数学思想与方法作业参考解答

数学思想与方法作业参考解答
数学思想与方法作业参考解答

一、简答题

1. 分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。

解答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。b5E2RGbCAP

代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。p1EanqFDPw 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。DXDiTa9E3d

2. 比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。

解答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。决定性现象的特点是:在一定的条件下,其结果可以唯一确定。因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。对于这类现象,由于条件和结果之间不存在必然性联系。RTCrpUDGiT

在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。这些是确定数学的局限所在。5PCzVD7HxA

二、论述题

1. 论述社会科学数学化的主要原因。

解答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:

第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。

第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。

第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。

第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。

2. 论述数学的三次危机对数学发展的作用。

解答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。

第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。

第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。

由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。jLBHrnAILg

三、分析题

1. 分析《几何原本》思想方法的特点,为什么?

<1)封闭的演绎体系

因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念<除原始概念)也基本上是符合逻辑上xHAQX74J0X

对概念下定义的要求,原则上不再依赖其它东西。因此《几何原本》是一个封闭的演绎体系。

另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是封闭的。所以,《几何原本》是一个封闭的演绎体系。LDAYtRyKfE

<2)抽象化的内容

《几何原本》中研究的对象都是抽象的概念和命题,它所探讨的是这些概念和命题之间的逻辑关系,不讨论这些概念和命题与社会生活之间的关系,也不考察这些数学模型所由之产生的现Zzz6ZB2Ltk

实原型。因此《几何原本》的内容是抽象的。

<3)公理化的方法

《几何原本》的第一篇中开头5个公设和5个公理,是全书其它命题证明的基本前提,接着给出23个定义,然后再逐步引入和证明定理。定理的引入是有序的,在一个定理的证明中,允许采用的论据只有公设和公理与前面已经证明过的定理。以后各篇除了不再给出公设和公理外也都照此办理。这种处理知识体系与表述方法就是公理化方法。dvzfvkwMI1

2. 分析《九章算术》思想方法的特点,为什么?

解答:<1)开放的归纳体系

从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。rqyn14ZNXI

在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综EmxvxOtOco

合起来,就得到整个《九章算术》。

另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。SixE2yXPq5

因此,《九章算术》是一个开放的归纳体系。

<2)算法化的内容

《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一。6ewMyirQFL

<3)模型化的方法

《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。kavU42VRUs

数学思想与方法作业参考解答<2)

一、简答题

1.叙述抽象的含义及其过程。

解答:抽象是指在认识事物的过程中,舍弃那些个别的、偶然的非本质属性,抽取普遍的、必然的本质属性,形成科学概念,从而把握事物的本质和规律的思维过程。y6v3ALoS89

人们在思维中对对象的抽象是从对对象的比较和区分开始的。所谓比较,就是在思维中确定对象之间的相同点和不同点;而所谓区分,则是把比较得到的相同点和不同点在思维中固定下来,利用它们把对象分为不同的类。然后再进行舍弃与收括,舍弃是指在思维中不考虑对象的某些性质,收括则是指把对象的我们所需要的性质固定下来,并用词表达出来。这就形成了抽象的概念,同时也就形成了表示这个概念的词,于是完成了一个抽象过程。M2ub6vSTnP

2.叙述概括的含义及其过程。

解答:概括是指在认识事物属性的过程中,把所研究各部分事物得到的一般的、本质的属性联系起来,整理推广到同类的全体事物,从而形成这类事物的普遍概念的思维过程。0YujCfmUCw

概括通常可分为经验概括和理论概括两种。经验概括是从事实出发,以对个别事物所做的观察陈述为基础,上升为普遍的认识——由对个体特性的认识上升为对个体所属的种的特性的认识。理论概括则是指在经验概括的基础上,由对种的特性的认识上升为对种所属的属的特性的认识,从而达到对客观世界的规律的认识。在数学中经常使用的是理论概括。eUts8ZQVRd

一个概括过程包括比较、区分、扩张和分析等几个主要环节。3.简述公理方法历史发展的各个阶段。

解答:公理方法经历了具体的公理体系、抽象的公理体系和形式化的公理体系三个阶段。

第一个具体的公理体系就是欧几里得的《几何原本》。非欧几何是抽象的公理体系的典型代表。希尔伯特的《几何基础》开

创了形式化的公理体系的先河,现代数学的几乎所有理论都是用形式公理体系表述出来的,现代科学也尽量采用形式公理法作为研究和表述手段。sQsAEJkW5T 4.简述化归方法并举例说明。

解答:所谓“化归”,从字面上看,应可理解为转化和归结的意思。数学方法论中所论及的“化归方法”是指数学家们把待解决或未解决的问题,通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中去,最终求获原问题之解答的一种手段和方法。GMsIasNXkA 例如:要求解四次方程

可以令

,将原方程化为关于

的二次方程

这个方程我们会求其解:

,从而得到两个二次方程:

这也是我们会求解的方程,解它们便得到原方程的解:

,,,

.

