心线之间的距 分肢的计算: 缀条柱:1max 0.7λλ≤

缀板柱:1max 0.5λλ≤且不大于40,当

max 50λ<时,取max 50λ=

缀材设计:

截面最大剪力:V =

缀条柱:轴力1

1cos V N n θ=

缀板柱:剪力11V l T a =弯矩112

V l

M =

等稳定性条件:0x y λλ=

第五章 受弯构件(梁)

梁格布置:

? 简单梁格:只有主梁,适用于主梁跨度较小或面板规格较大的情况

? 普通梁格:在主梁间设次梁,适用于大多数的梁格尺寸和情况,应用最广

? 复式梁格:在主梁间设纵向次梁,在纵向次梁间设横向次梁。荷载传递层次多,梁格构造复杂,只适用于荷载大和主梁跨度大的情况

截面形状系数:

定义塑性截面抵抗矩和弹性截面抵抗矩的比为截面形状系数,/p pn n W W γ=,其值只取决于截面的几何形状而与材料性质无关 截面塑性发展系数:

考虑塑性部分深入截面的系数,构件截面部分进入塑性阶段后的截面抵抗矩与弹性截面抵抗矩的比值

为什么钢梁设计一般不利用完全塑性的极限弯矩强度,只能部分利用材料塑性,即使梁的工作状态处于弹塑性工作阶段? 1、如塑性变形过分发展可能使梁的挠度过大

2、钢梁的腹板较薄,会有一定的剪应力,有时还有局部压应力,故应限制塑性弯曲应力的范围,以免综合考虑的折算应力太大

3、过分发展塑性对钢梁的整体稳定和板件的局部稳定都不利

截面塑性发展系数取1.0的两种情况:

1

、b t < 2、需计算疲劳时

.

梁的整体失稳:

横向荷载作用下,梁在弯矩作用平面内弯曲,当荷载增大到一定程度时,梁将突然发生侧向弯扭,继而丧失承载能力,此现象称为梁丧失整体稳定 失稳形态:弯扭失稳;

失稳原因:受压翼缘及中性轴以上受压腹板内的弯曲压应力 自由扭转:

梁受扭矩作用时,两端支承不受限制,非圆截面可以自由产生翘曲,不受约束 截面上只有剪应力和剪应变,没有正应力,没有弯矩 约束扭转:

非圆截面杆件受扭矩作用时,截面不能自由翘曲,纵向变形受到约束 截面上有剪切变形和弯曲变形 梁整体稳定的计算: 基本假定

1、弯矩作用在最大刚度平面,屈曲时钢梁处于弹性阶段

2、梁端为夹支座(只能绕x 轴,y 轴转动,不能绕z 轴转动,只能自由挠曲,不能扭转)

3、梁变形后,力偶矩与原来的方向平行(即小变形)

整体稳定系数b ?:

等截面焊接工字形钢和热轧H 型钢钢简支梁:

24320235b b b y x y Ah W f ?βηλ??

=??

当0.6b ?>时要使用弹塑性整体稳定系数

进行计算0.282

1.071b

b

??'=-≤

*影响钢梁稳定承载力的主要因素: 1、截面刚度(抗扭刚度、侧向抗弯刚度、翘曲刚度等)

2、荷载作用点位置,荷载作用点越靠下,稳定性越好

3、荷载类型以及沿梁长的分布情况:对纯弯曲、全跨均布荷载、跨中集中荷载,临界弯矩依次增大,即弯矩图面积越小,临界弯矩越大

4、钢梁跨度,侧向支撑间距

5、梁端部支撑条件,支撑约束越大,临界弯矩越大

*不需要计算稳定性的受弯构件: 1、有刚性铺板密铺在梁受压翼缘上并与其牢固连接,能阻止梁受压翼缘侧移 2、H 形或等截面工字形截面简支梁受压翼缘的自由长度1l 和其宽度1b 之比满足规定的数值时,见教材

3、箱型截面梁,其截面尺寸满足0/6h b ≤,且()

10/95235/y l b f ≤时 梁局部失稳:

横向荷载作用下,梁的受压翼缘和腹板都可能因弯曲压应力和剪应力的作用而偏离其平面位置,出现波形鼓曲,这种现象称为钢梁丧失局部稳定 梁内产生压应力的原因:

1、截面受弯——上翼缘受压,腹板有受压区

2、腹板受剪——主压应力方向

3、集中荷载——局部压应力

翼缘局部稳定:对翼缘自由外伸宽度和厚度的比值进行限定

工字形截面小于等于弹性设计时

可放宽为腹板加劲肋的类型和作用:

限制加劲肋处板件的侧向位移,约束板件自由翘曲,提高临界应力

纵向加劲肋——避免弯曲压应力失稳,设置在受压区

.

横向加劲肋——避免剪切应力失稳,设置在剪力大区域

支承加劲肋——避免局部压应力失稳,集中力处

腹板加劲肋的布置:

1、

当0w h t ≤对无局部压应力的

梁可不设置加劲肋,对有局部压应力的梁按构造配置加劲肋

2

、对于受压翼缘扭转收到约束的梁,当

0w h t <≤受压翼缘扭转未受到约束的梁,

0w h t <≤均应该按计算配置横向加劲肋,加劲肋间距在0.5~2h 0之间取值

3

、对于受压翼缘扭转收到约束的梁,当

0w h t >受压翼缘扭转未受到约束的梁,

0w h t >应按照计算配置横向加劲肋和纵向加劲肋 4

、任何情况下,

0w h t ≤ 5、梁的支座处和上翼缘受有较大固定集中荷载处,宜设置支承加劲肋

第六章 拉弯和压弯构件

拉弯(压弯)构件的破坏形式:

1、强度破坏:截面的部分或全部应力都达到甚至超过钢材屈服点的状况。

2、刚度破坏:指构件的挠度(或长细比)达到甚至超过规范的限值

3、平面内失稳(弯矩作用平面内弯曲失稳破坏):直杆在偏心压力的作用下,弯曲作

用平面内构件挠度随压力的增加而增大,且呈非线性增长,这是由于二阶效应的影响,最后达到偏心压力的极值点,失去平面内稳定,不存在分枝现象

4、平面外失稳(弯矩作用平面外失稳破坏、弯扭失稳):假如构件没有足够的侧向支撑,且弯曲作用平面内稳定性较强。无初始缺陷时,压力作用下,构件只产生弯矩平面内的挠度,当压力增大到某一临界值之后,构件突然产生弯矩作用平面外的弯曲变形和整体扭转,发生弯扭失稳,是一种分枝失稳。有初始缺陷压弯构件在弯矩作用平面外失稳为极值失稳,无分枝现象

5、局部失稳破坏:

拉弯及压弯构件强度计算准则:

? 边缘纤维屈服准则—在构件受力最大的截面上,截面边缘处的最大应力达到屈服时即认为构件达到了强度极限,此时构件在弹性阶段工作

? 全截面屈服准则—构件的最大受力截面的全部受拉和受压区的应力都达到屈服,此时,这一截面在拉力(压力)和弯矩的共同作用下形成塑性铰

? 部分发展塑性准则—构件的最大受力截面的部分受拉和受压区的应力达到屈服点,至于截面中塑性区发展的深度根据具体情况给定。此时,构件在弹塑性阶段工作 平面内稳定的概念:

在N 和M 的同时作用下,构件在弯矩作用平面内发生变形,当荷载增加到一定大小时则到达极限;超过此极限,要维持内外力平衡,只能减小N 和M ,即为压弯构件在弯矩作用平面内的稳定问题

构件在荷载作用开始时,会沿弯矩作用方向弯曲,直到压溃破坏,即构件在弯矩作用平面内丧失稳定,属于第二类稳定问题 平面内稳定的设计公式:

.

