数据分析实验二

数据分析实验二
数据分析实验二

解:利用SAS 系统中的proc reg 过程求问题的回归模型,程序如下: proc reg data = p80;

var y x1 x2;

model y = x1 x2;

run;

运行结果如下:

(1)由输出结果可以知道回归系数为3.45261,为0.496、为0.0092,并且由最后一列的p 值可知,人数x1和收入x2对销售量y 都显著助影响,可理解为基础销售量,当人数x1固定时,收入x2每提高一个单位,销售量y 将增加0.496个单位,当收入x2固定时,人数x1每增加一个单位,销售量y 将增加0.0092各单位;误差方差2δ为4.7403,可得回归方程为

123.452610.4960.0092y x x =++

(2)方差分析表

方差来源 自由度 平方和(SS ) 均方(MS ) F 值 P 值

回归(R ) 2 53845 26922 5679.47 0.0001 误差(E ) 12 56.88357 4.7403

总和(T ) 14 53902

线性回归关系显著性检验:

0H :120ββ== ? 1H :12,ββ至少有一个非零

的统计量的观测值05679.47F =,检验的p 值000()0.0001H p p F F =≥=,并且复相关系数的平方2538450.998953902

SSR R SST ===,这些结果均表明y 与x1,x2

之间的线性回归关系是高度显著的。

(3)若取置信水平0.05α=,由于0.97512

()(12) 2.1788t n p t α--==,利用参数估计和标准差估计的输出可求得、的置信度为95%的置信区间为 对:0.496±2.1788×0.00605=0.496±0.0132,即(0.4828,0.5092) 对:0.0092±2.1788×0.00096811=0.0092±0.0021,即(0.0071,0.0113)

(4)y 与x1做线性回归分析,程序如下:

proc reg data = p80;

var y x1;

model y= x1;

run ;

运行结果如下:

复相关系数为0.9910,说明x1对y 有显著影响。

y 与x2做线性回归分析,程序如下:

proc reg data = p80;

var y x2;

model y= x2;

run ;

运行结果如下:

复相关系数为0.4087,x2对y 影响不显著。

为检验x1、x2的交互作用对y 的影响,全模型为

01122312y x x x x ββββε=++++

对题目中的数据进行整理后,编写SAS 程序并运行:

proc reg data = p80;

var y x1 x2 x1x2;

model y= x1 x2 x1x2; run ; 运行结果:

通过对数据拟合该模型可得

()56.72083SSE F = 15411F f =-=

检验x1、x2的交互作用的综合影响是否显著即检验假设30β=是否能被拒绝,这是简约模型为

01122y x x βββε=+++

由第二问可知 ()56.88357SSE R = 15312

R f =-= 故检验统计量的观测值为

0(56.8835756.72083)/10.034456.72083/12

F -== 检验p 值为

000()((1,12)0.0344)0.8622H p p F F p F =≥=≥=

由此可认为x1、x2的交互作用项对y 的综合影响是不显著的,即模型中没有必要引入交叉乘积项。

(5)对题目数据进行整理,编写SAS 程序并运行

proc reg data = p80;

model y = x1 x2/i r clm cli ;

output out = d predicted = yhat L95 = low U95 = up;

quit ;

run ;

proc print ;

var yhat low up; run ; 运行结果如下:

对于给定的值0102(,)(220,2500)x x =,0y 的预测值为135.5714,95%置信区间为(130.5998,140.543)

(6)通过编写SAS 程序并运行 程序一:

proc reg data =p80; model y=x1 x2;

output out =a p =predict ; run ;

proc capability graphics noprint data =a; run ;

goptions reset =all;

proc gplot data =a; plot resid*predict;

symbol v =dot i =none;

run ;

程序二:

proc reg data=p80;

model y=x1 x2;

output out=resid student=r ;

run;

proc capability data=resid graphics noprint;

qqplot r/normal(mu=0 sigma=1);

run;

proc sort data=resid;

by r;

proc iml;

use resid;

read all var{r} into rr;

do i=1 to 15;

qi=probit((i-0.375)/15.25);

q=q//qi; end;

rq=rr||q; create correl var{r q};

append from rq;

quit;

proc print data=correl;

run;

proc corr data=correl;

run;

程序一运行结果为:

Predicted Value of y表示预测值,Residual表示残差,Studentized Residual表示学生化残差

由以上表格最后一列可以知道,学生化残差中有10

66.7%(0.68)

15

=≈落在(1,1)

-

内;有13

86.7%(0.87)

15

=≈落在( 1.5,1.5)

-内;有

15

1(0.95)

15

=≈落在(2,2)

-内。由此

可见,学生化残差落在上述各区间内的频率与(0,1)

