污水处理格栅和调节池设计计算书

污水处理格栅和调节池设计计算书
污水处理格栅和调节池设计计算书

污水处理格栅和调节池设计计算书

1.格栅设计由于废水中的固体以悬浮状为主,个体较小,设计流程只选择细格栅,人工

捞渣方式,减轻后续处理构筑物的处理负担。 1.1 设计参数设定:

a.栅条宽度为S=0.01m;

b.格条间隙宽度b=10mm;

c.栅前渠道水流速度一般采用0.4,0.8m/s,取0.6m/s;

d.过栅流速一般采用0.6,1.0m/s,取0.8m/s;

e.栅前水深h=0.2m;

f.格栅倾角一般采用45?,75?。人工清除格栅倾角小时,较省力,但占地

[1]面积大。

1.2 设计计算:

33a.流量为Q=1000m/d=0.012m/s;

取废水变化系数为K=3,则最大设计流量

3Q=K?Q=3×0.012=0.036m/s; Max

格栅间隙数目

QSin,0.036Sin60:Max n ,==28(个) b,h,v0.01,0.2,0.6

格栅总宽度B , S?(n,1),b?n ,0.01×(28,1),0.010×28

= 0.55(m)

取B=0.6m,

则B=S?(n,1),b?n

n=30

b.取进水渠道宽度B1=0.3m,其渐宽部分展开角度α,20?

则进水渠道渐宽部分长度

,BB1l= 12tg,

0.5,0.3 = 2tg20:

=0.27(m) c.栅槽与出水渠道连接处的渐窄部分长度

l0.271l===0.14(m) 222

d.通过格栅的水头损失

取格栅断面为迎水面为半圆形的矩形,设计水头损失为h,格栅阻力增大0

[20]系数为k,根据经验定k=3,则格栅前后水位落差h为: 1

423sv,,h=h?k = ,,,,sin,,k,,10b2g,,

4230.010.8,, = 1.83,,,sin60:,3,,0.012g,,

=0.16(m)

则栅室总高度为

H=h+h+h=0.2+0.16+0.3=0.66(m) 112

f.栅槽总长

h,h2L=l+l+0.5+1.0+ 12tg,

0.2,0.3,0.27,0.14,0.5,1.0, tg60:

,2.2(m)

g.出水管计算

Q4取水流流速为0.5m/s,则管径应为D=,0.175(m), ,v取管径为200mm,则流速为0.54m/s。

2 调节池设计 2.1 设计参数设定

[21]取停留时间t为8小时,最低水位为0.3m。 2.2 设计计算:

a.进水管设计

Q4取水流流速为0.5m/s,则管径应为D=,0.175(m), ,v取管径为200mm,则流速为0..38m/s,设计标高为,1.40;

b.容积计量

V=Q×t=1000?24×8=333.4(m)

V取长宽为10m×10m,则有效水深为h==3.34(m); A

c.总高度计算

h,h,h,3.34,0.3,3.64(m) 最高水位调节最低水位

总池深为3.64m;

d.调节池水泵选型

选用QW型潜水排污泵,型号为50QW25-10-1.5泵三台,两用一备,出口

3口径50mm,流量25m/h,扬程10m,转速2840r/min,轴功率1.85 KW,电机动机功率1.5KW,效率67.5%,泵重量60kg。

调节池设计及气搅拌设计说明书

调节池 一般工企业排出的废水,水质、水量、酸碱度或温度等水质指标随排水时间大幅度波动,中小型工厂的水质水量的波动更大。为了保证后续处理构筑物或设备的正常运行,絮对废水的水量和水质进行调解。一般来说,调节池具有下列作用: 1. 减少或防止冲击负荷对设备的不理影响; 2. 使酸性废水和碱性废水得到中和,使处理过程中pH 值保持稳定; 3. 调节水温; 4. 当处理设备发生故障时,可起到临时的事故贮水池的作用; 5. 集水作用,调节来水量和抽水量之间的不平衡,避免水泵启动过分频繁。 为了保证后续的构筑物有较为稳定的水质水量和适宜微生物的pH 值。 已知:设计流量Q= m 3/h ,停留时间T= h ,采用穿孔管空气搅拌,气水比为4:1 调节池有效容积 V=QT=?208.5 m 3调节池尺寸 调节池平面形状为矩形,其有效水深采用h 2=,调节池面积为: F=V/ h 2==83.4 m 2 池宽B 取 m ,则池长为 L=F/B==13.9 m 保护高h 1= 池总高H=+= m 空气管计算 在调节池内布置曝气管,气水比为4:1,空气量为Q=?= m 3/s 。利用气体的搅拌作用使来水均匀混合,同时达到预曝气的作用。 空气总管D 1取75mm ,管内流速V 1为 V 1=214D Q S π=2 075.014.3046.04??=10.4m/s V 1在10~15m/s 范围内,满足规范要求 空气支管D 2:共设4根支管,每根支管的空气流量q 为: q=s Q 41=046.04 1?=0.0115m 3/s 支管内空气流速V 2应在5~10m/s 范围内,选V 2=6m/s,则支管管径D 2为 D 2=2 4v q π=60115.04??π=0.0494m=49.4mm 取D 2=50mm,则V 2= 2 050.00115.04??π=s 穿孔径D 3:每根支管连接两根穿孔管,则每根穿孔管的空气流量为