这里所用的就是化归方法。

二、论述题 1.叙述不完全归纳法的推理形式,并举一个应用不完全归纳法的例子。 解答:不完全归纳法的一般推理形式是:设S=

由于具有属性p ,

具有属性p ,……

具有属性p ,

因此推断:S 类事物中的每一个对象都可能具有属性p 。例如:记,

由于6=3+3,8=3+5,10=3+7,12=5+7,这里3,5,7

都是奇素数,

因此推断:S 中的数,即大于4的偶数都可以表示成两个奇素数之和。

2.叙述类比推理的形式。如何提高类比的可靠性? 解答:类比推理通常可用下列形式来表示: A 具有性质

B 具有性质

因此,B 也可能具有性质。

其中,

分别相同或相似。

欲提高类比的可靠性,应尽量满足条件:

(1>A 与B 共同(或相似>的属性尽可能地多些;

(2>这些共同(或相似>的属性应是类比对象A 与B 的主要属性;

(3>这些共同(或相似>的属性应包括类比对象的各个不同方面,并且尽可能是多方面的; (4>可迁移的属性d 应该是和属于同一类型。

符合上述条件的类比,其结论的可靠性虽然可以得到提高,但仍不能保证结论一定正确。

3.试比较归纳猜想与类比猜想的异同。 解答:归纳猜想与类比猜想的共同点是:他们都是一种猜想,

即一种推测性的判断,都是一种合情推理,其结论具有或然

性,或者经过逻辑推理证明其为真,或者举出反例予以反驳。TIrRGchYzg

归纳猜想与类比猜想的不同点是:

归纳猜想是运用归纳法得到的猜想,是一种由特殊到一般的推理形式,其思维步骤为“特例—归纳—猜测”。

类比猜想是运用类比法得到的猜想,是一种由特殊到特殊的推理形式,其思维步骤为“联想—类比—猜测”。

三、设计题

设计运用“猜想”进行数学教案的一个片断。

解答:以“认识长方形的对边相等”为内容,设计一个教案片断。

将教案过程设计成四个层次:

①让学生说一说:我们周围有哪些长方形物体?学生会举出黑板、桌面、教室的门、课本的封面等例子。

②要求学生仔细观察:看一看、想一想,这些长方形的四条边的长短有什么关系?学生经过观察后,会猜想:长方形相对的两条边长度相等。7EqZcWLZNX

③教师进一步提出问题:同学们敢于大胆猜想的精神值得鼓励!我们怎样才能验证长方形相对的两条边的长短相等呢?这时,学生会想出许多办法,如:用尺量、将图形对折等方法。教师顺势引导学生通过量量、折折的具体操作,确信长方形相对的两条边长短相等。教师板书:长方形对边相等。接着,师生讨论长方形“对边”的含义,以及一个长方形有几组对边的问题。lzq7IGf02E

④巩固长方形对边相等的认识。

利用多媒体展示下面的长方形:

教师提问:如何填写括号内的数字?为什么?

要求学生会用“因为…所以…”句式回答。如“因为长方形的对边相等,已知长方形的一条边是3厘M,所以它的对边也是3厘M。”zvpgeqJ1hk

数学思想与方法作业参考解答<3)

一、简答题

1.简述计算和算法的含义。

解答:计算是指根据已知数量通过数学方法求得未知数的过程,是一种最基本的数学思想方法。随着电子计算机的广泛应用,计算的重要意义更加凸现,主要表现在以下几个方面:(1>推动了数学的应用;(2>加快了科学的数学化进程;(3>促进了数学自身的发展。NrpoJac3v1

算法是由一组有限的规则所组成的一个过程。所谓一个算法它实质上是解决一类问题的一个处方,它包括一套指令,只要按照指令一步一步地进行操作,就能引导到问题的解决。在一个算法中,每一个步骤必须规定得精确和明白,不会产生歧义,并且一个算法在按有限的步骤解决问题后必须结束。1nowfTG4KI

数学中的许多问题都可以归结为寻找算法或判断有无算法的问题,因此,算法对数学中的许多问题的解决有着决定性作用。另外,算法在日常生活、社会生产和科学技术中也有着重要意义。算法在科学技术中的意义主要体现在如下几个方面:(1>用于表述科学结论的一种形式;(2>作为表述一个复杂过程的方法;(3>减轻脑力劳动的一种手段;(4>作为研究和解决新问题的手段;(5>作为一种基本的数学工具。fjnFLDa5Zo

2.简述数学教案中引起“分类讨论”的原因。

解答:数学教案中引起“分类讨论”的原因有:①数学中的许多概念的定义是分类给出的,因此涉及到这些概念时要分类讨论。②数学中有些运算性质、运算法则是分类给出的,进行这类运算时要分类讨论。③有些几何问题,根据题设不能只用一个图形表达,必须全面考虑各种不同的位置关系,需要分类讨论。④许多数学问题中含有字母参数,随着参数取值不同,会使问题出现不同的结果。因此需要对字母参数的取值情况进行分类讨论。tfnNhnE6e5

二、论述题

1.什么是数学模型方法?并用框图表示MM方法解题的基本步骤。

解答:所谓数学模型方法是利用数学模型解决问题的一般数学方法,简称MM方法。

MM方法解题的基本步骤框图表示如下:2.特殊化方法在数学教案中有哪些应用?