N分布的相应概率相差均不

大,因此对所给数据没有理由拒绝模型误差项服从正态分布的假定。

由程序二运行可求得学和生化残差的正态QQ 图

由图可知点()()(,)i i q r (1,2,,15)i 大致在一条直线上,且二者的相关系数估计值(即有序化残差与相应标准正态分布的分位数相关系数)为0.99363,因此可认为线性回归模型中中误差项正态分布的假定是合理的。

由SAS 程序如下:

proc reg data = p80;

model y = x 1 x2;

output out = a p = yhat r = residual;

run;

proc print data = a;

run;

proc gplot data = a;

plot residual*yhat residual*x1 residual*x2;

symbol v = dot I= none;

run;

运行可得:

关于y的拟合值

关于x1的观测值

关于x2的观测值

由这些残差图可知,她们均没有明显的趋势性,是较为满意的形式,再结合前面的有关误差项分布的正态性检验的有关结果,可以认为相应的线性回归模型以及误差项的独立同正态分

布的假定对所给数据均是较为合理和可行的。

数据分析实验报告

数据分析实验报告 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第一次试验报告 习题1.3 1建立数据集,定义变量并输入数据并保存。 2数据的描述,包括求均值、方差、中位数等统计量。 分析—描述统计—频率,选择如下: 输出: 统计量 全国居民 农村居民 城镇居民 N 有效 22 22 22 缺失 均值 1116.82 747.86 2336.41 中值 727.50 530.50 1499.50 方差 1031026.918 399673.838 4536136.444 百分位数 25 304.25 239.75 596.25 50 727.50 530.50 1499.50 75 1893.50 1197.00 4136.75 3画直方图,茎叶图,QQ 图。(全国居民) 分析—描述统计—探索,选择如下: 输出: 全国居民 Stem-and-Leaf Plot Frequency Stem & Leaf 5.00 0 . 56788 数据分析实验报告 【最新资料,WORD 文档,可编辑修改】

2.00 1 . 03 1.00 1 . 7 1.00 2 . 3 3.00 2 . 689 1.00 3 . 1 Stem width: 1000 Each leaf: 1 case(s) 分析—描述统计—QQ图,选择如下: 输出: 习题1.1 4数据正态性的检验:K—S检验,W检验数据: 取显着性水平为0.05 分析—描述统计—探索,选择如下:(1)K—S检验

结果:p=0.735 大于0.05 接受原假设,即数据来自正太总体。 (2 )W 检验 结果:在Shapiro-Wilk 检验结果972.00 w ,p=0.174大于0.05 接受原假设,即数据来自正太总体。 习题1.5 5 多维正态数据的统计量 数据:

数据处理的基本方法

第六节数据处理的基本方法 前面我们已经讨论了测量与误差的基本概念,测量结果的最佳值、误差和不确定度的计算。然而,我们进行实验的最终目的是为了通过数据的获得和处理,从中揭示出有关物理量的关系,或找出事物的内在规律性,或验证某种理论的正确性,或为以后的实验准备依据。因而,需要对所获得的数据进行正确的处理,数据处理贯穿于从获得原始数据到得出结论的整个实验过程。包括数据记录、整理、计算、作图、分析等方面涉及数据运算的处理方法。常用的数据处理方法有:列表法、图示法、图解法、逐差法和最小二乘线性拟合法等,下面分别予以简单讨论。 列表法是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。其优点是,能对大量的杂乱无章的数据进行归纳整理,使之既有条不紊,又简明醒目;既有助于表现物理量之间的关系,又便于及时地检查和发现实验数据是否合理,减少或避免测量错误;同时,也为作图法等处理数据奠定了基础。 用列表的方法记录和处理数据是一种良好的科学工作习惯,要设 计出一个栏目清楚、行列分明的表格,也需要在实验中不断训练,逐步掌握、熟练,并形成习惯。 一般来讲,在用列表法处理数据时,应遵从如下原则:

(1) 栏目条理清楚,简单明了,便于显示有关物理量的关系。 (2) 在栏目中,应给出有关物理量的符号,并标明单位(一般不重复写在每个数据的后面)。 (3) 填入表中的数字应是有效数字。 (4) 必要时需要加以注释说明。 例如,用螺旋测微计测量钢球直径的实验数据列表处理如下。 用螺旋测微计测量钢球直径的数据记录表 从表中,可计算出 D i D = n = 5.9967 ( mm)