污水处理厂设计计算书

第二篇设计计算书 1、污水处理厂处理规模 1、1处理规模 污水厂得设计处理规模为城市生活污水平均日流量与工业废水得总与:近期1、0万m3/d,远期2、0万m3/d。 1、2污水处理厂处理规模? 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量与工业废水得总与。 Q设=Q1+Q2 = 5000+5000 = 10000m3/d 总变化系数:KZ=Kh×Kd=1、6×1=1、6 2、城市污水处理工艺流程 污水处理厂CASS工艺流程图 3、污水处理构筑物得设计 3、1泵房、格栅与沉砂池得计算 3.1。1 泵前中格栅 格栅就是由一组平行得得金属栅条制成得框架,斜置在污水流经得渠道上,或泵站集水井得井口处,用以截阻大块得呈悬浮或漂浮状态得污物。在污水处理流程中,格栅就是一种对后续处理构筑物或泵站机组具有保护作用得处理设备。 3。1.1、1 设计参数: (1)栅前水深0.4m,过栅流速0、6~1.0m/s,取v=0。8m/s,栅前流速0、4~

0。9 m/s; (2)栅条净间隙,粗格栅b= 10 ~ 40mm, 取b=21mm; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65°,渐宽部分展开角α1=20°; (5)栅前槽宽B1=0.82m,此时栅槽内流速为0。55m/s; (6)单位栅渣量:W1 =0。05m3栅渣/103m3污水; 3。1.1、2格栅设计计算公式 (1)栅条得间隙数n,个 式中, -最大设计流量,; -格栅倾角,(°); b-栅条间隙,m; h-栅前水深,m; v-过栅流速,m/s; (2)栅槽宽度B,m 取栅条宽度s=0.01m B=S(n-1)+bn (3)进水渠道渐宽部分得长度L1,m -进水渠宽,m; 式中,B 1 α1-渐宽部分展开角度,(°); ,m (4)栅槽与出水渠道连接处得渐窄部分长度L 2 (5)通过格栅得水头损失h1,m 式中:ε—ε=β(s/b)4/3; h0 —计算水头损失,m; k —系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; ξ- 阻力系数,与栅条断面形状有关;

污水处理厂工艺的设计计算书

5000T 污水处理厂设计计算书 设计水量: 近期(取K 总=1.75):Q ave =5000T/d=208.33m 3/h=0.05787 m 3 /s Q max =K 总Q ave =364.58m 3/h=0.10127m 3 /s (截留倍数n=1.0)Q 合=n Q ave =416.67 m 3/h=0.1157m 3 /s 远期(取K 总=1.6):Q ave =10000T/d=416.67m 3/h=0.1157m 3 /s Q max =K 总Q ave =667m 3/h=0.185m 3 /s 一.粗格栅(设计水量按远期Q max =0.185m 3 /s ) (1)栅条间隙数(n ): 设栅前水深h=0.8m ,过栅流速v=0.6m/s ,栅条间隙b=0.015m ,格栅倾角a=75°。 °max sin 0.185sin 75=25Q n α==(个) (2)栅槽宽度(B ) B=S (n-1)+bn=0.01(25-1)+0.015*25=0.615m 二.细格栅(设计水量按远期Q max =0.185m 3 /s ) (1)栅条间隙数(n ): °max sin 0.185sin 60=430.003 2.20.6 Q n bhv α==??(个) (2)栅槽宽度(B ) B=S (n-1)+bn=0.01(43-1)+0.003*43=0.549m 三.旋流沉砂池(设计水量按近期Q 合=0.1157m 3 /s ),取标准旋流沉砂池尺寸。