110.8

mx x

x x x Ex M N f A

N W N β?γ+≤?

?- ?'??

平面外失稳的概念:

对侧向刚度较小的压弯构件,当N 和M 增加到一定程度,构件在弯矩作用平面外不能保持平直,突然发生平面外的弯曲变形,并伴随着绕纵向剪切中心轴(扭转轴)的扭转。这种现象称为压弯构件丧失弯矩作用平面外的整体稳定

平面外稳定的设计公式:

1tx x y b x

M N

f A W βη??+≤ 翼缘局部稳定:

受压柱——限制宽厚比,等稳定性原则 受弯梁——限制宽厚比,不先于强度破坏原则

压弯柱——限制宽厚比,采用梁的限制值 腹板局部稳定: 轴压柱——限制高厚比 受弯梁——布置加劲肋

压弯柱——轴力+弯矩,正应力为主,应力分布接近受压构件,限制高厚比

讲座内容

什么是钢结构?

钢结构是钢材经过设计、制作和安装而形成的工程结构形式 钢结构的特点: 1、轻质高强,承载力大 2、钢材材性好,可靠性高 3、工业化程度高 4、抗震性能好 5、气密水密性好 6、易于锈蚀

7、耐热性好,耐火性差 8、绿色环保无污染 什么是钢结构设计?

以钢材为结构材料,通过结构选型、结构计算分析,最终绘制完成结构施工图 建筑结构的设计方法:

具体到结构体系一般都是基于构件的设计方法

结构整体计算⑩结构内力、位移⑩构件内力、位移⑩验算构件(S≤R )⑩设计构件间的连接节点

建筑结构的设计过程:

确定结构形式及材料⑩结构布置⑩荷载计算⑩结构计算⑩构件验算⑩合理性判断⑩节点、构造设计⑩施工图绘制 整体结构分析—结构力学为基础 单个构件分析—材料力学为基础 连接分析—结合工程实际 钢结构设计流程:

? 结构方案:结构体系,材料,构件布置; ? 荷载计算:恒、活、风、雪、吊车、地震等;

? 荷载组合:恒+活、恒+活+风、恒+活+地震等,地震和风作用的方向,吊车不同的位置;

? 内力分析:截面估算,结构力学,弹性分析,变形计算;

? 构件设计:验算两种极限状态,优化设计; ? 构造要求:考虑制作和安装问题,考虑不可计算问题;

? 施工详图:保证制作和安装需求。 我国结构规范的体系组成——5个层次: 1、规范制定的原则

2、抗震设计方法、荷载代表值的取用等

3、各种结构的设计规范

4、与设计规范配套的施工规范

5、与设计、施工相配套的各种材料、连接方面的规范

钢结构设计原理重点

1.刚结构的特点:材料的强度高,塑性和韧性好;材质均匀,和力学计算的假定比较符合;钢结构制造简便,施工周期短;钢结构的质量轻;钢材耐腐蚀性差;钢材耐热但不耐火(钢结构对缺陷较为敏感;钢结构的变形有时会控制设计;钢结构对生态环境的影响小) 2. 钢结构应用范围:(技术角度)大跨度结构;重型厂房结构;受动力荷载影响的结构;可拆卸的结构;高耸结构和高层建筑;容器和其他构筑物;轻型钢结构 3.钢结构的极限状态:承载能力极限状态,正常使用极限状态 4.压应力是使构件失稳的原因 5.超静定梁或跨框架可以允出现许在受力最大的截面全面塑性,形成所谓塑性铰 6.索和拱配合使用,常称为杂交结构 7. 钢材的基本的性能:①较高的强度:屈服点fy抗拉强度fu 级较高②足够的变形能力:塑性和韧性性能好③良好的加工性能:具有良好的可焊性 8. 钢材三个重要的力学性能指标(1)屈服点(2)抗拉强度(3)伸长率 9.冷弯性能是鉴定钢材在弯曲状态下的塑性应变能力和钢材质量的综合指标 10.与抵抗冲击作用有关的钢材的性能是韧性 11.碳含量在0.12%~0.20%范围内的碳素钢,可焊性最好(钢:C<2%;铸铁:C>2%) 12.反映钢材质量的主要力学指标是屈服强度、抗拉强度、伸长率、冲击韧性、冷弯性能 13.有益元素:Mn、Si;有害元素:S、P、O、P 14.250?C附近有兰脆现象,260~320?C时有徐变现象 15.钢材的主要破坏形式:塑性破坏(延性破坏)脆性破坏(脆性断裂)损伤累积破坏疲劳破坏 16.A级钢不提供冲击韧性保证,B、C、D、E分别提供20?/0?、-20?、-40?的冲击韧性 17.选材考虑因素:荷载性质、应力状态、连接方法、工作环境、供货价格 18.热轧H型钢:宽翼缘H型钢(HW)、中翼缘H型钢(HM)窄翼缘H型钢(HN) 19.钢梁:型钢梁、组合梁 20.荷载较大高度受限的梁,可考虑采用双腹板的箱型梁,有较大的抗扭刚度 21.承载能力极限状态计算内容:截面强度、构件的整体稳定、局部稳定 22.吊车梁应力循环次数n>50000时要进行疲劳验算 23.单跨简支梁中截面出现塑性铰,即发生强度破坏;超静定梁出现塑性铰后,仍能继续承载 24.单轴对称截面有实腹式和格构式 25.塑形设计只用于不直接承受动力荷载的固端梁和连续梁 26.计算拉弯(压弯)时3种强度计算准则:边缘纤维屈服准则、全截面屈服准则、部分发展塑性准则 27.横梁对柱的约束作用取决于横梁的线刚度I0/L和柱的线刚度I/H的比值K0,即K0=I0H/IL 28.超出正常使用极限状态:影响正常使用或外观的变形、影响正常使用或耐久性能的局部破坏、影响正常使用或耐久性能的震动、影响正常使用或耐久性能的其他特定状态 29.连接的要求:足够的强度、刚度和延性 30.连接方法:焊接、铆接和普通螺栓连接、高强度螺栓连接 31. 常用焊接方法:电弧焊、电渣焊、气体保护焊和电阻焊等 32. 焊缝连接的优缺点:优点:省工省材、任何形状的构件均可直接连接、密封性好,刚度大缺点:材质劣化、残余应力、残余变形、一裂即坏、低温冷脆 33. 焊缝等级分三级:三级焊缝:外观检查;二级焊缝:在外观检查的基础上再做无损检验,;一级焊缝:在外观检查的基础上用超声波检验每条焊缝全部长度,以便揭示焊缝内部缺陷 34. 焊缝型式:对接焊缝和角焊缝 35. 施焊分类(位置):俯焊(最好)、立焊、横焊和仰焊(最差) 36.角焊缝的焊脚尺寸h f应不小于1.5t^0.5,t为较厚焊件的厚度(mm);hf应不大于较薄焊件厚度的1.2倍 37. 残余应力对结构性能的影响:对结构静力强度的影响、对结构刚度的影响、对压杆稳定的影响4、对低温冷脆的影响、对疲劳强度的影响 38.高强度螺栓连接的性能等级:10.9级、8.8级