数据分析实验报告

《数据分析》实验报告 班级: 07信计0班 学号: 姓名: 实验日期 2010-3-11 实验地点: 实 验楼505 实验名称: 样本数据的特征分析 使用软件名称:MATLAB 1. 熟练掌握利用Matlab 软件计算均值、方差、协方差、相关系数、标准差 与变异系数、偏度与峰度,中位数、分位数、三均值、四分位极差与极差; 2. 熟练掌握jbtest 与lillietest 关于一元数据的正态性检验; 3. 掌握统计作图方法; 4. 掌握多元数据的数字特征与相关矩阵的处理方法; 安徽省1990-2004年万元工业GDP 废气排放量、废水排放量、固体废物排放 量以及用于污染治理的投入经费比重见表 6.1.1,解决以下问题: 表6.1.1 实 验 目 的

1. 计算各指标的均值、方差、标准差、变异系数以及相关系数矩阵; 2. 计算各指标的偏度、峰度、三均值以及极差; 3?做出各指标数据直方图并检验该数据是否服从正态分布?若不服从正态分布,利用boxcox变换以后给出该数据的密度函数; 4.上网查找1990-2004江苏省万元工业GDR废气排放量,安徽省与江苏省是否 服从同样的分布?

程序如下: clear;clc format ba nk %保留两位小数 %%%%%%%%%%%安徽省%数据%%%%%%%%%%%%%%%%%% A=[104254.40 519.48 441.65 0.18 94415.00 476.97 398.19 0.26 89317.41 119.45 332.14 0.23 63012.42 67.93 203.91 0.20 45435.04 7.86 128.20 0.17 46383.42 12.45 113.39 0.22 39874.19 13.24 87.12 0.15 38412.85 37.97 76.98 0.21 35270.79 45.36 59.68 0.11 35200.76 34.93 60.82 0.15 35848.97 1.82 57.35 0.19 40348.43 1.17 53.06 0.11 40392.96 0.16 50.96 0.12 37237.13 0.05 43.94 0.15 34176.27 0.06 36.90 0.13]; %计算各指标的均值、方差、标准差、变异系数、偏度、峰度以及极差 A1=[mea n(A);var(A);std(A);std(A)./mea n(A);skew ness(A,0);kurtosis(A,0)-3;ra nge( A)] %E均值 A2=[1/4 1/2 1/4]*prctile(A,[25 50 75]) % 十算各指标的相关系数矩阵 A3=corrcoef(A) %做岀各指标数据直方图 subplot(221),histfit(A(:,1),8) subplot(222),histfit(A(:,2),8) subplot(223),histfit(A(:,3),8) subplot(224),histfit(A(:,4),7) %检验该数据是否服从正态分布 for i=1:4 [h(i),p(i),lstat(i),cv(i)]=lillietest(A(:,i),0.05); end h,p %十算岀前二列不服从正态分布,利用boxcox变换以后给岀该数据的密度函数[t1,l1]=boxcox(A(:,1)) [t2,l2]=boxcox(A(:,2)) [t3,I3]=boxcox(A(:,3))

大学物理实验数据处理基本方法

实验数据处理基本方法 实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结 论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出 测量对象的内在规律,正确地给出实验结果。因此,数据处理是实验工作 不可缺少的一部分。数据处理涉及的内容很多,这里只介绍常用的四种方 法。 1列表法 对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往 借助于列表法把实验数据列成表格。其优点是,使大量数据表达清晰醒目, 条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量 之间的对应关系。所以,设计一个简明醒目、合理美观的数据表格,是每 一个同学都要掌握的基本技能。 列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点:1.各栏目均应注明所记录的物理量的名称(符号 )和单位; 2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理; 3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时, 应将原来数据画条杠以备随时查验; 4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判 断和处理。 2图解法 图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个 量之间的数学关系,因此图解法是实验数据处理的重要方法之一。图解法 处理数据,首先要画出合乎规范的图线,其要点如下: 1.选择图纸作图纸有直角坐标纸 ( 即毫米方格纸 ) 、对数坐标纸和 极坐标纸等,根据 作图需要选择。在物理实验中比较常用的是毫米方格纸,其规格多为17 25 cm 。 2.曲线改直由于直线最易描绘 , 且直线方程的两个参数 ( 斜率和截距 ) 也较易算得。所以对于两个变量之间的函数关系是非线性的情形,在用图解法时 应尽可能通过变量代换 将非线性的函数曲线转变为线性函数的直线。下面为几种常用的变换方法。 ( 1) xy c ( c 为常数 ) 。 令 z 1,则 y cz,即 y 与 z 为线性关系。 x ( 2) x c y ( c 为常x2,y 1 z ,即 y 与为线性关系。