四、初沉池(设计水量按近期Q 合=416.67 m 3/h =0.1157m 3 /s ) (1)表面负荷:q (1.5-4.5m 3 /m 2 ·h ),根据姜家镇的情况,取1.5 m 3 /m 2 ·h 。 面积2max 416.67 277.781.5 Q F m q = == (2)直径418.8F D m π = =,取直径D=20m 。 (3)沉淀部分有效水深:设t=2.4h , h2=qt=1.5*2.4=3.6m (4)沉淀部分有效容积: 2232*20*3.61130.44 4 V D h m π π '= = = 污泥部分所需的容积:设S=0.8L/(人·d ),T=4h , 30.8120004 1.610001000124 SNT V m n ??= ==?? 污泥斗容积:设r1=1.2m ,r2=0.9m ,a=60°,则 512()(1.8 1.5)60=0.52h r r tg tg α=-=-o ,取0.6m 。 222235 111220.6 ()(1.8 1.5 1.8 1.5) 5.143 3 h V r r r r m ππ= ++= +?+= (5)污泥斗以上圆锥体部分污泥容积:设池底径向坡度0.1,则 4()0.1(10 1.8)*0.10.82h R r m =-?=-=,取0.8m 222234 2110.8 ()(1010 1.8 1.8)101.523 3 h V R Rr r m ππ= ++= +?+= (6)污泥总容积: V 1+V 2=5.14+101.52=106.66m 3>1.6 m 3 (7)沉淀池总高度:设h 1=0.5m , H= 0.5+3.6+0.8+0.6=5.5m (8)沉淀池池边高度 H ′=0.5+3.6=4.1m

污水处理厂计算书

污水处理厂计算书 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

污水厂设计计算书 一、粗格栅 1.设计流量 a.日平均流量Q d =30000m 3/d ≈1250m 3/h=s=347L/s K z 取 b. 最大日流量 Q max =K z ·Q d =×30000m 3/d=42000 m 3/d =1750m 3/h=s 2.栅条的间隙数(n ) 设:栅前水深h=,过栅流速v=s,格栅条间隙宽度b=,格栅倾角α=60° 则:栅条间隙数4.319 .08.002.060sin 486.0sin 21=???== bhv Q n α(取n=32) 3.栅槽宽度(B) 设:栅条宽度s= 则:B=s (n-1)+en=×(32-1)+×32= 4.进水渠道渐宽部分长度 设:进水渠宽B 1=,渐宽部分展开角α1=20° 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m B B L 3.020tan 29.011.1tan 2221=? -=-=α 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3 则:m g v k kh h 18.060sin 81 .929.0)02.0015.0(42.23sin 2234 201=?????===αε 其中ε=β(s/b )4/3

k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β 与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2= 则:栅前槽总高度H 1=h+h 2=+= 栅后槽总高度H=h+h 1+h 2=++= 8.格栅总长度(L) L=L 1+L 2+++ H 1/tan α=++++tan60°= 9. 每日栅渣量(W) 设:单位栅渣量W 1=栅渣/103m 3污水 则:W 1=05.01000 86400347.010********??=??W Q =m 3d 因为W> m 3/d,所以宜采用机械格栅清渣及皮带输送机或无轴输送机输送栅渣 二、细格栅 1.设计流量Q=30000m 3/d ,选取流量系数K z =则: 最大流量Q max =×30000m 3/d=s 2.栅条的间隙数(n ) 设:栅前水深h=,过栅流速v=s,格栅条间隙宽度e=,格栅倾角α=60° 则:栅条间隙数69.1049 .08.0006.060sin 486.0sin 21=???==ehv Q n α(n=105) 设计两组格栅,每组格栅间隙数n=53

调节池设计(终版)

调节池设计 假定:在水一方餐厅每天用水量为15m3左右,用水高峰期分别为10:00am—14:00pm和17:00pm—21:00pm两个时间段。平均每个时间段进水量为7.5 m3。其他时间段没有进水。 则其24小时平均流速为0.625 m3/h。(所以最优的出水量是控制在0.62 m3/h。) 据此绘制污水流量变化曲线见下图,见红色线表示。蓝色线表示平均污水流量。 当进水量大于出水量时,余量在调节池中贮存,当进水量小于出水量时,需取用调节池中的存水。由此可见,调节池所需容积等于上图中面积A、B或C中最大者,即调节池的理论调节容积为0.62*13=8.1 m3。 设计中采用的调节池容积,一般宜考虑增加理论调节池容积的10%-20%,故本例中调节池容积按V=8.1*1.2=9.7 m3,约等于10 m3

来计算。 调节池池子高度取2m ,其中有效水深1.7m ,超高0.3m 。则池面积为 A=V/h=10/1.7=5.9m 。 将调节池长设为3m, 宽设为2m ,所以调节池的实际尺寸为L*B*H=3*2*1.7=10.2 m 3。 水力学的计算公式 流量与流速的关系: 式中:Q ——流量,m3/s ; A ——过水断面面积,m2; v ——流速,m/s ; 谢才公式计算流速: R ——水力半径(过水断面积与湿周的比值),m ; v A Q ?=I R C v ??=

I ——水力坡度(即水面坡度,等于管底坡度); C ——流速系数,或谢才系数。 C 值一般按曼宁公式计算,即 n ——管壁粗糙系数 由上可推导出: 充满度 水流断面及水力半径计算见下图 61 1R n C ?=