钢结构设计原理课后习题答案(张耀春版)

页脚内容1 《钢结构设计原理》 三. 连接 3.8 试设计如图所示的对接连接(直缝或斜缝)。轴力拉力设计值N=1500kN ,钢材Q345-A ,焊条E50型,手工焊,焊缝质量三级。 解: 三级焊缝 查附表1.3:2w t N/mm 265=f ,2w v N/mm 180=f 不采用引弧板:m m 4801025002w =?-=-=t b l 3 2w 2t w 150010312.5N/mm 265N/mm 48010 N f l t σ?===>=?,不可。 改用斜对接焊缝: 方法一:按规范取θ=56°,斜缝长度: m m 58320)829.0/500(20)56sin /500(2)sin /(w =-=-?=-='t b l θ 32w 2t w sin 1500100.829213N/mm 265N/mm 58310 N f l t θσ??===<='? 32w 2w cos 1500100.559144N/mm 180N/mm 58310 v N f l t θτ??==≈<='? 设计满足要求。 方法二:以θ作为未知数求解所需的最小斜缝长度。此时设置引弧板求解方便些。 3.9 条件同习题3.8,受静力荷载,试设计加盖板的对接连接。

页脚内容 2 解:依题意设计加盖板的对接连接,采用角焊缝连接。 查附表1.3:2w f N/m m 200=f 试选盖板钢材Q345-A ,E50型焊条,手工焊。设盖板宽b =460mm ,为保证盖板与连接件等强,两块盖板截面面积之和应不小于构件截面面积。所需盖板厚度: 1250010 5.4mm 22460 A t b ?≥==?,取t 2=6mm 由于被连接板件较薄t =10mm ,仅用两侧缝连接,盖板宽b 不宜大于190,要保证与母材等强,则盖板厚则不小于14mm 。所以此盖板连接不宜仅用两侧缝连接,先采用三面围焊。 1) 确定焊脚尺寸 最大焊脚尺寸:t h t ==m ax m m 6f ,mm 最小焊脚尺寸:7.4105.15.1min f =?==t h mm 取焊脚尺寸h f =6mm 2)焊接设计: 正面角焊缝承担的轴心拉力设计值: N 94281620022.146067.027.02w f f f 3=?????=?=f b h N β 侧面角焊缝承担的轴心拉力设计值: N 557184942816101500331=-?=-=N N N 所需每条侧面角焊缝的实际长度(受力的一侧有4条侧缝): mm 172620067.045571847.04f w f f 1f w =+???=+?=+=h f h N h l l 取侧面焊缝实际长度175mm L=175×2+10(盖板距离)=360mm 。

最新钢结构设计原理重点

钢结构设计原理重点 1、什么是柱子曲线?现行规范采用几条?为什么采用此数目?(1)根据设计中经常采用的住的不同截面形式并考虑初弯矩和残余应力影响的稳定系数9 -正则化-广义长细比曲线 (2)4条 (3)初弯矩和残余应力不同 2、轴心构件的屈曲形式,什么截面发生此种屈曲? 弯曲屈曲单轴对称截面绕非对称轴失稳扭转屈曲双轴对称屈曲(十字形)弯扭屈曲单轴对称截面绕对称轴失稳 3、影响轴压构件初始缺陷的因素有哪些?残余应力、初弯曲、初弯矩、初偏心 4、构件翼缘腹板局部稳定各简化为什么条件上的板?其计算原则是什么? (1)构件翼缘-三边简支,腹板-四边简支(2)局部不失于整体失稳5、格构式受压构件需要对那些进行验算?(1)构件在弯矩作用平面内失稳(2)构件在弯矩作用平面外失稳(3)单肢验算(4)缀材验算 6、格构式受压构件对虚轴为何采用换算长细比?它的缀件有什么作用?计算模型? (1)两分肢向缀材抗剪强度比实腹式构件弱得多,绕虚轴稳定承载力有所降低,故采用加大的长细比(2)缀材承受剪力,而且能接受分肢计算长度(3)缀条为腹板,缀板为梁

7、轴压设计原则(1)等稳定性:使构件两个主轴方向的稳定承载力相同,以达到经济的效果,长细比应尽量接近,入x=入y(等稳定性原则)。(2)宽肢薄壁(3)连接方便,便于施工(4)制造省工 8.轴心受压正常使用极限状态如何保证?控制长细比 9.梁强度需验算哪些方面?弯曲正应力,剪应力,局部压应力,折算 应力。 10.抗弯强度验算塑性发展系数的要求?陈绍蕃、顾强钢结构设计原 理第二版p79 页,对直接承受动力荷载的梁,不考虑塑性发展,11?梁翼缘局部设计稳定的保证措施:限制宽厚比a弹性设计v根号 下235/fy; b塑性设计v 9倍的;c部分塑性v 13倍的。 12.梁腹板加劲肋作用 横向:承受剪力&局部压应力纵向:承受弯矩。 短加劲肋:承受局部压应力。 13.支撑加劲肋作用及如何计算? 承受集中力和支座反力 14.影响梁整体稳定性的因素有哪些? a抗弯刚度,抗扭刚度,翘曲刚度,提高M cr,稳定性增加,b受压区侧向支撑长度增加,临界弯矩M cr增加,C荷载性质(纯弯曲时最低,其次是均布荷载,再次是集中力) d 荷载作用位置,作用于翼缘M cr 降低,作用于下翼缘M cr增加f支座多余约束条件越强;M cr增加e 加强受压翼缘比加强受拉翼缘有效,M ”增加。 15.何时无需进行梁整体稳定? a有铺板密铺在梁受压翼缘上并与其牢固连接,能阻止受压翼缘侧向位

钢结构设计原理试题库

<钢结构设计原理试题库> 一、单项选择题 1、有四种厚度不等的Q345钢板,其中 厚的钢板设计强度最高。 (A)12mm (B)18mm (C)25mm (D)30mm 2、焊接残余应力不影响构件的 。 A 整体稳定性 B 静力强度 C 刚度 D 局部稳定性 3、考虑角焊缝应力分布的不均匀,侧面角焊缝的计算长度不宜大于 。 A 40hf B 60hf C 80hf D 120hf 4、确定轴心受压实腹柱腹板和翼缘宽厚比限值的原则是 。 A 等厚度原则 B 等稳定原则 C 等强度原则 D 等刚度原则 5、最大弯矩相等的情况下,下列简支梁整体稳定性最差的是 A .两端纯弯作用 B .满跨均布荷载作用 C .跨中集中荷载作用 D .跨内集中荷载作用在三分点处 6、钢材塑性破坏的特点是 。 A 变形小 B 破坏经历时间非常短 C 无变形 D 变形大 7、.梁的最小高度是由___ _____控制的. A 强度 B 建筑要求 C 刚度 D 整体稳定 8、摩擦型高强度螺栓的抗剪连接以 作为承载能力极限状态。 A 螺杆被拉断 B 螺杆被剪断 C 孔壁被压坏 D 连接板件间的摩擦力刚被克服 9、梁整体失稳的方式为 。 A 弯曲失稳 B 剪切失稳 C 扭转失稳 D 弯扭失稳 10、受弯构件的刚度要求是ν≤[ν],计算挠度ν时,则应 。 A .用荷载的计算值 B .用荷载的标准值 C .对可变荷载用计算值 D .对永久荷载用计算值 1.钢材牌号Q235,Q345,Q390是根据材料 命名的 (A) 屈服点 (B) 设计强度 (C) 极限强度 (D) 含碳量 2.当角焊缝无法采用引弧施焊时,其计算长度等于 。 (A) 实际长度 (B) 实际长度-2t (C) 实际长度-2h f (D) 实际长度-2h e 3.普通螺栓和承压型高强螺栓受剪连接的五种可能破坏形式是:I 螺栓杆剪断;Ⅱ孔壁挤压破坏;Ⅲ钢板被拉断;Ⅳ钢板剪断;Ⅴ螺栓弯曲破坏。其中 种形式是通过计算来保证的。 (A )Ⅰ,Ⅱ,Ⅲ (B )Ⅰ,Ⅱ,Ⅳ (C )Ⅰ,Ⅱ,Ⅴ (D )Ⅱ,Ⅲ,Ⅳ 4.计算梁的 时,应用净截面的几何参数。 (A) 正应力 (B) 疲劳应力 (C) 整体稳定 (D) 局部稳定 5.钢结构受弯构件计算公式nX x x W M γσ=中,x γ 。 (A )与材料强度有关 (B )是极限弯矩与边缘屈服弯矩之比 (C )表示截面部分进入塑性 (D )与梁所受荷载有关