解答:特殊化方法在数学教案中的应用大致有如下几个方面:①利用特殊值(图形>解选择题;②利用特殊化探求问题结论;

③利用特例检验一般结果;④利用特殊化探索解题思路。HbmVN777sL

三、计算题

1.用程序框图表述如下问题的求解过程:在1~500中,找出能同时满足用3除余2,用5除余3,用7除余2的所有整数。V7l4jRB8Hs

解:设计算法:

(1>给出初始值I=9<因为小于等于8的数显然不满足条件)。

(2>判断I的值是否小于或等于500;若是,则进一步判断I是否满足用3除余2,用5除余3,用7除余2三个条件,若满足则输出I,否则I递增1。83lcPA59W9

(3>返回第(2>步,直至I大于500,结束。

画出程序框图如下图8-1:

图8-1

2.一个星级旅馆有150个房间。经过一段时间的经营实践,经理得到数据:如果每间客房定价为160元,住房率为55%;如果每间客房定价为140元,住房率为65%;如果每间客房定价为120元,住房率为75%;如果每间客房定价为100元,住房率为85%。欲使每天收入提高,问每间住房的定价应是多少?mZkklkzaaP

解:(1>弄清实际问题加以化简。

经分析,为了建立旅馆一天收入的数学模型,可作如下假设: ①设每间客房的最高定价为160元; ②根据题中提供的数据,设随着房价的下降,住房率呈线性增长;

③设旅馆每间客房定价相等。 (2>建立数学模型。

根据题意,设表示旅馆一天的总收入,为与160元相比降低的房价。

由假设②,可得每降低1元房价,住房率增加为

因此一天的总收入为(*>

由于

于是问题归结为:当时,求的最大值点,即求解

(3>模型求解。

将(*>左边除以(150×0.005>得

由于常数因子对求最大值没有影响,因此可化为求的最大值点。利用配方法得

易知当=25

时最大,因此可知最大收入对应的住房定价为160元-25元=135元

相应的住房率为0.55+0.005×25=67.5%

最大收入为 150×135×67.5%=13668.75(元> (4>检验。

容易验证此收入在已知各种客房定价的对应收入中确实是最大的,这可从下面表格中看出。

如果为了便于管理,那么定价140元也是可以的,因为这时它与

最高收入只差18.75元。

如果每间客房定价为180元,住房率为45%,其相应收入只有

12150

元。由此可见假设①是合理的。实际上二次函数在之内只有一个极值点。AVktR43bpw 3.已知∠AOB 及点P ,连接OP ,若P 点不在OB 边上,且∠BOP 表示以OB 为始边、按逆时针方向旋转到OP 的角,试比较∠AOB 与∠BOP 的大小。ORjBnOwcEd 解答:可以有多种情形。 情形一

B

P

o A

情形二

A P

定价 160元 140元 120

100元 135元

入 1320

0元

13650元

13500元

12750元

13668.75元

o B

数学思想方法作业4答案

一、简答题

1、简述《国家数学课程标准》的几个主要特点。

答:2001年6月教育部推行了试用的九年义务教育阶段《国家数学课程标准》(实验稿>,充分体现了数学课程改革与发展的内涵、特点和具体目标,并呈现下列八个特点:2MiJTy0dTT 1)、把“现实数学”作为数学课程的一项内容。即为学生准备的数学应该是与现实世界密切联系的数学,且能够在实际中得到应用的数学。gIiSpiue7A

2)、把“数学化”作为数学课程的一个目标。学生学习数学化的过程是将学生的现实数学进一步提高、抽象的过程。uEh0U1Yfmh

3)、把“再创造”作为数学教育的一条原则。把“已完成的数学”当成是“未完成的数学”来教,给学生提供“再创造”的机会。IAg9qLsgBX

4)、把“问题解决”作为数学教案的一种模式。《数学课程标准》在“学段目标”中的“解决问题”方面的具体阐述,实际上提出了“问题解决”的教案模式,即:情境—问题—探索—结论—反思。WwghWvVhPE

5)、把“数学思想方法”作为课程体系的一条主线。要求学生掌握基本的数学思想方法。6)、把“数学活动”作为数学课程的一个方面。强调学生的数学活动,注重“向学生提供充分从事数学活动的机会”,帮助他们“获得广泛的数学活动的经验”。asfpsfpi4k

7)、把“合作交流”看成学生学习数学的一种方式。要让学生在解决问题的过程中“学会与他人合作”,并能“与他人交流思维的过程和结果”。ooeyYZTjj1

8)、把“现代信息技术”作为学生学习数学的一种工具。

2、简述数学思想方法教案的几个主要阶段。

答:学生理解数学思想方法要经历潜意识阶段、明朗化阶段、深化理解三个阶段。

二、论述题

1、试述小学数学加强数学思想方法教案的重要性。

答:数学思想方法是联系知识与能力的纽带,是数学科学的灵魂,它对发展学生的数学能力,提高学生的思维品质都具有十分重要的作用。具体表现在:BkeGuInkxI

(1>掌握数学思想方法能更好地理解数学知识。

(2>数学思想方法对数学问题的解决有着重要的作用。

(3>加强数学思想方法的教案是以学生发展为本的必然要求。2、简述数学思想方法教案应注意哪些事项?