污水处理设计计算

第三章 污水处理厂工艺设计及计算 第一节 格栅 。 1.1 设计说明 栅条的断面主要根据过栅流速确定,过栅流速一般为0.6~1.0m/s ,槽内流速0.5m/s 左右。如果流速过大,不仅过栅水头损失增加,还可能将已截留在栅上的栅渣冲过格栅,如果流速过小,栅槽内将发生沉淀。此外,在选择格栅断面尺寸时,应注意设计过流能力只为格栅生产厂商提供的最大过流能力的80%,以留有余地。格栅栅条间隙拟定为25.00mm 。 1.2 设计流量: a.日平均流量 Q d =45000m 3/d ≈1875m 3/h=0.52m 3/s=520L/s K z 取1.4 b. 最大日流量 Q max =K z ·Q d =1.4×1875m 3/h=2625m 3/h=0.73m 3/s 1.3 设计参数: 栅条净间隙为b=25.0mm 栅前流速ν1=0.7m/s 过栅流速0.6m/s 栅前部分长度:0.5m 格栅倾角δ=60° 单位栅渣量:ω1=0.05m 3栅渣/103m 3污水 1.4 设计计算: 1.4.1 确定栅前水深 根据最优水力断面公式221ν B Q =计算得: m Q B 66.07.0153 .0221=?= = ν m B h 33.02 1== 所以栅前槽宽约0.66m 。栅前水深h ≈0.33m 1.4.2 格栅计算 说明: Q max —最大设计流量,m 3/s ; α—格栅倾角,度(°); h —栅前水深,m ; ν—污水的过栅流速,m/s 。 栅条间隙数(n )为 ehv Q n αsin max = =)(306 .03.0025.060sin 153.0条=??? ? 栅槽有效宽度(B )

污水处理基本计算公式

污水处理基本计算公式 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿、碳源、除磷、反渗透、水泵和隔油池计算公式,由于篇幅较长,大家可选择有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2) 废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙50~100mm。 (3) 大型废水处理厂可设置粗、中、细三道格栅。 (4) 如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1) 栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3 (栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3 (栅渣/废水)。

(2) 栅渣的含水率一般为80%,容重约为960kg/m3。 (3) 在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。 3、其他参数 (1) 过栅流速一般采用0.6~1.0m/s。 (2) 格栅前渠道水流速度一般采用0.4~0.9m/s。 (3) 格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4) 机械格栅的动力装置一般宜设在室,或采取其他保护设备的措施。 (5) 设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6) 大中型格栅间应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1) 栅槽宽度B

污水处理场设计计算书

第二篇设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max sin Q n bhv α= 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

调节池、格栅设计计算

调节池 3.1功能描述 调节池主要起到收集污水,调节水量,均匀水质的作用。 3.2设计要点 调节池的水力停留时间(HRT )一般取 4-6h ;其有效高度一般取4-5m ,设计时,按水力停留时间计算池容并确定其规格。 3.3调节池设计计算: (1)有效容积V e HRT Q V e ?=max 式中:Q max ——设计进水流量 (m 3/h) HRT ——水力停留时间(h ); (2)有效面积A e e e e h V A = 式中:h e ——调节池有效高度 (3)调节池实际尺寸 )5.0(+??e h B L 式中:0.5 ——超高 (4)配套设备

潜水搅拌器,按体积校核,1m 3体积对应8W 功率的潜水搅拌器。 4.格栅 4.1功能描述 格栅由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎石、毛发、木屑、果皮、蔬菜、塑制品等,以便减轻后续处理构筑物的处理负荷,并使之正常运行。按照栅栅条的净间隙,可分为粗格栅(50~100mm )、中格栅(10~40mm )、细格栅(3~10mm )。 4.2设计要点 设置格栅的目的是拦截废水中粗大的悬浮物,首先废水的水质选择栅条净间隙,然后废水的水量和栅条净间隙来计算格栅的一些参数 (B 、L ),得到的这些参数就可以选择格栅的型号。工业废水一般采用e=5mm,如造纸废水、制糖废水、制药废水等。采用格栅的型号一般有固定格栅、回转式机械格栅。 4.3格栅的设计 (1)栅槽宽度 n e n S B ?+-=)1( ehv Q n αsin max =

污水处理厂设计计算

} 某污水处理厂设计说明书 计算依据 1、工程概况 该城市污水处理厂服务面积为,近期(2000年)规划人口10万人,远期(2020年)规划人口万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d — B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期×104m3/d,远期×104m3/d考虑; C.公用建筑废水量排放系数近期按,远期考虑; , D.处理厂处理系数按近期,远期考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L

BOD5 30mg/L SS 30mg/L NH3-N 10mg/L 污水量的确定 ¥ 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期,远期考虑,由于工业废水必须完全去除,所以不考虑其处理系数。& 近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算