钢结构设计原理复习总结

钢结构的特点: 1.钢材强度高、塑性和韧性好 2.钢结构的重量轻 3.材质均匀,和力学计算的假定比较符合 4.钢结构制作简便,施工工期短 5.钢结构密闭性好 6.钢结构耐腐蚀性差 7.钢材耐热但不耐火 8.钢结构可能发生脆性断裂 钢结构的破坏形式 钢材有两种性质完全不同的破坏形式,即塑性破坏和脆性破坏。钢结构所用材料虽然有较高的塑性和韧性,但一般也存在发生塑性破坏的可能,在一定条件下,也具有脆性破坏的可能。 塑性破坏是由于变形过大,超过了材料或构件可能的应变能力而产生的,而且仅在构件的应力达到了钢材的抗拉强度fu 后才发生。破坏前构件产生较大的塑性变形,断裂后的断口呈纤维状,色泽发暗。在塑性破坏前,构件发生较大的塑性变形,且变形持续的时间较长,容易及时被发现而采取补救措施,不致引起严重后果。另外,塑性变形后出现内里重分布,使结构中原先受力不等的部分应力趋于均匀,因而提高了结构的承载能力。 构件应力超过屈服点,并且达到抗拉极限强度后,构件产生明显的变形并断裂。常温及静态荷载作用下,一般为塑性破坏。破坏时构件有明显的颈缩现象。常为杯形,呈纤维状,色泽发暗。在破坏前有很明显的变形,并有较长的变形持续时间,便于发现和补救。 脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢材的屈服点fy ,断裂从应力集中处开始。冶金和机械加工过程中产生的缺陷,特别是缺口和裂缝,常是断裂的发源地。破坏前没有任 何预兆,破坏时突然发生的,断口平直并呈有光泽的晶粒状。由于脆性破坏前没有明显的预兆,无法及时察觉和采取补救措施,而且个别构件的断裂常会引起整体结构塌毁,后果严重,损失较大,因此,在设计,施工和使用过程中,应特别注意防止钢结构的脆性破坏。 在破坏前无明显变形,平均应力也小(一般都小于屈服点),没有任何预兆。局部高峰值应力可能使材料局部拉断形成裂纹;冲击振动荷载;低温状态等可导致脆性破坏。平直和呈有光泽的晶粒。突然发生的,危险性大,应尽量避免。 低碳钢的应力应变曲线: 1.弹性阶段:OA 段:纯弹性阶段εσE = A 点对应应力:p σ(比例极限) AB 段:有一定的塑性变形,但整个OB 段卸载时0=ε B 点对应应力:e σ(弹性极限) 2.屈服阶段:应力与应变不在呈正比关系,应变增加很快,应力应变曲线呈锯齿波动,出现应力不增加而应变仍在继续发展。其最高点和最低点分别称为上屈服点和下屈服点;下屈服点稳定,设计中以下屈服点为依据。 3.强化阶段:随荷载的增大,应力缓慢增大,但应变增加较快。当超过屈服台阶,材料出现应变硬化,曲线上升,至曲线最高处,这点应力fu 称为抗拉强度或极限强度。 4.颈缩阶段:截面出现了横向收缩,截面面积开始显著缩小,塑像变形迅速增大,应力不断降低,变形却延续发展,直至F 点试件断裂。 疲劳破坏:钢材的疲劳断裂是微观裂纹在连续反复荷载作用下不断扩展直至断裂的脆性破坏。 钢材的疲劳强度取决于构造状况(应力集中程度和残余应力)、作用的应力幅、反复荷载的虚幻次数,而和钢材的静力强度无明显关系。 钢结构的连接方法:焊接连接:不削弱构件截面,构造简单,节约钢材,焊缝处薄。弱铆钉连接:塑性和韧性极好,质量容易检查和保证,费材又费工。螺栓连接:操作简单便于拆卸。 焊接连接的优点:1.焊件间可以直接相连,构造简单,制作加工方便2.不削弱截面,节省材料3.连接的密闭性好,结构的刚度大4.可实现自动化操作,提高焊接结构的质量。 缺点:1.焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆2.焊接残余应力和残余变形使受压构件承载力降低3.焊接结构对裂纹很敏感,局部裂纹一旦发生,容易扩展至整个截面,低温冷脆问题也比较突出。 焊接连接通常采用的方法为电弧焊(包括手工电弧焊)自动(半自动)埋弧焊和气体保护焊。 侧面角焊缝主要承受剪力,塑性较好,应力沿焊缝长度方向的分布不均匀,呈两端打而中间小的状态。焊缝越长,应力分布不均匀性越显著,但临界塑性工作阶段时,产生应力重分布,可使应力分布的不均与现象渐趋缓和。 焊脚不能过小:否则焊接时产生的热量较小,而焊件厚度较大,致使施焊是冷却速度过快,产生淬硬组织,导致母材开裂。 焊脚不能过大:1.较薄焊件容易烧穿或过烧2.冷却时的收缩变形加大,增大焊接应力,焊件容易出现翘曲变形 计算长度不能过小:1.焊件的局部加热严重,焊缝起灭狐所引起的缺陷相距较近,及可能的其他缺陷使焊缝不够可