答:数学思想方法教案应注意以下事项:

(1>把数学思想方法的教案纳入教案目标;

(2>重视数学知识发生、发展的过程,认真设计数学思想方法教案的目标;

(3>做好数学思想方法教案的铺垫工作和巩固工作;

(4>不同数学思想方法应有不同的教案要求;(5>注意不同数学思想方法的综合应用。

三、分析题

1.利用下列材料,请你设计一个“数形结合”教案片断。

材料:如图13-3-18所示,相邻四点连成的小正方形面积为1平方厘M。(1>分别连接各点,组成下面12个图形,你发现有什么排列规律?(2>求出各图形外面一周的点子数、中间的点子数以及各图形的面积,找出一周的点子数、中间的点子数、各图形的面积三者之间的关系。PgdO0sRlMo

提示:所设计的教案片断要求(1>对于第一个问题,体现教师引导学生观察图形的特点(可以是独立思考,也可以是小组讨论>,然后组织学生交流各自的理解,师生共同(完全>归纳概括出规律的过程。(2>对于第二个问题,要充分展示学生结合“数”与“形”来考察问题的思维过程。教师所起的主导作用就是引导学生分析同一图中我们需要考察哪些“数”?由于这里涉及到三个方面的数量关系,教师同时还要进行学法指导,使学生获得这样的策略:当所要考察的图形的数量关系较复杂时,除了灵活运用数形结合方法外,还可用列表的形式来帮助分析。3cdXwckm15

解答提示:(一>、列表分析(也可以只列举部分图形分析>图边上点数内部点数面积

⑴401

(2>602

(3>803

(4>1406

(5>412

(6>613

(7>814

(8>1417

(9>423

(10

>

624

(11

>

825

(12

>

1428

(二>、观察、归纳:(限于篇幅只列举部分图形分析>图形(1>的面积:4÷2+0-1=1

图形(3>的面积:8÷2+0-1=3

图形(5>的面积:4÷2+1-1=2

图形(8>的面积:14÷2+1-1=7

图形(9>的面积:4÷2+2-1=3

图形(11>的面积:8÷2+2-1=5

2.假定学生已有了除法商的不变性知识和经验,在学习分数的性质时,请你设计一个“分类法”教案片断。

解答:材料如下:

提示:所设计的教案片断要求(1>依据给定的材料设计一个学生动手操作的活动,让学生分一分,想一想,说一说,充分展示学生对分类的思考,交流各种不同分法的依据,并通过反思不同分法找出分类的标准;(2>体现教师引导学生归纳概括“分类方法”的过程,并开展学法指导,使学生获得“单一标准下分类方法”的策略。h8c52WOngM

2、假定学生已有了除法商的不变性知识经验,在学习分数的性质时,请你设计一个孕育“类比法”教案片断。

提示:所设计的教案片断要求(1>以小组合作探究的形式,让学生举例说明除法的被除数和除数与分数的分子和分母之间存在什么样的关系(相似关系>?商与分数又有什么关系(相似关系>?那么与被除数、除数同时扩大或缩小相同的倍数其商不变相似的结论又是什么呢?通过一系列层层递进式的问题情境,把学生的思维导向分数与商相似的特征上来,创设学生自主探究分数的性质的全过程;(2>教案设计要体现教师引导学生归纳概括“分数的性质”的过程,并重视学习方法指导,使学生初步领会用“类比法”获取新知识的策略。v4bdyGious 解答提示:(一>、列表类比(教师引导,师生共同描述除法的性质,再由学生通过类比归纳出分数的性质>

除法分数

除法的表示:A÷B分数的表示:

除法的性质(一>:

若M≠0,则

(A×M>÷(B×M>=

A÷B

分数的性质(一>:若M≠0,则

除法的性质(二>:

若M≠0,则

(A÷M>÷(B÷M>=

A÷B

分数的性质(二>:若M≠0,则

除法的性质(三>:

A÷B÷C=A÷(B×C>

分数的性质(三>:

除法的性质(四>:

(A÷B>÷(C÷D>=

(A×D>÷(B×C>

分数的性质(四>:

注:性质<三)、<四)作为扩展学习内容(应根据学生的实际情况取舍>

(二>教案设计

一、回忆除法和分数的有关概念

师:同学们还记得除法的哪些概念和记号?