近期; ,取日变化系数;时变化系数; 。 ; 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 污水水质的确定 近期取 取 /

远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,, ,, 考虑远期发展问题,结合《城镇污水处理厂污染物排放标准》(GB18918-2002),处理水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级标准(B)排放要求。 拟定出水水质指标为: 表1-1 进出水水质一览表 基本控制项目一级标准(B)进水水质去除率 % 序号 % 1COD80· 325 2BOD20150% 3` 20300% SS 4氨氮8[1]30、 % 5T-N204050% 6T-P) 350% 7pH6~97~8 ' 注:[1]取水温>12℃的控制指标8,水温≤12℃的控制指标15。 [2]基本控制项目单位为mg/L,PH除外。

调节池的设计计算

3.1.2 调节池的设计计算 1.调节池的作用 从工业企业和居民排出的废水,其水量和水质都是随时间而变化的,工业废水的变化幅度一般比城市污水大。为了保证后续处理构筑物或设备的正常运行,需对废水的水量和水质进行调节。调节水量和水质的构筑物称为调节池。 2.调节池的设计简图如下: 图5 3.调节池尺寸的计算 调节水量一般为处理规模的10%-15%可满足要求。 调节池设置一用一备,便于检修清泥。 4.调节池所需空气量 调节池作为平底,为防止沉淀,用压缩空气搅拌废水。空气用量为1.5-3.0h m m 23/,取2.0h m m 23/ 则所需空气量为min /2.104/6250/505.622333m h m h m ==?? 调节池计算:

3.5.2设计参数 水力停留时间T = 6h ; 设计流量Q = 15000m 3/d = 625m 3/h =0.174m 3/s ; 3.5.3 设计计算 3.5.3.1 调节池有效容积 V = QT = 625×6 = 3750 m 3 3.5.3.2 调节池水面面积 取池子总高度H=5.5m,其中超高0.5m,有效水深h=5m ,则池面积为 A = V/h = 3750/5 = 800 m 2 3.5.3.3 调节池的尺寸 池长取L = 28m ,池宽取B = 28 m ,则池子总尺寸为 L ×B ×H = 28m ×28m ×5.5m=4312 m 3。 3.5.3.4 调节池的搅拌器 使废水混合均匀,调节池下设两台LFJ-350反应搅拌机。 3.5.3.8调节池的提升泵 设计流量Q = 93L/s,静扬程为36.00-27.00=9.00m 。 总出水管Q=174L/s ,选用管径DN500,查表的v=0.94m/s,1000i=2.2,设管总长为50m ,局部损失占沿程的30%,则总损失为: ()m 14.03.01501000 2 .2=+?? 管线水头损失假设为1.5m ,考虑自由水头为1.0m,则水泵总扬程为: H=9+0.14+1.5+1.0=11.64m 取12m 。 选择200QW360-15-30型污水泵三台,两用一备,其性能见表3.7: 表3.7 200QW360-15-30 型污水泵性能 流量 360m 3 /h 电动机功率 30KW 扬程 15m 电动机电压 380V

污水处理厂计算书

污水厂设计计算书 一、粗格栅 1.设计流量 a.日平均流量Q d =30000m 3/d ≈1250m 3/h=0.347m 3/s=347L/s K z 取1.40 b. 最大日流量 Q max =K z ·Q d =1.40×30000m 3/d=42000 m 3/d =1750m 3/h=0.486m 3/s 2.栅条的间隙数(n ) 设:栅前水深h=0.8m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数4.319 .08.002.060sin 486.0sin 21=???==bhv Q n α(取n=32) 3.栅槽宽度(B) 设:栅条宽度s=0.015m 则:B=s (n-1)+en=0.015×(32-1)+0.02×32=1.11m

4.进水渠道渐宽部分长度 设:进水渠宽B 1=0.9m,渐宽部分展开角α1=20° m B B L 3.020tan 29.011.1tan 2111=? -=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m B B L 3.020tan 29.011.1tan 2221=? -=-=α 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3 则:m g v k kh h 18.060sin 81 .929.0)02.0015.0(42.23sin 2234 201=?????===αε 其中ε=β(s/b )4/3 k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.4m

10万方-城镇生活污水处理计算书

工艺计算书

1设计总说明 (3) 工程项目概况 (3) 进水水质及处理目标 (3) 污水处理工艺流程 (3) 污泥处理工艺流程 (3) 污染物预期去除率 (4) 2建设规模 (4) 3粗格栅计算 (5) 4集水井计算 (6) 集水井提升泵选型 (6) 集水井有效容积 (6) 集水井尺寸设计 (6) 5细格栅计算 (6) 6沉砂池计算 (8) 7初沉池计算 (9) 8A2/O池计算 (11) 9二沉池计算 (17) 10消毒接触池计算 (19) 11污泥池计算 (19) 12脱水间计算 (20)