级钢结构设计原理期末考试试卷

2013-2014年第一学期 2010级土木工程专业钢结构设计原理课程期末考试 规范答案及评分细则 一、填空题(本大题共10小题,每空1分,共20分) 1. 承载能力极限状态为结构或构件达到最大承载力或达到不适于继续承载的变形时的极限状态。 2. 钢材牌号Q235-BF,其中235表示屈服强度,B表示质量等级为B级,F表示沸腾钢。 3. 钢材五项机械性能指标是屈服强度、抗拉强度、伸长率、冷弯性能、冲击韧性 5. 角焊缝的厚度大而长度过小时,使焊件局部过热严重,因此侧面角焊缝或正面角焊缝的计算长 度不得小于8hf和40mm。 6.当梁的整体稳定系数φb>0.6时,材料进入弹塑性阶段,这时,梁的整体稳定系数应采用φ'b。 7. 对承受静力荷载或间接承受动力荷载的钢梁,允许考虑部分截面发展塑性变形,在计算中引入 塑性发展系数来考虑。 8.焊接梁的设计中,翼缘板的局部稳定常用限制宽厚比的办法来保证,而腹板的局部稳定则采用 配置加劲肋的办法来解决。 9.按正常使用极限状态计算时,轴心受压构件要限制构件长细比,受弯构件要限制构件挠度,拉、 压弯构件要限制构件长细比。 10.目前我国设计规范中压弯构件弯矩作用平面内整体稳定验算多采用相关公式法,利用边缘屈服 准则,建立压弯构件弯矩作用平面内稳定计算的轴力和弯矩相关公式。 二、单选题(本大题共20小题,每小题1分,共20分) 1. 在结构设计中,失效概率P f与可靠指标β的关系为。 A.P f越大,β越大,结构可靠性越差 B.P f越大,β越小,结构可靠性越差 C.P f越大,β越小,结构越可靠 D.P f越大,β越大,结构越可靠 2. 钢材的设计强度是根据确定的。 A. 抗拉强度 B. 抗压强度 C. 屈服强度 D. 极限强度 3. 钢材的伸长率δ用来反映材料的。 A.承载能力 B.弹性变形能力 C.塑性变形能力 D.抗冲击荷载能力 4. 钢中硫和氧的含量超过限量时,会使钢材。 A. 变软 B. 热脆 C. 冷脆 D. 变硬 5. 钢材经历了应变硬化(应变强化)之后。 A. 强度提高 B. 塑性提高 C. 冷弯性能提高 D. 可焊性提高 6.手工电弧焊使用的焊条宜使焊缝金属与主体金属的强度相匹配,Q345钢宜采用焊条。 A.E43系列B.E50系列C.E55系列D.E235系列 7.下列关于焊接应力叙述错误的是()。 A.焊接应力增大了构件变形,降低了构件的刚度 B.焊接应力减小了构件有效截面和有效惯性矩,降低了构件稳定承载力 C.焊接应力降低了结构的静力强度,从而降低了构件的疲劳强度 D.在无外加约束情况下,焊接应力是自相平衡的力系 8. 下列螺栓破坏属于构造破坏的是。

钢结构设计原理 基本概念复习题及参考答案

2011年课程考试复习题及参考答案 钢结构设计原理 一、填空题: 1.钢结构计算的两种极限状态是和。 2.提高钢梁整体稳定性的有效途径是和。 3.高强度螺栓预拉力设计值与和有关。 4.钢材的破坏形式有和。 5.焊接组合工字梁,翼缘的局部稳定常采用的方法来保证,而腹板的局部稳定则 常采用的方法来解决。 6.高强度螺栓预拉力设计值与和有关。 7.角焊缝的计算长度不得小于 40 ,也不得小于 8hf ;侧面角焊缝承受静载时,其 计算长度不宜大于 60hf 。 8.轴心受压构件的稳定系数φ与、和有关。 9.钢结构的连接方法有、和。 10.影响钢材疲劳的主要因素有、和。 11.从形状看,纯弯曲的弯矩图为,均布荷载的弯矩图为,跨中 央一个集中荷载的弯矩图为。 12.轴心压杆可能的屈曲形式有、和。 13.钢结构设计的基本原则是、、 和。 14.按焊缝和截面形式不同,直角焊缝可分为、、 和等。 15.对于轴心受力构件,型钢截面可分为和;组合截面可分为 和。 16.影响钢梁整体稳定的主要因素有、、、 和。 1.承载能力极限状态,正常使用极限状态 2.加强受压翼缘,减少侧向支承点间的距离(或增加侧向支承点) 3.螺栓材质,螺栓有效面积 4.塑性破坏,脆性破坏 5.限制宽厚比,设置加劲肋 6.性能等级,螺栓直径

7.8h f,40mm,60 h f 8.钢号,截面类型,长细比 9.焊接连接,铆钉连接,螺栓连接 10.应力集中,应力幅(对焊接结构)或应力比(对非焊接结构),应力循环次数 11.矩形,抛物线,三角形 12.弯曲屈曲,扭转屈曲,弯扭屈曲 13.技术先进,经济合理,安全适用,确保质量 14.普通缝,平坡缝,深熔缝,凹面缝 15.热轧型钢,冷弯薄壁型钢,实腹式组合截面,格构式组合截面 16.荷载类型,荷载作用点位置,梁的截面形式,侧向支承点的位置和距离,梁端支承条件 二、问答题: 1.高强度螺栓的8.8级和10.9级代表什么含义? 2.焊缝可能存在哪些缺陷? 3.简述钢梁在最大刚度平面内受荷载作用而丧失整体稳定的现象及影响钢梁整体稳定的主要因素。 4.建筑钢材有哪些主要机械性能指标?分别由什么试验确定? 5.什么是钢材的疲劳? 6.选用钢材通常应考虑哪些因素? 7.在考虑实际轴心压杆的临界力时应考虑哪些初始缺陷的影响? 8.焊缝的质量级别有几级?各有哪些具体检验要求? 9.普通螺栓连接和摩擦型高强度螺栓连接,在抗剪连接中,它们的传力方式和破坏形式有何不同? 10.在计算格构式轴心受压构件的整体稳定时,对虚轴为什么要采用换算长细比? 11.轴心压杆有哪些屈曲形式? 12.压弯构件的局部稳定计算与轴心受压构件有何不同? 13.在抗剪连接中,普通螺栓连接和摩擦型高强度螺栓连接的传力方式和破坏形式有何不同? 14.钢结构有哪些连接方法?各有什么优缺点? 15.对接焊缝的构造有哪些要求? 16.焊接残余应力和焊接残余变形是如何产生的?焊接残余应力和焊接残余变形对结构性能有何影 响?减少焊接残余应力和焊接残余变形的方法有哪些? 17.什么叫钢梁丧失整体稳定?影响钢梁整体稳定的主要因素是什么?提高钢梁整体稳定的有效措施 是什么? 18.角焊缝的计算假定是什么?角焊缝有哪些主要构造要求? 19.螺栓的排列有哪些构造要求? 20.什么叫钢梁丧失局部稳定?怎样验算组合钢梁翼缘和腹板的局部稳定?

钢结构设计原理题库及答案

钢结构设计原理题库 一、 单项选择题 (在每小题列出的四个备选项中只有一个是符合 题目要求的,请将其代码填写在题后的括号内。错选、多选或未 选均无分) 1.下列情况中,属于正常使用极限状态的情况是 【 】 A 强度破坏 B 丧失稳定 C 连接破坏 D 动荷载作用下过大的振动 2.钢材作为设计依据的强度指标是 【 】 A 比例极限f p B 弹性极限f e C 屈服强度f y D 极限强度f u 3.需要进行疲劳计算条件是:直接承受动力荷载重复作用的应力循环次数 n 大于或等于 【 】 A 5×104 B 2×104 C 5×105 D 5×106 4.焊接部位的应力幅计算公式为 【 】 A max min 0.7σσσ?=- B max min σσσ?=- C max min 0.7σσσ?=- D max min σσσ?=+ 5.应力循环特征值(应力比)ρ=σmin /σmax 将影响钢材的疲劳强度。在其它条件完全相同 情况下,下列疲劳强度最低的是 【 】 A 对称循环ρ=-1 B 应力循环特征值ρ=+1 C 脉冲循环ρ=0 D 以压为主的应力循环 6.与侧焊缝相比,端焊缝的 【 】 A 疲劳强度更高 B 静力强度更高 C 塑性更好 D 韧性更好 7.钢材的屈强比是指 【 】 A 比例极限与极限强度的比值 B 弹性极限与极限强度的比值 C 屈服强度与极限强度的比值 D 极限强度与比例极限的比值. 8.钢材因反复荷载作用而发生的破坏称为 【 】 A 塑性破坏 B 疲劳破坏 C 脆性断裂 D 反复破坏. 9.规范规定:侧焊缝的计算长度不超过60 h f ,这是因为侧焊缝过长 【 】 A 不经济 B 弧坑处应力集中相互影响大 C 计算结果不可靠 D 不便于施工 10.下列施焊方位中,操作最困难、焊缝质量最不容易保证的施焊方位是 【 】 A 平焊 B 立焊 C 横焊 D 仰焊 11.有一由两不等肢角钢短肢连接组成的T 形截面轴心受力构件,与节点板焊接连接,则肢 背、肢尖内力分配系数1k 、2k 为 【 】 A 25.0,75.021==k k B 30.0,70.021==k k