数据分析实验报告

《数据分析》实验报告 班级:07信计0班学号:姓名:实验日期2010-3-11 实验地点:实验楼505 实验名称:样本数据的特征分析使用软件名称:MATLAB 实验目的1.熟练掌握利用Matlab软件计算均值、方差、协方差、相关系数、标准差与变异系数、偏度与峰度,中位数、分位数、三均值、四分位极差与极差; 2.熟练掌握jbtest与lillietest关于一元数据的正态性检验; 3.掌握统计作图方法; 4.掌握多元数据的数字特征与相关矩阵的处理方法; 实验内容安徽省1990-2004年万元工业GDP废气排放量、废水排放量、固体废物排放量以及用于污染治理的投入经费比重见表6.1.1,解决以下问题:表6.1.1废气、废水、固体废物排放量及污染治理的投入经费占GDP比重 年份 万元工业GDP 废气排放量 万元工业GDP 固体物排放量 万元工业GDP废 水排放量 环境污染治理投 资占GDP比重 (立方米)(千克)(吨)(%)1990 104254.40 519.48 441.65 0.18 1991 94415.00 476.97 398.19 0.26 1992 89317.41 119.45 332.14 0.23 1993 63012.42 67.93 203.91 0.20 1994 45435.04 7.86 128.20 0.17 1995 46383.42 12.45 113.39 0.22 1996 39874.19 13.24 87.12 0.15 1997 38412.85 37.97 76.98 0.21 1998 35270.79 45.36 59.68 0.11 1999 35200.76 34.93 60.82 0.15 2000 35848.97 1.82 57.35 0.19 2001 40348.43 1.17 53.06 0.11 2002 40392.96 0.16 50.96 0.12 2003 37237.13 0.05 43.94 0.15 2004 34176.27 0.06 36.90 0.13 1.计算各指标的均值、方差、标准差、变异系数以及相关系数矩阵; 2.计算各指标的偏度、峰度、三均值以及极差; 3.做出各指标数据直方图并检验该数据是否服从正态分布?若不服从正态分布,利用boxcox变换以后给出该数据的密度函数; 4.上网查找1990-2004江苏省万元工业GDP废气排放量,安徽省与江苏省是 否服从同样的分布?

实验数据处理的几种方法

实验数据处理的几种方法 物理实验中测量得到的许多数据需要处理后才能表示测量的最终结果。对实验数据进行记录、整理、计算、分析、拟合等,从中获得实验结果和寻找物理量变化规律或经验公式的过程就是数据处理。它是实验方法的一个重要组成部分,是实验课的基本训练内容。本章主要介绍列表法、作图法、图解法、逐差法和最小二乘法。 1.4.1 列表法 列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要做到:(1)表格设计要合理,以利于记录、检查、运算和分析。 (2)表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。 (3)表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。 (4)表格要加上必要的说明。实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。 1.4.2 作图法 作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。 作图法的基本规则是: (1)根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。 (2)坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。 (3)描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的标记如“+”、“×”、“·”、“Δ”等符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。 (4)标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”

实验数据分析中的

实验数据分析中的 误差、概率和统计 §1 实验测量及误差 §2 粒子物理实验的测量数据 §3 粒子物理实验的数据分析 §1 实验测量及误差 大量科学问题(自然科学、社会科学)的研究与解决依赖于实验或测量数据(包括统计数据)。 §1.1 实验测量的目的及分类 》目的: 得到一个或多个待测量的数值及误差(确定数值); 确定多个量之间的函数关系(寻找规律,确定分布)。 》分类: 1. 测量方式 直接测量 - 用测量仪器直接测得待测量 (尺量纸的长度) 间接测量 - 直接测量量为x r ,待测量为 y r ,y r 是x r 的函数 ()y f x =r r 例如待测量为大楼高度h , 实测量为距离和仰角,x θ, 则tan h x θ=。 绝大部分问题是间接测量问题。 2. 测量过程 静态测量 - 待测量在测量过程中不变 多次测量求得均值 动态测量 - 待测量在测量过程中变化 例雷达站测离飞行气球的距离 多次测量求得气球的运动轨迹 3. 测量对象 待测量 - 固定常量 待测量 - 随机变量 例放射源单位时间内的计数 (假定寿命极长) 每次测量值不一定相同。

粒子物理实验数据分析中处理的都是间接、动态、随机变量的测量和处理问题。 随机变量―― 一次测量所得的值是不确定的, 无穷多次测量,一定测量值的概率是确定的。(统计规律性) 离散随机变量――测量值是离散的分立值(掷硬币和扔骰子试验) 二项分布、泊松分布、多项分布。 连续随机变量――测量值一个区间内的所有值 均匀分布、指数分布、正态分布、2 χ分布、F 分布、t 分布。 描述随机变量的特征量――概率分布或概率密度 非负性、 可加性、 归一性 ()0.f x ≥ 2 33 1 2 1 ()()().x x x x x x f x dx f x dx f x dx +=??? () 1.f x dx Ω =? ()0.i P x ≥ ()()().i j i j P x x P x P x ?=+ 1 () 1.n i i P x ==∑ 期望值(概率意义上的平均值) 离散型 ()()i i i E X x p x μ==∑ 连续型 ()xf x dx Ω= ? 方差(标准离差σ的平方) 离散型 2() ()(),i i i V X x p x μ=-∑ 连续型 2()()().V X x f x dx Ω μ=-? §1.2 测量误差及其分类 1.报导误差的重要性 ? 物理量的测量值及其误差是衡量其可靠性及精度的依据。 ? 没有误差的结果是没有意义的,因而是无法引用的。 ? 要改正只给测量中心值、不给误差的坏习惯。