1设计总说明 1.1工程项目概况 处理规模:10万吨/日。 处理对象:本项目处理对象为生活污水。 1.2进水水质及处理目标 本工程污水进水水质指标如下: 本项目处理后的尾水污染物排放标准执行(GB18918-2002)中一级A标准。各主要指标如下: 注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。 1.3污水处理工艺流程 粗格栅→集水井→细格栅→沉砂池→初沉池→A2/O池→二沉池→消毒池排放 1.4污泥处理工艺流程 污泥→污泥浓缩池→污泥压滤机脱水→干泥外运处置

1.5污染物预期去除率 2建设规模 本污水处理厂建设规模为10万m3/d。 根据《室外排水设计规范》(GB50014-2006)污水处理厂的进水流量总变化系数表,采用内插法得本项目流量总变化系数Kz,本工程设计污水流量为:平均流量Q:Q=100000t/d≈100000m3/d=4167 m3/h=1.157m3/s 设计流量Q max :Q max =130000 t/d≈130000 m3/d=5417m3/h= m3/s

污水调节池计算书

污水调节池计算书-CAL-FENGHAI.-(YICAI)-Company One1

污水调节池计算书 工业企业由于生产工艺的原因,在不同工段、不同时间所排放的污水差别很大,尤其是操作不正常或设备产生泄漏时,污水的水质就会急剧恶化,水量也大大增加,往往会超出污水处理设备的正常处理能力;城市污水,尤其是学校、居民小区等人员集中的地方,由于用水量和排入污水中杂质的不均匀性,也会使得其污水流量或浓度在一昼夜内有较大的变化。 这些问题都会给处理操作带来很大的麻烦,使污水处理设施难以维持正常操作。因此,对于特征上波动比较大的污水,有必要在污水进入处理主体之前,先将污水导入调节池进行均和调节处理,使其水量和水质都比较稳定,这样就可为后续的水处理系统提供一个稳定和优化的操作条件。 具体说来,调节的作用主要体现在以下几个方面: 1.提供对污水处理负荷的缓冲能力,防止处理系统负荷的急剧变化; 2.减少进入处理系统污水流量的波动,使处理污水时所用化学品的加料速率稳定,适合加料设备的能力; 3.在控制污水的pH值、稳定水质方面,可利用不同污水自身的中和能力,减少中和作用中化学品的消耗量。 4.防止高浓度的有毒物质直接进入生物化学处理系统; 5.当工厂或生活污水系统暂时停止排放污水时,仍能对处理系统继续输入污水,保证系统的正常运行。 一、调节池 1、按连续进水设计。调节容积按日处理量的35%~50%计算。 污水厂处理规模为300t/d。 2、设计进水量 Q=100t/d=100/24=4.17m3/h 3、停留时间t: 取t=9h 4、有效容积V: V=Qt==37.5m3 5、有效水深h:3m 6、池子的面积F; F=V/h=3=12.3m2 7、池子的平面尺寸:LxB=5x3m 8、池总高度H: 设超高0.5m,H=3+=3.5m 9、池子尺寸:LxBxH=3.5m 2

污水处理记录

污水处理基本知识 污水处理基本工艺流程 预处理阶段(物理法) 1、粗格栅是由一组(或多组)相平行的金属栅条与框架组成,倾斜安装在进水的渠道,以拦截污水中粗大的悬浮物及杂质。起到一个过滤作用。

2、污水提升泵站的作用就是将上游来的污水提升至后续处理单元所要求的高度。污水处理厂在运行工艺流程中一般采用重力流的方法通过各个构筑物和设备。但由于厂区地形和地质的限制。必须在前处理处加提升泵站将污水提到某一高度后才能按重力流方法运行。 3、细格栅作用与粗格栅作用相同,主要用来连续清除污水中较小的固体污染物。 4、旋流沉砂池是利用机械力控制水流流态与流速、加速沙粒的沉淀并使有机物随水流带走的沉砂装置。 生物处理阶段 1、前置的选择池可以使其内的生态环境有利于选择性的发展絮状菌,运用生物竞争机制抑制丝状菌的过度生长和繁殖,控制污泥膨胀。 其缺氧的环境适合反硝化细菌生长,起到一定的脱氮作用,并减弱了硝酸盐对厌氧池的不良影响; 达到更好的厌氧环境,提供聚磷菌良好的作用条件,从而达到较好的除磷效果。。 2、厌氧池内利用厌氧菌的作用,使有机物发生水解、酸化和甲烷化,去除废水中的有机物,并提高污水的可生化性,有利于后续的好氧处理。 高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。 3、氧化沟是活性污泥法的一种变型,废水和活性污泥混合液在曝气池内不断循环流动,主要采用生物处理的方式。污水首先进入到氧化沟的外沟,再到中沟,