钢结构设计原理重点修改版

填空 1.极限状态的分类:承载能力极限状态,正常使用极限状态。 2.普通碳素钢的等级:A,B,C,D 3.钢材是根据什么命名的:质量等级,脱氧方法,屈服点数值,代表屈服点的字母Q。 4.有害元素有哪些:O,S,N,P,H 5.焊缝按连接计算分哪几类:对接焊缝,角焊缝。或者承受轴心力作用时角焊缝连接计算,复杂受力时角焊缝连接计算。 6.角焊缝的分类:正面角焊缝,斜焊缝,侧面角焊缝,直角角焊缝,斜角角焊缝。 7.角钢肢背和肢尖的内力分配:等肢K1=0.7 K2=0.3不等肢(长肢水平)K1=0.75 K2=0.25不等肢(长肢垂直)K1=0.65 K2=0.35 8.螺栓的排列分类:并列,错列。 9.高强度螺栓8.8级10.9级的含义:螺栓性能等级。 10.轴心受力构件常用的截面形式:按其截面组成形式(实腹式构件,格构式构件)按常见的有(热轧型钢截面,冷弯型钢截面,轻型刚或钢板连接而成的组合截面)。 11.轴心受力构件校核的内容:刚度验算,整体稳定验算,局部稳定验算,强度验算。 12.压弯构件整体破坏形式有哪些:弯曲屈曲,弯扭屈曲,弯扭失稳。 13.节点厚度根据什么确定:梯形(最大腹杆内力),三角形(弦杆最大内力)。 14.上弦横向水平支撑间距:不大于60m。 15.拉杆压杆按什么设计:拉:强度,压:稳定性。 16.刚性杆能受什么:受拉,受压。 17.平面外的计算长度怎么取:有支撑就取支撑间距,没有就取实长。 选择 1.标准值和设计值的转换分项系数不一致 标准值X分项系数=设计值 2.低温下的钢材强度塑性会怎样? 强度提高,塑性韧性降低 3.钢材符号含义Q235AF 代表屈服点为235的A级沸腾钢 4.塑性韧性好的钢材要用到什么结构上? 多用于焊接结构 5.衡量冲击荷载能力的指标是什么? 韧性(也叫冲击韧性) 6.焊脚尺寸用什么表示? 指焊缝根角至焊缝外边的尺寸,表示为hf 7.单个普通螺栓受剪承载力的取值 140fv 8.残余应力对静力强度刚度疲劳强度的影响 9.组合梁翼缘部稳定通过什么控制? 通过宽厚比控制 10.弹性受压杆件的界性,临界力 临界力随抗弯刚度的增加和构件长度的减小而增大 11.绕虚轴受弯时设计准则是什么? 以截面边缘纤维屈服为设计准则

(完整word版)《钢结构设计原理》期末考试试卷及答案(2).docx

天津大学试卷专用纸学院建筑工程学院专业土木工程专业班年级学号姓名共4页第1页 20xx ~20xx 学年第 x2 学期期末考试试卷《建筑钢结构设计》(A 卷共5页)4、简述吊车对厂房结构产生的三种荷载;(4分) 答:竖向荷载,由吊车体系的自重产生;横向水平制动力,由吊车小车的启动与刹车产生;纵向水平制动力,由吊车大车的启动与刹车产生。 (考试时间:年月日) 题号一二成绩核分人签字5、简述多层钢结构体系的主要类型;( 4 分) 得分答:柱—支撑体系:框架梁柱节点均为铰接,在纵向与横向沿柱高设置竖向柱间支撑; 一、简答题(共30 分)纯框架体系:在纵横两个方向均为多层刚接框架;框架支撑体系:一个方向为柱—支撑 1、写出钢结构排架承载力极限状态设计公式 n 体系,另一个方向为纯框架体系的混合体系。0 ( G C G G kQ 1 C Q1 Q 1k i 2 ci Qi C Qi Q ik ) R 中符号(, )的含义;(4分)6、高层钢结构体系的主要类型;(4 分) 答:0为重要性系数;G ,Qi 为永久荷载及可变荷载的分项系数;为组合系数。答:框架结构体系、框架—剪力墙结构体系、外筒式结构体系、筒中筒式结构体系、筒束式结构体系及钢—混凝土组合结构体系。 2、单层厂房钢结构屋盖支撑体系由哪些支撑构成;(4 分) 7、高层钢结构不宜采用Q390 钢的原因是什么?( 2 分) 答:上(下)弦横向水平支撑;下弦纵向水平支撑;垂直支撑。 答: Q390钢伸长率为 18%,不符合伸长率大于 20%的规定; 8、简述采用时程分析法时地震波的选取原则;(4 分) 3、简述单层厂房横向框架的两种主要类型及其特点;( 4 分)答:至少应采用 4条能反映当地场地特性的地震加速度波,其中宜包括一条本地区历史 答:( 1)横梁与柱铰接,特点是对柱基沉降的适应性较强,且安装方便,计算简单,受 上发生的实测地震记录波。如当地没地震记录,可根据当地场地条件选用合适的其他地 力明确,缺点是下段柱的弯矩较大,厂房的横向刚度较差。(2)横梁与柱刚接,特点是 区的地震记录。如没有合适的地震记录,可采用根据当地地震危险性分析结果获得的人 对减少下段柱弯矩,增加厂房横向刚度有利。由于下段柱截面高度小,从而可以减少厂 工模拟地震波,但 4 条波不得全用人工模拟的地震波。地震波的持续时间不宜过短,应 房的建筑面积,却使屋架受力复杂,连接构造亦麻烦,且对柱基础的差异沉降比较敏感。 取 10-20s或更长。

钢结构设计原理考试重点

1、钢筋与混凝土两种力学性能不同的材料,能结合在一起有效地共同工作的理由? (1)混凝土与钢筋之间有着良好的粘结力,使两者能可靠的结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,钢筋与混凝土之间不致产生较大的相对变形而破坏两者之间的粘结。 (3)质量良好的混凝土,可以保护钢筋免遭锈蚀,保证钢筋与混凝土的共同作用。 2、钢筋与混凝土之间的粘结力就是怎样产生的?为保证钢筋与混凝土之间的粘结力要采取哪些措施? (1)光圆钢筋与混凝土之间的粘结力主要有摩擦力与咬合力提供;带肋钢筋与混凝土之间的粘结力主要就是钢筋表面凸起的肋纹与混凝土的机械咬合作用。(2)提高混凝土强度或使用高强混凝土;使用钢纤维混凝土。 3、什么叫混凝土的徐变?影响混凝土徐变的有哪些因素? 在荷载的长期作用下,混凝土的变形将随时间而增加,即在应力不变的情况下,混凝土的应变随时间持续增长,这种现象称为混凝土的徐变。 影响因素:(1)混凝土在长期荷载作用下产生应力的大小(2)加载时混凝土的龄期(3)混凝土的组成成分与配合比(4)养生及使用条件下的温度与湿度 4、什么就是承载能力极限状态?哪些状态认为就是超过了承载能力极限状态? 承载能力极限状态对应于结构或结构构件达到最大承载能力或不适于继续承载的变形或变位的状态。超过了承载能力极限状态:(1)整个结构或结构的一部分作为刚体失去平衡(2)结构构件或连接处因超过材料强度而破坏(包括疲劳破坏),或因过度的变形而不能继续承载(3)结构转变成机动结构(4)结构或结构构件丧失稳定(5)结构因局