大学物理实验数据处理方法总结

有效数字 1、有效数字不同的数相加减时,以参加运算各量中有效数字最末一位位数最高的为准,最后结果与它对其,余下的尾数按舍入规则处理。 2、乘除法以参与运算的数值中有效位数最少的那个数为准,但当结果的第1位数较小,比如1、2、3时可以多保留一位(较小:结果的第一位数小于 有效数字最少的结果第一位数)! 例如:n=tg56° θ=56° d θ=1° θθθθθ2cos d d d dtg dn == 为保留) (,带入848.156n 15605.018056cos 1cos 22=?=∴?=??=≈?=?= ?tg n θθπθθ 3、可以数字只出现在最末一位:对函数运算以不损失有效数字为准。 例如:20*lg63.4 可疑最小位变化0.1 Y=20lgx 01.04 .631.010ln 2010ln 20ln 10ln 20≈===x dx dx dx x d dy 04.364.63lg 20=∴ 4、原始数据记录、测量结果最后表示,严格按有效数字规定处理。(中间过程、结果多算几次) 5、4舍5入6凑偶 6、不估计不确定度时,有效数字按相应运算法则取位;计算不确定度时以不确定度的处理结果为准。 真值和误差 1、 误差=测量值-真值 ΔN=N-A 2、 误差既有大小、方向与政府。 3、 通常真值和误差都是未知的。 4、 相对约定真值,误差可以求出。 5、 用相对误差比较测量结果的准确度。 6、 ΔN/A ≈ΔN/N 7、 系统误差、随机误差、粗大误差 8、 随机误差:统计意义下的分布规律。粗大误差:测量错误 9、 系统误差和随机误差在一定条件下相互转化。 不确定度 1、P (x )是概率密度函数 dx P dx x x P p )x (之间的概率是测量结果落在+当x 取遍所有可能的概率值为1. 2、正态分布且消除了系统误差,概率最大的位置是真值A 3、曲线“胖”精密度低“瘦”精密度高。 4、标准误差:无限次测量?∞∞-=-2 )()(dx X P A X x )(σ 有限次测量且真值不知道标准偏

数据分析实验报告

数据分析实验报告 【最新资料,WORD文档,可编辑修改】 第一次试验报告 习题1.3 1建立数据集,定义变量并输入数据并保存。 2数据的描述,包括求均值、方差、中位数等统计量。 分析—描述统计—频率,选择如下: 输出:

方差1031026.918399673.8384536136.444百分位数25304.25239.75596.25 50727.50530.501499.50 751893.501197.004136.75 3画直方图,茎叶图,QQ图。(全国居民) 分析—描述统计—探索,选择如下: 输出: 全国居民Stem-and-Leaf Plot Frequency Stem & Leaf 9.00 0 . 122223344 5.00 0 . 56788 2.00 1 . 03 1.00 1 . 7 1.00 2 . 3 3.00 2 . 689

1.00 3 . 1 Stem width: 1000 Each leaf: 1 case(s) 分析—描述统计—QQ图,选择如下: 输出: 习题1.1 4数据正态性的检验:K—S检验,W检验数据: 取显着性水平为0.05 分析—描述统计—探索,选择如下:(1)K—S检验 单样本Kolmogorov-Smirnov 检验 身高N60正态参数a,,b均值139.00

标准差7.064 最极端差别绝对值.089 正.045 负-.089 Kolmogorov-Smirnov Z.686 渐近显着性(双侧).735 a. 检验分布为正态分布。 b. 根据数据计算得到。 结果:p=0.735 大于0.05 接受原假设,即数据来自正太总体。(2)W检验