再到内沟,最后流到沉淀池中。

氧化沟脱氮 氧化沟厌氧区对小分子有机物实现氨化(将小分子有机物转化为NO X的过程)和反硝化的过程。 氧化沟缺氧区实现硝化(将NH3、NH4+转化为NO X的过程)、反硝化(将NO X转化为N2的过程)。 氧化沟好氧区最后进行硝化等好氧处理的过程 注意:生物除氮主要是利用生物吸收转化将有机物最终转变为N2排出,从而达到除氮的效果。 氧化沟除磷 厌氧区实现聚磷菌释放P的过程 好氧区实现聚磷菌过量吸收P的过程 注意:生物除磷主要是利用聚磷菌在厌氧区释放P的量<聚磷菌在好氧区吸收的P的量,总体来说是吸收P的过程,从而达到除磷的效果。 曝气是使空气与水强烈接触的一种手段,其目的在于将空气中的氧溶解于水中,或者将水中不需要的气体和挥发性物质放逐到空气中。换言之,它是促进气体与液体之间物质交换的一种手段。它还有其他一些重要作用,如混合和搅拌。 后处理阶段 1、沉淀池利用悬浮物和水的密度差,重力沉降作用去除水中悬浮物。 沉淀池上清液到消毒池进行消毒后排放。

(完整版)污水处理工艺设计计算书

仲恺农业工程学院课程设计 污水处理工艺设计 计算书 (2014—2015学年第一学期) 班级给排121班 姓名李子恒 学号201210524123 设计时间2014.12.15~ 2015.01.02 指导老师刘嵩、孙洪伟 成绩 城市建设学院 2014年11月

目录 1 课程设计目的和要求 (4) 1.1设计目的 (4) 1.2 设计任务 (4) 1.3设计要求 (4) 1.4 原始资料 (4) 2 污水处理流程方案 (5) 3 处理程度的确定 (6) 4 污水的一级处理 (6) 4.1 格栅计算 (6) 4.1.1单独设置的格栅 (7) 4.2 沉砂池计算 (10) 4.3 初次沉淀池计算 (14) 4.3.1 斜板沉淀池 (14) 5 污水的生物处理 (19) 5.1 曝气池 (19) 5.1.1设计参数 (19) 5.2.2 平面尺寸计算 (20) 5.1.3 进出水系统 (22) 5.1.4 曝气池出水设计 (24) 5.1.5 其他管道设计 (24) 5.1.6 剩余污泥量 (24) 6 生物处理后处理 (25) 6.1 二沉淀池设计计算 (25) 6.1.1 池形选择 (25) 6.1.2 辐流沉淀池 (25) 6.2 消毒设施设计计算 (32) 6.2.1 消毒剂的投加 (32) 6.2.2 平流式消毒接触池 (32)

6.3 巴氏计量槽设计 (34) 7 污泥处理构筑物计算 (35) 7.1 污泥量计算 (35) 7.1.1 初沉池污泥量计算 (35) 7.1.2 剩余污泥量计算 (36) 7.2污泥浓缩池 (36) 7.2.1 辐流浓缩池 (37) 7.3 贮泥池 (39) 7.3.1 贮泥池的作用 (39) 7.3.2 贮泥池计算 (40) 7.4 污泥消化池 (41) 7.4.1 容积计算 (41) 7.4.2 平面尺寸计算 (44) 7.4.3 消化池热工计算 (45) 7.4.4 污泥加热方式 (48) 8 污水处理厂的布置 (50) 8.1 污水处理厂平面布置 (50) 8.1.1 平面布置原则 (50) 8.1.2 污水处理厂的平面布置图 (52) 8.2 污水处理厂高程布置 (52) 8.2.1 高程布置原则 (52) 8.2.2 高程布置计算 (53) 8.2.3 污水处理厂高程图 (55)

一级水处理设计计算

第一章污水的一级处理构筑物设计计算 1.1格栅 格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的 进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。被截留的物质称为栅渣。 设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。 格栅断面有圆形、矩形、正方形、半圆形等。圆形水力条件好,但刚度差, 故一般多采用矩形断面。格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5?10);按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处的格栅。 1.1.1格栅的设计 城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为Q=1504.63L s,污水进入污水处理厂处的管径为1250 mm,管道水面标高为80.0 m。 本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。其中,中格栅设在污水泵站前,细格栅设在污水泵站后。中细两道格栅都设置三组即3组,每组的设计流量为0.502 m3. s。 1.1.2设计参数 1、格栅栅条间隙宽度,应符合下列要求: 1)粗格栅:机械清除时宜为16?25;人工清除时宜为25?40。特殊情况下,最大间隙可为100mm。 2)细格栅:宜为1.5?10。 3)水泵前,应根据水泵要求确定。 2、污水过栅流速宜采用0.6?1/s。除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60?90°。人工清除格栅的安装角度宜为30°?60°。 3、当格栅间隙为16?25时,栅渣量取0.10?0.05m3「103m3污水;当格栅 间隙为30?50时,栅渣量取0.03?0.01 m l 103m3污水。