生:被除数÷除数=商

分数的性质(二>:若M≠0,则

分数的表示:

分数的性质(一>:若M≠0,则

数思想方法与数学解题方法

中学解题数学思想方法与解题方法 第一部分:数学思想方法 数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中莫基性成分,是学生获得数学能力必不可少的。 一、函数与方程思想 函数与方程的思想是中学数学最基本的思想。 所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。方程思想是解决各类计算问题的基本思想,是运算能力的基础。 高考把函数与方程思想作为七种重要思想方法重点来考查。 二、数形结合思想 数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。 数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。 数形结合思想研究的对象是数量关系和空间形式,即数与形两个方面由数思形,由形思数数形结合,用形解决数的问题。在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。 三、分类与整合思想 分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。 1)分类是自然科学乃至社会科学研究中的基本逻辑方法 2)从具体出发,选取适当的分类标准;划分只是手段,分类研究才是目的

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

几种重要的数学思想方法

几种重要的数学思想方法 韩晓荣 数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。 《数学课程标准》在对初中阶段的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。 一、化归思想, 所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。我们也常把它称之为“转化思想”。例如:解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。 二、数形结合的思想方法 数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现。 三、分类讨论的思想方法 在渗透分类讨论思想的过程中,我认为首要的是分类。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在《平面图形的认识》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类。这种思想方法主要可以避免漏解、错解。 四、方程思想 方程思想指借助解方程来求出未知量的一种解题策略。我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。例如利用一元一次方程,一元二次方程能解决好多实际问题。 五、从特殊到一般的思想方法

数学思想与方法形成性考核册答案

、论述题 1. 分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。 解答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列岀关于这些具体数据的算式,然后通过四则运算求得算式的结果。 代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列岀方程,然后通过对方程进行恒等变换求岀未知数的值。 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。 2. 比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。 解答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。决定性现象的特点是:在一定的条件下,其结果可以唯一确定。因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。随机现象的特点是:在 一定的条件下,可能发生某种结果,也可能不发生某种结果。对于这类现象,由于条件和结果之间不存在必然性联系。 在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。同时确定数学也无法定量地揭示大量同类随机现象中所 1. 论述社会科学数学化的主要原因。解答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面: 第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。 第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。 第三,随着数学的进一步发展,它岀现了一些适合研究社会历史现象的新的数学分支。 第四,电子计算机的发展与应用,使非常复杂社会现 象经过量化后可以进行数值处理。 2. 论述数学的三次危机对数学发展的作用。 解答:第一次数学危机促使人们去认识和理解无理数, 导致了公理几何与逻辑的产生。 第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。 第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。 由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映岀矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。 三、分析题 1. 分析《几何原本》思想方法的特点,为什么? (1)封闭的演绎体系 因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原 蕴涵的规律性。这些是确定数学的局限所在。始概念)也基本上是符合逻辑上

(推荐)高中数学七大数学基本思想方法

高中数学七大数学基本思想方法 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。考把函数与方程思想作为七种重要思想方法重点来考查。 第二:数形结合思想 (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系,形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法。 (2)从具体出发,选取适当的分类标准。 (3)划分只是手段,分类研究才是目的。 (4)有分有合,先分后合,是分类整合思想的本质属性。 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决题化归为已解决问题。 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识。 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论。 (3)由特殊到一般,再由一般到特殊的反复认识过程。 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。 第六:有限与无限的思想 (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。 第七:或然与必然的思想

《数学思想方法》课程教学大纲

数学思想方法》课程教学大纲 第一部分大纲说明 一、课程的地位、性质与任务 《数学思想方法》是研究数学思想方法及其教学的一门课程。随着现代科学技术的迅速发展和素质教育的全面实施,对科学思想、科学方法有着全局影响的数学思想方法其重要性日益凸现。鉴于数学思想方法在素质教育中的重要作用,《数学思想方法》被列为中央广播电视大学小学教育专业的一门重要的必修课。 通过本课程的学习,使学员比较系统地获得对数学思想方法的认识,掌握实施数学思想方法教学的特点,并能运用这些理论指导小学数学教学实践。通过各个教学环节,逐步培养学员实施数学思想方法教学的能力和综合运用所学知识分析问题、解决有关实际问题的能力,为成为适应新世纪需要的高素质的小学教师打下坚实基础。 二、课程主要内容及要求 本课程的主要内容包括:数学思想与方法的两个源头、数学思想与方法的几次重要突破、数学的真理性、现代数学的发展趋势、演绎与化归、抽象与概括、猜想与反驳、计算与算法、应用与建模、数学思想与方法与素质教育、数学思想与方法教学、数学思想与方法教学案例。通过本课程的学习,关键在于使学员建构起关于数学思想方法的认知结构,认识数学思想方法的重要性,增强数学思想方法教学的自觉性,提高实施数学思想方法教学的水平和能力。通过“数学思想方法的发展”部分学习,帮助学员了解数学思想方法的源头、几次重要突破和现代数学的发展趋势,并能正确理解数学的真理性,确立动态的、拟经验主义的数学观。通过“数学思想方法例解 " 部分学习,使学员掌握数学教学中常用的数学思想方法及其应用。通过“数学思想方法教学" 部分学习,使学员掌握数学思想方法教学的特点,并能将所学数学思想方法初步应用于小学数学教学。 三、教学媒体 1.文字教材: 文字教材是学生学习课程的主要用书,是学生获得知识和能力的重要媒体,是教和学的根本依据。文字教材名称:《数学思想与方法》(顾泠沅主编,中央电大出版社出版)。 2.音像教材:《数学思想与方法》录像教材共18 讲,由首都师范大学副教授姚芳主讲。 3. 网上学习资源 江苏电大在线中(https://www.360docs.net/doc/691033290.html, )教学辅导、实施方案、学习自测等;栏目以及中央电大在线( https://www.360docs.net/doc/691033290.html, )中与本课程有关的学习资源。 四、教学环节 1. 理论教学环节(课程的基本知识、理论和方法) (1)自学 自学是电大学生获得知识的重要方式 , 自学能力的培养也是远程开放高等教育的目的之一 ,本课程的教学要注意对学生自学能力的培养 . 学生可以通过自学、收