【最全最详细】数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (2) 1.1数据挖掘 (2) 1.1.1数据挖掘的概念 (2) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (3) 1.2.1关联规则的概念 (3) 1.2.2关联规则的实现——Apriori算法 (4) 2.用Matlab实现关联规则 (6) 2.1Matlab概述 (6) 2.2基于Matlab的Apriori算法 (7) 3.用java实现关联规则 (11) 3.1java界面描述 (11) 3.2java关键代码描述 (14) 4、实验总结 (19) 4.1实验的不足和改进 (19) 4.2实验心得 (20)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下:·数据清理(消除噪声和删除不一致的数据) ·数据集成(多种数据源可以组合在一起) ·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。 神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art模型、koholon模型为代表的,用于聚类的自组织映射方法。神经网络方法的缺点是"黑箱"性,人们难以理解网络的学习和决策过程。 遗传算法:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。sunil已成功地开发了一个基于遗传算法的数据挖掘工具,利用该工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据挖掘的有效方法之一。遗传算法的应用还体现在与神经网络、粗糙集等技术的结合上。如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层单元;用遗传算法和bp算法结合训练神经网络,然后从网络提取规则等。但遗传算法的算法较复杂,收敛于局部极小的较早收敛问题尚未解决。 决策树方法:决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从

实验现象和实验数据的搜集整理与分析

实验现象和实验数据的搜集整理与分析 一.问题阐述 实验现象和数据是定量实验结果的主要表现形式,亦是定量研究结果的主要证据。数据对于实验教学来讲,有着重要的意义和价值。然而在我们的教学中,不尊重事实,漠视实验数据的现象仍经常出现,具体分析,在小学科学实验数据教学中主要存在以下一些问题: (一)数据收集存在的问题 1.数据收集不真实 如《摆的研究》一课教学中,由于测量的次数多,时间紧,而测同一摆重或同一摆长前后时间又几近相同,于是有小组就根据前面的实验数据,推测了后面的数据。又如教学《热是怎样传递的》一课时,有一小组的火柴掉下来的顺序明明不是有规律地从左往右,但听到其他小组火柴都是从左往右有顺序地掉下来,于是他们也修改了自己的数据。 2.数据收集不准确 如教学《水和食用油的比较》一课时,教师引导学生把水和食用油分别装入相同的试管中来比较,结果教学中却出现了相反的现象——装油的试管比装水的试管还要重,原来是装水的试管壁薄,装油的试管壁厚,实验准备时教师并没有发现这个现象,结果出现了上述问题。 3.数据收集不全面 教师在收集数据过程中,各小组虽然都做了同一个实验,但教师只挑选1-2个组的实验表进行展示汇报,而其他组的实验数据一概不论,就草草作结论,这样的实验过程和结果很难说服所有人,也很容易出错。 (二)数据整理存在的问题 1.整理方式简单 课堂上教师比较重视设计小组或个人填写的实验数据表格,但对全班汇总的实验数据形式容易忽视,呈现方式比较简单。在数据呈现时,要么逐一呈现小组原始记录单,要么按小组顺序呈现数据,平时更少使用统计图来整理。黑板上数据显得杂乱无章,不易发现其中的规律。 2.数据取舍不清

实验数据处理的几种方法

1.4 实验数据处理的几种方法 物理实验中测量得到的许多数据需要处理后才能表示测量的最终结果。对实验数据进行记录、整理、计算、分析、拟合等,从中获得实验结果和寻找物理量变化规律或经验公式的过程就是数据处理。它是实验方法的一个重要组成部分,是实验课的基本训练内容。本章主要介绍列表法、作图法、图解法、逐差法和最小二乘法。 1.4.1 列表法 列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要做到:(1)表格设计要合理,以利于记录、检查、运算和分析。 (2)表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。 (3)表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。 (4)表格要加上必要的说明。实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。 1.4.2 作图法 作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。 作图法的基本规则是: (1)根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。 (2)坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。 (3)描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的标记如“+”、“×”、“·”、“Δ”等符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。 (4)标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。

实验数据处理的基本方法

实验数据处理的基本方法 数据处理是物理实验报告的重要组成部分,其包含的内容十分丰富,例如数据的记录、函数图线的描绘,从实验数据中提取测量结果的不确定度信息,验证和寻找物理规律等。本节介绍物理实验中一些常用的数据处理方法。 1列表法 将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。 本课程中的许多实验已列出数据表格可供参考,有一些实验的数据表格需要自己设计,表1.7—1是一个数据表格的实例,供参考。 表1.7—1数据表格实例 杨氏模量实验增减砝码时,相应的镜尺读数 2作图法