2011级钢结构设计原理期末考试试卷1

2011级钢结构设计原理期末考试试卷1

2013-2014年第一学期 2010级土木工程专业钢结构设计原理课程期末考试 标准答案及评分细则 一、填空题(本大题共10小题,每空1分,共20分) 1. 承载能力极限状态为结构或构件达到最大承载力或达到不适于继续承载的变形时的极限状态。 2. 钢材牌号Q235-BF,其中235表示屈服强度,B表示质量等级为B级,F表示沸腾钢。 3. 钢材五项机械性能指标是屈服强度、抗拉强度、伸长率、冷弯性能、冲击韧性 5. 角焊缝的厚度大而长度过小时,使焊件局部过热 严重,因此侧面角焊缝或正面角焊缝的计算长度不得小于 8hf 和40mm 。 6.当梁的整体稳定系数φ >0.6时,材料进入弹 b 。 塑性阶段,这时,梁的整体稳定系数应采用φ' b 7. 对承受静力荷载或间接承受动力荷载的钢梁,允 许考虑部分截面发展塑性变形,在计算中引入 塑性发展系数来考虑。 8.焊接梁的设计中,翼缘板的局部稳定常用限制 宽厚比的办法来保证,而腹板的局部稳定则采用配置加劲肋的办法来解决。

9.按正常使用极限状态计算时,轴心受压构件要限 制构件长细比,受弯构件要限制构件挠度,拉、压弯构件要限制构件长细比。 10.目前我国设计规范中压弯构件弯矩作用平面内 整体稳定验算多采用相关公式法,利用边缘屈服准则,建立压弯构件弯矩作用平面内稳定计算的轴力和弯矩相关公式。 二、单选题(本大题共20小题,每小题1分,共20分) 1. 在结构设计中,失效概率P f与可靠指标β的关系为。 A. P f越大,β越大,结构可靠性越差 B. P f 越大,β越小,结构可靠性越差 C. P f越大,β越小,结构越可靠 D. P f 越大,β越大,结构越可靠 2. 钢材的设计强度是根据确定的。 A. 抗拉强度 B. 抗压强度 C. 屈服强度 D. 极限强度 3. 钢材的伸长率δ用来反映材料的。 A. 承载能力 B. 弹性变形能力 C. 塑性

《钢结构设计原理》/试题库(含答案).

钢结构设计原理试题库 一、填空题 1. 钢结构计算的两种极限状态是和。 2. 钢结构具有、、、、 和等特点。 3. 钢材的破坏形式有和。 4. 影响钢材性能的主要因素有、、、 、、、和。 5. 影响钢材疲劳的主要因素有、、、 6. 建筑钢材的主要机械性能指标是、、、 和。 7. 钢结构的连接方法有、和。 8. 角焊缝的计算长度不得小于,也不得小于。侧面角焊缝承受静载时,其计算长度不宜大于。 9.普通螺栓抗剪连接中,其破坏有五种可能的形式,即、、、、和。 10. 高强度螺栓预拉力设计值与和有关。 11. 轴心压杆可能的屈曲形式有、、和。 12. 轴心受压构件的稳定系数 与、和有关。 13. 提高钢梁整体稳定性的有效途径是、和。 14. 影响钢梁整体稳定的主要因素有、、、 和。 15.焊接组合工字梁,翼缘的局部稳定常采用的方法来保证,而腹板的局部稳定则常采用的方法来解决。 二、问答题 1.钢结构具有哪些特点? 2.钢结构的合理应用范围是什么? 3.钢结构对材料性能有哪些要求? 4.钢材的主要机械性能指标是什么?各由什么试验得到? 5.影响钢材性能的主要因素是什么? 6.什么是钢材的疲劳?影响钢材疲劳的主要因素有哪些? 7.选用钢材通常应考虑哪些因素? 8.钢结构有哪些连接方法?各有什么优缺点? 9.焊缝可能存在的缺陷有哪些? 10.焊缝的质量级别有几级?各有哪些具体检验要求? 11.对接焊缝的构造要求有哪些? 12.角焊缝的计算假定是什么?角焊缝有哪些主要构造要求? 13.焊接残余应力和焊接残余变形是如何产生的?焊接残余应力和焊接残余变形对结 构性能有何影响?减少焊接残余应力和焊接残余变形的方法有哪些? 14.普通螺栓连接和摩擦型高强度螺栓连接,在抗剪连接中,它们的传力方式和破坏形 式有何不同? 15.螺栓的排列有哪些构造要求?

《钢结构设计原理》教学大纲

《钢结构设计原理》教学大纲 一、课程说明 1、课程简介 本课程是土木工程专业的必修课,其性质属于专业基础课。本课程是一门理论性与应用性并重的课程。通过本课程的学习,着重讲授钢结构的基本理论与基本知识,使学生了解钢结构的特点、历史、现状及发展前景;掌握钢结构材料的工作性能及影响钢材性能的主要因素,能正确选用结构钢材;掌握钢结构连接的性能、受力分析与设计计算;掌握各种钢结构基本构件的设计计算等,并为学习后续课程和钢结构课程设计打下必要的基础。 2、教学目的及要求 本课程是土木工程专业的专业基础课,是一门理论性与应用性并重的课程。在教学方法上,采用课堂讲授为主,课后自学,课堂练习等教学形式。 (一)课堂讲授 本课程在讲述的过程中,教师应尽量联系生产实际,注重物理意义,不要陷入到繁复的数学推导之中。在教学中要求同学重点掌握基本概念、基本方法和基本规律,并详细讲授每章的重点、难点内容,着重培养学生分析问题和解决问题的能力。讲授中应注意理论联系实际,启迪学生的思维。为便于学生对构造的理解,可组织教学参观、观摩教学模型或采用多媒体辅助教学。 (二)课后自学 为了培养学生整理归纳,综合分析和处理问题的能力,每章都安排一部分内

容,课上教师只给出自学提纲,不作详细讲解,课后学生自学。 (三)课外作业 平时布置典型习题,以加强学生对所学知识的深入理解。 3、教学重点及难点 钢结构的连接,受弯构件、轴心受压构件、压弯构件及节点设计的计算原理。 4、教学手段及教学方法建议 主要采用传统课堂为主辅以前沿课题讲解。 5、考核方式 (一)考核方式:笔试(闭卷) (二)成绩评定标准: 考试主要采用闭卷方式,考试范围应涵盖所有讲授及自学的内容,考试内容应能客观反映出学生对本门课程主要概念的记忆、掌握程度,对有关理论的理解、掌握及综合运用能力。考试题型包括:选择题、概念题、判断题、计算题等。 总评成绩:百分制,平时成绩占30%,闭卷考试成绩占70%。 6、选用教材 [1] 张耀春主编.《钢结构设计原理》.北京:高等教育出版社,2004 [2] 钟善桐.《钢结构稳定设计》.建筑工业出版社,2001 7、教学参考书 [1] 全国高等教育自学考试指导委员会组编.《钢结构》.武汉大学出版社出版.2000 [2] 黄呈伟主编.《钢结构基本原理》.重庆大学出版社.21世纪高等学校本科系列教材,2001 [3] 魏明钟主编.《钢结构》.武汉理工大学出版社.普通高校土木工程专业新编系列教材,2001 8、教学环节及学时安排