数学思想与方法作业答案1234

数学思想与方法作业答案1234 作业1 一、简答题 1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。 答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。 代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。 2、比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。 答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。决定性现象的特点是:在一定的条件下,其结果可以唯一确定。因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。 随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。对于这类现象,由于条件和结果之间不存在必然性联系。 在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。这些是确定数学的局限所在。 二、论述题 1、论述社会科学数学化的主要原因。 答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面: 第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。 第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。 第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。 第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。2、论述数学的三次危机对数学发展的作用。 答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。 第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。 第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。三、分析题 1、分析《几何原本》思想方法的特点,为什么? 答:(1)封闭的演绎体系 因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上 对概念下定义的要求,原则上不再依赖其它东西。因此《几何原本》是一个封闭的演绎体系。 另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

数学思想方法及其教学

数学思想方法及其教学 数学思想是指现实世界的空间形式和数量关系,反映到人民的意识中,经过思维活动而产生的结果。它是对数学事实与理论经过概括后产生的本质认识。数学思想方法是对数学的知识、内容和所使用的方法的本质的认识。它是从某些具体数学认识过程中提炼出来的观点,在后继研究和实践中被反复证实其正确性并带有一般意义和相对稳定的特征。数学思想方法是对数学规律的理性认识,它是以数学为工具进行科学研究的方法,中学数学教学中数学思想方法主要有代换、类比、分析、综合、抽象、概括等方法。 数学思想与思想方法是数学知识中的“基石”,是学生获得数学能力不可或缺的重要思想,数学思想方法的训练,是把知识型转化为能力型数学的关键。学生通过数学学习,形成一定的数学思想方法是教学的重要目标之一。 新课程改革的研究和实践表明:学生的数学学习不只是简单被动的“复制”活动,而是学生认识结构主动建立的过程;不仅是知识传授的过程,更应该是数学思想方法形成的过程。因此,在数学教学中注重分析数学思想方法发展的脉络,促进数学思想方法的形成,便成为构建学生数学认知结构的重要环节。对学生来说,具体的数学知识,可能地随时间的推移而遗忘,但思想方法却能长存,使其受用终生,所以数学思想方法是数学中的精髓。 学生数学思想方法的形成是一个循序渐进的过程,是一个多次孕育、适时渗透的过程,在数学教学中应重视将抽象的思想方法逐渐融入具体的实在的数学知识之中,使学生对这些思想方法具有初步的感知。数学新课程的内容是由数学知识与思想方法组成的有机整体,其是知识体系是纵向展开的,而蕴含在知识之中的思想方法是纵横交错、前后联系的。在教学中不能急功近利,略去教学知识发生和发展的过程,而应适时把握好进行数学思想方法渗透的契机。如:概念的形成过程、问题被发现的过程、解题思想探求的过程,均为渗透数学思想方法的大好时机,教师应有“润物细无声”的境界,在知识生长与发展中,让数学思想方法着地、生根、发芽。 渗透数学思想方法只是让学生对数学思想方法有初步的理解,而引进数学思想方法,就要求学生知道它的要素、特征及用途。由于同一内容可表示为不同的数学思想方法,而同一数学思想方法又常常分布于许多不同的知识点。因此,在单元小结复习时,就应该整理出数学思想方法系统。也可根据数学思想方法的形成过程,适时开设专题讲座,讲清知识的来龙去脉、内涵外延、作用功能等,这也是数学思想教学方法化隐为显的有效途径。 有些基本的数学思想方法,如数形结合、化归、函数与方程等数学思想方法贯穿于整个中学数学,对这些应经常强调并通过“问题解决”使学生灵活运用。要重视提供含有数学思想方法的问题或情景,调动学生积极参与,在会解决问题的情况下,要求能揭示问题中蕴含的数学思想方法和使用价值。对同一问题从不同的角度去审视,根据不同的特征,用不同的数学思想方法解决。