作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到 ,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。 要特别注意的是,实验作图不是示意图,而是用图来表达实验中得到的物理量间的关系,同 时还要反映出测量的准确程度,所以必须满足一定的作图要求。 1)作图要求 (1)作图必须用坐标纸。按需要可以选用毫米方格纸、半对数坐标纸、对数坐标纸或极坐标纸等。 (2)选坐标轴。以横轴代表自变量,纵轴代表因变量,在轴的中部注明物理量的名称符号及其单位,单位加括号。 (3)确定坐标分度。坐标分度要保证图上观测点的坐标读数的有效数字位数与实验数据的有效数字位数相同。例如,对于直接测量的物理量,轴上最小格的标度可与测量仪器的最小刻度相同。两轴的交点不一定从零开始,一般可取比数据最小值再小一些的整数开始标值,要尽量使图线占据图纸的大部分,不偏于一角或一边。对每个坐标轴,在相隔一定距离下用整齐的数字注明分度(参阅图1.7—1)。 (4)描点和连曲线。根据实验数据用削尖的硬铅笔在图上描点,点子可用“+”、“×”、“⊙”等符号表示,符号在图上的大小应与该两物理量的不确定度大小相当。点子要清晰,不能用图线盖过点子。连线时要纵观所有数据点的变化趋势,用曲线板连出光滑而细的曲线(如系直线可用直尺),连线不能

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (1) 1.1数据挖掘 (1) 1.1.1数据挖掘的概念 (1) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (5) 1.2.1关联规则的概念 (5) 1.2.2关联规则的实现——Apriori算法 (7) 2.用Matlab实现关联规则 (12) 2.1Matlab概述 (12) 2.2基于Matlab的Apriori算法 (13) 3.用java实现关联规则 (19) 3.1java界面描述 (19) 3.2java关键代码描述 (23) 4、实验总结 (29) 4.1实验的不足和改进 (29) 4.2实验心得 (30)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数

据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield 的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art 模型、koholon模型为代表的,用于聚类的自组

光电效应实验报告数据处理 误差分析

表1-1:不同频率下的遏止电压表 λ(nm)365 404.7 435.8 546.1 577 v(10^14)8.219 7.413 6.884 5.493 5.199 |Ua|(v) 1.727 1.357 1.129 0.544 0.418 表1-2:λ=365(nm)时不同电压下对应的电流值 U/(v)-1.927 -1.827 -1.727 -1.627 -1.527 -1.427 -1.327 I/(10^-11)A-0.4 -0.2 0 0.9 3.9 8.2 14 -1.227 -1.127 -1.027 -0.927 -0.827 -0.727 -0.718 24.2 38.1 52 66 80 97.2 100 表1-3:λ=404.7(nm)时不同电压下对应的电流值 U/(v) -1.477 -1.417 -1.357 -1.297 -1.237 -1.177 -1.117 I/(10^-11)A -1 -0.4 0 1.8 4.1 10 16.2 -1.057 -0.997 -0.937 -0.877 -0.817 -0.757 -0.737 24.2 36.2 49.8 63.9 80 93.9 100 表1-4:λ=435.8(nm)时不同电压下对应的电流值 U/(v)-1.229 -1.179 -1.129 -1.079 -1.029 -0.979 -0.929 I/(10^-11)A-1.8 -0.4 0 2 4.2 10.2 17.9 -0.879 -0.829 -0.779 -0.729 -0.679 -0.629 -0.579 -0.575 24.8 36 47 59 71.6 83.8 98 100 表1-5:λ=546.1(nm)时不同电压下对应的电流值 U/(v)-0.604 -0.574 -0.544 -0.514 -0.484 -0.454 -0.424 I/(10^-11)A-4 -2 0 3.8 10 16.2 24 -0.394 -0.364 -0.334 -0.304 -0.274 -0.244 -0.242 34 46 56.2 72 84.2 98.2 100 表1-6:λ=577(nm)时不同电压下对应的电流值 U/(v)-0.478 -0.448 -0.418 -0.388 -0.358 -0.328 -0.298 I/(10^-11)A-3.1 -1.8 0 2 6 10.2 16.1 -0.268 -0.238 -0.208 -0.178 -0.148 -0.118 -0.088 -0.058 22.1 31.8 39.8 49 58 68.2 79.8 90.1 -0.04 100