污水处理厂CASS工艺设计计算及说明(精品))

设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max Q n bhv = 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

污水设计计算书

污水管网计算说明书 一、设计污水量定额 (1).居民生活污水定额和综合生活污水定额 居民生活污水采用定额法计算,我国现行《室外排水设计规范》规定,可按当地用水定额的80%~90%采用。对给排水系统完善的地区可按90%计,一般地区可按80%计。综合生活污水定额(还包括公共建筑排放的污水) 注意:采用平均日污水量定额。 (2)工业企业工业废水和职工生活污水和淋浴废水定额,与给水定额相近,可参考。 二、污水量的变化 生活污水量总变化系数宜按现行《室外排水设计规范》规定采用。 与给水系统用水量一样,污水的排放量也随时间发生变化。同样有逐日变化和逐时变化的规律。 为了确定污水管网的设计流量,必须确定污水量的变化系数。 污水量日变化系数K d:指设计年限内,最高污水量与平均日污水量的比值; 污水量时变化系数K h:指设计年限内,最高日最高时污水量与该日平均时污水量的比值; 污水量总变化系数K z:指设计年限内,最高日最高时污水量与平均日平均时污水量的比值。 =? 即有:Kz Kd Kh (1)居民生活污水量变化系数 根据专家常年分析,城市的污水总变化系数Kz的数值主要与排水系统中接纳的污水总量的大小有关。当管道所服务的用户增多或用户的用水量标准增大,污水流量也随即增大。 总变化系数可按下式计算

2.3 Q d ≦5 Kz = 0.112.7d Q 5 ≦Q d ≦000 1.3 Q d ≧1000 (2) 工业废水量变化系数 工业废水量变化规律与产品种类和生产工艺有密切联系,往往需要通过实地调查研究和分析求得。 (3) 工业企业生活污水和淋浴污水量变化 工业企业生活污水量一般按每个工作班污水量定额计算,相应的变化系数按班内污水量变化给出,且与工业企业生活用水量变化系数基本相同,即一般车间采用3.0,高温车间采用2.5。 三、污水设计流量计算 (1)居民生活污水设计流量 影响居民生活污水设计流量的主要因素有生活设施条件、设计人口和污水流量变化。 居民生活污水设计流量Q 1用下式计算: 1111(/)243600i i z q N Q K L s =?∑ 式中 1i q ——各排水区域平均居民生活污水量标准 [L/(cap ·d)] 1i N ——各排水区域在设计使用年限终期所服务的人口数(cap) 1z K ——生活污水量的总变化系数 (2)公共建筑污水设计流量 公共建筑的污水量可与居民生活污水合并计算,此时应选用综合生活污水量定额,也可单独计算。 公共建筑污水设计流量Q 2用下式计算:

某城市污水处理厂污水处理工艺设计计算书(课程设计)环境工程

某城市污水处理厂污水处理工艺设计 设 计 计 算 书 专业:环境工程 设计者: 学号: 指导老师: 完成日期: 目录 第一节格栅-------------------------------------- ------------------3 1.1计算依据----------------------------------------- -----------------------------3 2.2计算方法-----------------------------------------

-----------------------------3 1.3计算过程----------------------------------------------------------------------4 第二节曝气沉砂池-------------------------------------- ---------6 2.1一般规则----------------------------------------------------------------------6 2.2设计参数----------------------------------------------------------------------7 2.3计算过程----------------------------------------------------------------------7 2.4沉砂室设计计算-------------------------------------------------------------8 第三节初沉池------------------------------------------------------9 3.1一些参数的选定--------------------------------------------------------------9 3.2初沉池选型--------------------------------------------------------------------9 第四节曝气池------------------------------------------------------11 4.1工况参数-----------------------------------------------------------------------11 4.2设计过程-----------------------------------------------------------------------12 第五节二沉池------------------------------------------------------17 5.1设计参数-----------------------------------------------------------------------17 5.2主要尺寸计算-----------------------------------------------------------------17 5.3进水系统的计算--------------------------------------------------------------18 5.4出水部分设计-----------------------------------------------------------------19 5.5溢流堰设计--------------------------------------------------------------------19 5.6排泥部分设计-----------------------------------------------------------------20 第六节消毒接触池------------------------------------------------21 6.1设计参数-----------------------------------------------------------------------21 6.2计算过程-----------------------------------------------------------------------21 第七节污泥浓缩池------------------------------------------------22

相关文档
最新文档