初中数学解题思想方法

初中数学解题思想方法 数学解题思想方法有配方法、换元法、判别式法、待定系数法、消元法。以上是解题技 巧上的思想方法,比它们更具有普遍意义的思想方法有转化与化简思想方法、数学结合思想方法、归纳猜想、分类讨论、函数与方程思想等。在数学解题过程中我们要养成灵活运用数学思想方法的意义和习惯。 联想在解题中起着重要的作用,从自己的大脑知识仓库中找出与要解题目接 很相似 的原理、方法或结论,变通使用这些知识使问题得以解决。 一、配方法:是指将代数式通过配凑等途径,得到完全平方式或立方式,它广泛应用于 初中数学的各个方面,代数式的化简求值、解方程(组)、求最值等方面。 例1、求5245422 2-+-++y x y xy x 的最小值。 例2、设a ,b 为实数,求b a b ab a 222--++的最小值。 例3、在直角坐标中,有三点A (0,1),B (1,3),C (2,6),已知b ax y +=上横 坐标为0,1,2的点分别为D 、E 、F ,试求:222CF BE AD ++的最小值。 例4、已知x ,y ,z 是实数,且 0))((4)2=----z y y x x z (,求y z x 2+的值。 例5.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )(2012) A .18-. B .0. C .1. D . 98. 例6 .已知a<0,动点11(,),(1,0),,A a a B A B AB a a +-定点则两点距离的最小值为 二、换元思想方法 根据问题的特征或关系适当引进辅助的元素,替换原问题中的数、字母或式子,从而使 原问题得以解决,这种通过引用变量替换来解决问题的思想方法叫做换元思想方法,它是数学解题的一种基本思想方法,有着广泛的应用。 例722011 例8、已知12433++=a ,求 32133a a a ++的值。 (其中0402≥-≠mq ,n m )

高中数学19种答题方法及6种解题思想

高中数学19种答题方法及6种解题思想一.十九种数学解题方法 1.函数 函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.方程或不等式 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.初等函数 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4.选择与填空中的不等式 选择与填空中出现不等式的题目,优选特殊值法; 5.参数的取值范围 求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6.恒成立问题 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7.圆锥曲线问题 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式; 8.曲线方程 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点); 9.离心率 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10.三角函数 三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11.数列问题 数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想; 12.立体几何问题 立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 13.导数 导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

高中数学解题思想方法技巧:西瓜开门 滚到成功

第2 西瓜开门 滚到成功 ●计名释义 比起“芝麻”来,“西瓜”则不是一个“点”,而一个球. 因为它能够“滚”,所以靠“滚到成功”. 球能不断地变换碰撞面,在滚动中能选出有效的“触面”. 数学命题是二维的. 一是知识内容,二是思想方法. 基本的数学思想并不多,只有五种:①函数方程思想,②数形结合思想,③划分讨论思想,④等价交换思想,⑤特殊一般思想. 数学破题,不妨将这五种思想“滚动”一遍,总有一种思想方法能与题目对上号. ●典例示范 [题1] (2006年赣卷第5题) 对于R 上可导的任意函数f (x ),若满足(x -1)f '(x )≥0,则必有 A. f (0)+f (2)< 2f (1) B. f (0)+f (2)≤2 f (1) C. f (0)+f (2)≥ 2f (1) D. f (0)+f (2)>2f (1) [分析] 用五种数学思想进行“滚动”,最容易找到感觉应是③:分类讨论思想. 这点在已条件(x -1)f '(x )≥0中暗示得极为显目. 其一,对f '(x )有大于、等于和小于0三种情况; 其二,对x -1,也有大于、等于、小于0三种情况. 因此,本题破门,首先想到的是划分讨论. [解一] (i)若f '(x ) ≡ 0时,则f (x )为常数:此时选项B 、C 符合条件. (ii)若f '(x )不恒为0时. 则f '(x )≥0时有x ≥1,f (x )在[)∞,1上为增函数;f '(x )≤0时x ≤1. 即f (x )在(]1,-∞上为减函数. 此时,选项C 、D 符合条件. 综合(i),(ii),本题的正确答案为C. [插语] 考场上多见的错误是选D. 忽略了f '(x ) ≡ 0的可能. 以为(x-1)f '(x ) ≥0中等号成立的条件只是x -1=0,其实x-1=0与f '(x )=0的意义是不同的:前者只涉x 的一个值,即x =1,而后是对x 的所有可取值,有f '(x ) ≡ 0. [再析] 本题f (x )是种抽象函数,或者说是满足本题条件的一类函数的集合. 而选择支中,又是一些具体的函数值f (0),f (1),f (2). 因此容易使人联想到数学⑤:一般特殊思想. [解二] (i)若f '(x )=0,可设f (x )=1. 选项B、C符合条件. (ii)f '(x )≠0. 可设f (x ) =(x-1)2 又 f '(x )=2(x-1). 满足 (x-1) f '(x ) =2 (x-1)2≥0,而对 f (x )= (x-1)2. 有f (0)= f (2)=1,f (1)=0 选项C ,D 符合条件. 综合(i),(ii)答案为C. [插语] 在这类 f (x )的函数中,我们找到了简单的特殊函数(x -1)2. 如果在同类中找到了(x -1)4 ,(x-1)3 4 ,自然要麻烦些. 由此看到,特殊化就是简单化. [再析] 本题以函数(及导数)为载体. 数学思想①——“函数方程(不等式)思想”. 贯穿始终,如由f '(x )= 0找最值点x =0,由f '(x )>0(<0)找单调区间,最后的问题是函数比大小的问题. 由于函数与图象相联,因此数形结合思想也容易想到. [解三] (i)若f (0)= f (1)= f (2),即选B ,C ,则常数f (x ) = 1符合 条件. (右图水平直线) (ii)若f (0)= f (2)< f (1)对应选项A.(右图上拱曲线),但不满足条件(x -1)