大学物理实验_常用的数据处理方法

1.7 常用的数据处理方法 实验数据及其处理方法是分析和讨论实验结果的依据。在物理实验中常用的数据处理方法有列表法、作图法、逐差法和最小二乘法(直线拟合)等。 1.7.1 列表法 在记录和处理数据时,常常将所得数据列成表。数据列表后,可以简单明确、形式紧凑地表示出有关物理量之间的对应关系;便于随时检查结果是否合理,及时发现问题,减少和避免错误;有助于找出有关物理量之间规律性的联系,进而求出经验公式等。 列表的要求是: (1)要写出所列表的名称,列表要简单明了,便于看出有关量之间的关系,便于处理数据。 (2)列表要标明符号所代表物理量的意义(特别是自定的符号),并写明单位。单位及量值的数量级写在该符号的标题栏中,不要重复记在各个数值上。 (3)列表的形式不限,根据具体情况,决定列出哪些项目。有些个别的或与其他项目联系不大的数据可以不列入表内。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。 (4)表中所列数据要正确反映测量结果的有效数字。 列表举例如表1-2所示。 表1-2铜丝电阻与温度关系 1.7.2 作图法 作图法是将两列数据之间的关系用图线表示出来。用作图法处理实验数据是数据处理的常用方法之一,它能直观地显示物理量之间的对应关系,揭示物理量之间的联系。 1.作图规则 为了使图线能够清楚地反映出物理现象的变化规律,并能比较准确地确定有关物理量的量值或求出有关常数,在作图时必须遵守以下规则。 (1)作图必须用坐标纸。当决定了作图的参量以后,根据情况选用直角坐标纸、极坐标纸或其他坐标纸。 (2)坐标纸的大小及坐标轴的比例,要根据测得值的有效数字和结果的需要来定。原则上讲,数据中的可靠数字在图中应为可靠的。我们常以坐标纸中小格对应可靠数字最后一位的一个单位,有时对应比例也适当放大些,但对应比例的选择要有利于标实验点和读数。最小坐标值不必都从零开始,以便做出的图线大体上能充满全图,使布局美观、合理。 (3)标明坐标轴。对于直角坐标系,要以自变量为横轴,以因变量为纵轴。用粗实线在坐标纸上描出坐标轴,标明其所代表的物理量(或符号)及单位,在轴上每隔一定间距标明

spss相关分析实验报告

实验五相关分析实验报关费 一、实验目的: 学习利用spss对数据进行相关分析(积差相关、肯德尔等级相关)、偏相关分析。利用交叉表进行相关分析。 二、实验内容: 某班学生成绩表1如实验图表所示。 1.对该班物理成绩与数学成绩之间进行积差相关分析和肯德尔等级相关 分析。 2.在控制物理成绩不变的条件下,做数学成绩与英语成绩的相关分析(这 种情况下的相关分析称为偏相关分析)。 3.对该班物理成绩与数学成绩制作交叉表及进行其中的相关分析。 三、实验步骤: 1.选择分析→相关→双变量,弹出窗口,在对话框的变量列表中选变量 “数学成绩”、“物理成绩”,在相关系数列进行选择,本次实验选择 皮尔逊相关(积差相关)和肯德尔等级相关。单击选项,对描述统计 量进行选择,选择标准差和均值。单击确定,得出输出结果,对结果 进行分析解释。 2.选择分析→相关→偏相关,弹出窗口,在对话框的变量列表选变量“数 学成绩”、“英语成绩”,在控制列表选择要控制的变量“物理成绩” 以在控制物理成绩的影响下对变量数学成绩与英语成绩进行偏相关分 析;在“显著性检验”框中选双侧检验,单击确定,得出输出结果, 对结果进行分析解释。 3.选择分析→描述统计→交叉表,弹出窗口,对交叉表的行和列进行选 择,行选择为数学成绩,列选择为物理成绩。然后对统计量进行设置, 选择相关性,点击继续→确定,得出输出结果,对结果进行分析解释。 四、实验结果与分析:

表1

五、实验结果及其分析:

分析一:由实验结果可观察出,数学成绩与物理成绩的积差相关系数r=,肯德尔等级相关系数r=可知该班物理成绩和数学成绩之间存在显著相关。

试验设计与数据分析

1.方差分析在科学研究中有何意义?如何进行平方和与自由度的分解?如何进行F检验和 多重比较? (1)方差分析的意义 方差分析,又称变量分析,其实质是关于观察值变异原因的数量分析,是科学研究的重要工具。方差分析得最大公用在于:a. 它能将引起变异的多种因素的各自作用一一剖析出来,做出量的估计,进而辨明哪些因素起主要作用,哪些因素起次要作用。b. 它能充分利用资料提供的信息将试验中由于偶然因素造成的随机误差无偏地估计出来,从而大大提高了对实验结果分析的精确性,为统计假设的可靠性提供了科学的理论依据。 (2)平方和及自由度的分解 方差分析之所以能将试验数据的总变异分解成各种因素所引起的相应变异,是根据总平方和与总自由度的可分解性而实现的。 (3)F检验和多重比较 ①F检验的目的在于,推断处理间的差异是否存在,检验某项变异原因的效应方差是否为零。实际进行F检验时,是将由试验资料算得的F值与根据df1=df t(分子均方的自由度)、df2=df e(分母均方的自由度)查附表4(F值表)所得的临界F值(F0.05(df1,df2)和F0.01(df1,df2))相比较做出统计判断。若F< F0.05(df1,df2),即P>0.05,不能否定H0,可认为各处理间差异不显著;若F0.05(df1,df2)≤F<F0.01(df1,df2),即0.01

相关文档
最新文档