钢结构设计原理的课程设计报告

XX 工学院 课程实训 课程名称:钢结构设计原理专业层次:土木工程(卓越)

1、设计资料 1)某厂房跨度为24m,总长90m,柱距6m,屋架下弦标高为18m。 2)屋架铰支于钢筋混凝土柱顶,上柱截面400×400,混凝土强度等级为C30。 3)屋面采用1.5×6m的预应力钢筋混凝土大型屋面板(屋面板不考虑作为支撑用)。 4)该车间所属地区西安。 5)采用梯形钢屋架。 考虑静载:①预应力钢筋混凝土屋面板(包括嵌缝)1400N/m2 ②二毡三油防水层400N/m2 ③20mm厚水泥砂浆找平400N/m2 ④支撑重量70N/m2 考虑活载:活载700N/m2

6)钢材选用Q345钢,焊条为E50型。 2、屋架形式和几何尺寸 屋面材料为大型屋面板,故采用无檩体系平破梯形屋架。 屋面坡度 i=1/10; 屋架计算跨度L 0=24000-300=23700mm ; 端部高度取H=1990mm ,中部高度取H=3190mm (为L 0/7.4)。 屋架几何尺寸如图1所示: 1拱50 图1:24米跨屋架几何尺寸

三、支撑布置 由于房屋长度有6米,故在房屋两端及中间设置上、下横向水平支撑和屋架两端及跨中三处设置垂直支撑。其他屋架则在垂直支撑处分别于上、下弦设置三道系杆,其中屋脊和两支座处为刚性系杆,其余三道为柔性系杆。 上弦平面支撑布置

屋架和下弦平面支撑布置

垂直支撑布置 4、设计屋架荷载 屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。由于风荷载为0.35kN/m2 小于0.49kN/m2,故不考虑风荷载的影响。沿屋面分布的永久荷载乘以1/cosα=√1+102/10=1.005换算为沿水平投影面分布的荷载。桁架沿水平投影面积分布的自重(包括支撑)按经验公式( P=0.12+0.011 跨度)计 w 算,跨度单位为m。 标准永久荷载: 二毡三油防水层

专升本《钢结构设计原理》_试卷_答案

专升本《钢结构设计原理》 一、(共75题,共150分) 1. 钢结构更适合于建造大跨结构,这是由于( ) (2分) A.钢材具有良好的耐热性 B.钢材具有良好的焊接性 C.钢结构自重轻而承载力高 D.钢结构的实际受力性能和力学计算结果最符合 标准答案:C 2. 钢结构正常使用极限状态是指( ) (2分) A.已达到五十年的使用年限 B.结构达到最大承载力产生破坏 C.结构和构件产生疲劳裂纹 D.结构变形已不能满足使用要求 标准答案:D 3. 钢结构正常使用极限状态是指( ) (2分) A.已达到五十年的使用年限 B.结构达到最大承载力产生破坏 C.结构和构件产生疲劳裂纹 D.结构变形已不能满足使用要求 标准答案:B 4. 钢材的伸长率用来反映材料的( ) (2分) A.承载能力 B.弹性变形能力 C.塑性变形能力 D.抗冲击荷载能力 标准答案:C 5. 设计某重级工作制的焊接吊车钢梁,吊车起重量为75t,工作温度低于-20℃,宜选用下列哪一种钢材( ) (2分) 235A 235C 标准答案:D 6. 对有孔眼等削弱的轴心拉杆承载力,《钢结构设计规范》采用的准则为净截面( ) (2分) A.最大应力达到钢材屈服点 B.平均应力达到钢材屈服点 C.最大应力达到钢材抗拉强度 D.平均应力达到钢材抗拉强度 标准答案:B 7. 轴心受压构件柱脚底板的厚度主要取决于( ) (2分) A.底板的抗弯刚度 B.基础材料的强度等级 C.底板的抗弯强度 D.底板的的抗剪强度 标准答案:C 8. 双轴对称焊接组合工字形截面偏心受压柱,偏心荷载作用在腹板平面内。若两个方向支撑情况相同,可能发生的失稳形式为( ) (2分) A.在弯矩作用平面内的弯曲失稳或弯矩作用平面外的弯曲失稳 B.在弯矩作用平面内的弯扭失稳或弯矩作用平面外的弯扭失稳 C.在弯矩作用平面外的弯曲失稳 D.在弯矩作用平面内的弯曲失稳或弯矩作用平面外的弯扭失稳 标准答案:D 9. 梁的整体失稳属于( ) (2分) A.弯曲失稳 B.扭转失稳 C.弯扭失稳 D.局部失稳 标准答案:C 10. 梁上作用较大固定集中荷载时,其作用点处应( ) (2分) A.设置纵向加劲肋 B.设置支承加劲肋 C.减少腹板厚度 D.增加翼缘的厚度 标准答案:B 11. 进行钢结构计算时,所用荷载设计值和标准值,下列说法正确的是( ) (2分) A.计算结构或构件的强度、稳定性以及连接的强度时,应采用荷载标准值 B.计算疲劳和正常使用极限状态的变形时,应采用荷载标准值 C.计算结构或构件的强度、稳定性以及疲劳强度时,应采用荷载设计值 D.计算疲劳和正常使用极限状态的变形时,应采用荷载设计值 标准答案:B 12. 某节点采用角焊缝焊接连接,钢材为Q235B·F钢,手工焊接用焊条为E43型,节点板厚度22mm,下列设计指标选用正确的是( ) (2分) A.节点板的抗压强度为215N/mm2,角焊缝的强度设计值为215N/mm2 B.节点板的抗拉强度为205N/mm2,角焊缝的强度设计值为160N/mm2 C.节点板的抗弯强度为115N/mm2,角焊缝的强度设计值为160N/mm2 D.节点板的抗剪强度为120N/mm2,角焊缝的强度设计值为215N/mm2 标准答案:B 13. T型截面压弯构件需用公式进行验算的情况是( ) (2分) A.弯矩作用于对称轴平面内且使较大翼缘受压时 B.弯矩作用于对称轴平面内且使无翼缘端受压时 C.弯矩作用于非对称轴平面内且使翼缘受压时 D.弯矩作用于非对称轴平面内且无翼缘端受压时 标准答案:A 14. 格构式轴心受压构件的整体稳定计算时,需用换算长细比代替的原因是( ) (2分) A.格构式柱可能发生较大的剪切变形 B.要求实现等稳定设计 C.格构式柱可能单肢失稳 D.格构式柱承载能力提高 标准答案:A 15. 高强螺栓的承压型连接适用于( ) (2分) A.直接承受动力荷载的连接 B.冷弯薄壁型钢的连接 C.承受反复荷载作用的结构 D.承受静力荷载及间接承受动力荷载的连接 标准答案:D

相关文档
最新文档