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

数学思想方法及其教学建议

摘要:数学思想方法是数学的灵魂,本文论述了数学思想及数学思想方法的概念和特征,并结合《数学课程标准》的要求,通过高考与数学思想方法的内在联系,提出了在数学教学中渗透数学思想方法的建议,从而进一步明确了数学思想方法的本质地位。 关键词:数学思想,数学思想方法,数学课程标准,高考 数学思想方法是数学的灵魂。引导学生领悟和掌握以数学知识为载体的数学思想方法,是提高学生思维水平,真正知晓数学的价值,建立正确的数学观念,从而发展数学、运用数学的重要保证。 一、对数学思想方法的认识 数学思想是数学中的理性认识,是数学知识的本质,是数学中的高度抽象、概括的内容,它蕴涵于运用数学方法分析、处理和解决数学问题的过程之中,直接支配着数学的实践活动。数学方法是解决问题的策略与程序,是数学思想具体化的反映。从这一意义上来讲,数学思想是数学的灵魂,数学方法是数学的行为,数学思想对数学方法起着指导作用,是数学结构中的有力支柱。数学思想方法是对数学知识的本质认识,是从具体的数学内容和对数学的认识过程中抽象、概括、提炼的数学观点,是数学知识的精髓,是知识转化为能力的桥梁,是建立数学和用数学解决问题的指导思想。掌握好数学思想方法能对数学知识本质的认识不断深化,在解决问题过程中减少盲目性,增加针对性,提高分析问题和解决问题能力都具有本质性、概括性和指导性的意义。 数学思想方法具有层次性,第一层次是与某些特殊问题联系在一起的方法,通常称为“解题术”;第二层次是解决一类问题时采用的共同方法,称为“解题方法”;第三层次是数学思想,这是人们对数学知识以及数学方法的本质认识;第四层次是数学观念,这是数学思想方法的最高境界,是一种认识客观世界的哲学思想。具体来说,数学思想方法主要表现在以下三个方面:一是常用的数学方法,如配方法,换元法,消元法,待定系数法等;二是常用的数学思想,如集合思想、对应思想、符号化思想、公理化思想、极限思想等。三是数学思想方法,如观察与实验,概括与抽象,类比、归纳和演绎等。数学思想与方法包括数学一般方法、逻辑学中的方法(思维方法)和数学思想方法三类。数学一般方法又包括配方法、换元法、待定系数法、判别式法、割补法等;逻辑学中的方法(思维方法)包括分析法、综合法、归纳法、反证法等;数学思想方法包括函数和方程思想、分类讨论思想、数形结合思想、化归思想等。 二、《数学课程标准》的要求 数学思想方法的本质地位,决定了其成为《数学课程标准》的核心。在《数学课程标准》中,一方面在课程的理念、目标中,明确提出了对数学思想方法的要求。另一方面,在课程内容标准中,对数学思想方法的要求几乎渗透到每一个模块和专题中,同时在实施建议部分也作了相应的要求。 《全日制义务教育数学课程标准》的总体目标第一条便是:获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以

数学思想与方法作业

一、简答题 1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。 答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。 代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。 2、比较决定性现象和随机现象的特点,简单叙述确定数学的局限。 二、论述题 1.论述社会科学数学化的主要原因。 2、论述数学的三次危机对数学发展的作用。 答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。 第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。 第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的 历史,斗争的结果就是数学领域的发展。 三、分析题 1.分析《几何原本》思想方法的特点,为什么? 2、分析《九章算术》思想方法的特点,为什么? 答:(1)开放的归纳体系 从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。 在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综 合起来,就得到整个《九章算术》。 另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。因此,《九章算术》是一个开放的归纳体系。 (2)算法化的内容 《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一。 (3)模型化的方法 《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。

高中数学解题基本方法

高中数学解题基本方法 换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx2cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 2a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) 2log 2 (2x+1-2)〈2的解集是_______________。

初中数学解题思维方法大全

初中数学解题思维方法大全 还在为初中数学解题而烦恼?还在为数学低分而烦躁?那是你没有全面理解初中数学 的解题思维和解题方法。暑假不出门,了解,助你在新学期解决数学难题。 一、选择题的解法 1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。 2、特殊值法:特殊值淘汰法有些选择题所涉及的数学命题与字母的取值范围有关, 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然 后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既 采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这 样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义, 又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求 解题思路,使问题得到解决。 二、常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数 含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数 学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之 间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊 与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不 同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要 的解题策略。

相关文档
最新文档