流体力学心得体会

流体力学心得体会
流体力学心得体会

流体力学心得体会

篇一:《流体力学》学习报告

《流体力学》学习报告————11土木二班47号胡智远通过一个学期的学习,让我懂得了:流体力学是研究流体平衡和机械运动规律及其应用的科学,是力学的一个重要分支。它的任务是通过流体的运动规律,研究流体之间及流体与各种边界之间的相互作用力,并将它们应用于解决科研和实际工程问题。在水力、动力、土建、航空、化工,机械等领域里,都日益广泛的应用流体力学,同时正是这些领域的发展,也推动了流体力学的发展和深入。

流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。

20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成果的领域。

石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。

燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。

沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。等离子体在磁场作用下有特殊的运动规律。研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学,它们在受控热核反应、磁流体发电、宇宙气体运动等方面有广泛的应用。风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学(其中包括环境空气动力学、建筑空气动力学)。这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等

的新兴边缘学科。生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,

心、肺、肾中的生理流体运动和植物中营养液的输送。此外,还研究鸟类在空中的飞翔,动物在水中的游动,等等。

因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。

学习流体力学,要注意基本概念、基本研究方法的理解和掌握,做到理论联系实际。流体是由大量不断运动着的分子所组成,分子与分子之间是有空隙的,这就是说,从微观角度看,流体实际在空间上是不连续的。但是,流体力学只研究流体宏观的、由外因引起的机械运动,而不研究微观的分子运动。所以可以近似地把流体看作是由无数个连续分布的流体微团所组成的连续介质。流体微团虽小,但却包含着为数甚多的分子,并具有一定的质量、能量等,一般将这种微团称为质点。流体的这种“连续介质模型”的建立,是对流体物质结构的简化,使我们可以运用数学的连续函数工具来深入研究流体,对研究流体力学提供了很大的方便。

流体是有粘性的,为了得出流体的主要结论,一般先设

流体是无粘性的,即理想流体,然后再通过实验等方法,考虑粘性的影响,对结论加以补充或修正,这也是一般科学研究的方法。

为了更简化,常将流体(特别是液体)按不可压缩处理,即密度为常数,然后再讨论密度不是常数的情况。以上是对流体力学建立的一些主要模型,研究的方法有理论分析方法、实验方法、数值方法等,它们相互配合,相互补充。

在这学期学习中,让我了解了以下主要内容:包括流体静力学,流体运动学,流体动力学基础,流体阻力和能量损失,孔口、管嘴和管道的流动,一元气体动力学基础,明渠恒定均匀流,明渠恒定非均匀流,堰流与闸孔出流,渗流,相似性原理和量纲分析等知识。流体静力学,主要研究处于静止或相对静止时的性质、规律以及在工程上的应用,由于是静止或相对静止,流体微团间没有相对运动,因而无切应力,不必考虑它的黏性,即按理想流体处理。这个课题主要讲了流体静压强及其特征,流体平衡微分方程,重力作用下的流体平衡基本方程,流体压强的表示方法,流体的相对平衡,静止流体作用在平面上的压力,静止流体作用在曲面上的压力等。如平均静压强p为:p=P/A(Pa);若截面上各点压力不等,则截面上任意点D的静压强为pD=limΔ P/Δ A;流体静压强的方向沿作用面的内法线方向;静止流体中任一点的压强与作用面在空间的方位无关,其均值相等;力的势

函数;等压面就是等势面;等压面必与质量力正交;绝对压强;相对压强;等加速直线运动中流体的平衡;匀速圆周运动中流体的平衡;解析法压力的大小和方向;压力的作用点(作用中心);图解法;总压力的大小和方向;压力体。

流体运动学,即研究流体速度、加速度、变形等运动参数变化的规律。流体静力学也可以看做运动的一种特殊情况,由于不涉及引起运动的力,因此,其结论无论对理想流体还是对粘性流体都是适用的。本课题主要讲了研究流体运动的方法,流体运动的基本概念,流体的连续性方程,流体微团运动的分析,有旋流动和无旋流动。主要知识点:如研究流体运动的方法通常有两种:一、拉格朗日法;二、欧拉法。流体质点的加速度、质点导数;恒定流和非恒定流;均匀流与非均匀流,所谓均匀流,就是流场中,流线相互平行,同一流线上各点的运动参数A不随位置变化;流线与迹线;流管、流束、过流断面、元流、总流;流量;过流断面的平均速度;微分形式的连续性方程;积分形式的连续性方程;平移速度、线变形速度、旋转角速度、角变形速度;有旋流动和无旋流动;速度势函数和流函数;几种简单的

平面势流;简单势流的叠加,漩涡流动等知识点。

流体动力学基础,主要研究了流体运动微分方程,恒定元流的能量方程,恒定总流的能量方程,恒定气流的能量方程,恒定流动的动量方程和动量矩方程。

流动阻力和能量损失,流体由于黏滞作用带来运动的复杂性,产生了流动阻力和能量损失。流体动力学基础虽然提到了能量损失,但没有具体的计算方法,本课题的任务就是分析流动阻力产生的机理及特征,解决能量损失的计算方法,从而使能量方程广泛的用于解决实际的工程问题。本课题主要研究了沿程损失和局部损失;粘性流体的两种流态——层流和素流;圆管中的层流运动;素流运动;圆管素流的沿程损失,非圆管的沿程损失;管道流动的局部损失;绕流运动等。

孔口、管嘴和管道的流动,主要是利用流体运动的基本规律,解决工程中最常见的水力计算问题,它实际上是连续性方程、能量方程以及水头损失规律的具体运动。所以学习本课题,有着很大的使用意义。本课题主要研究了孔口出流;管嘴出流;简单管道的水力计算;复杂管道;管计算基础;有压管道的水击;自由素流射流等。

一元气体动力学基础,可压缩性是流体的基本属性,当流速高达一定程度,流体的压缩性就显现出来。大的流速变化引起大的压强变化,同时伴随显著的密度和温度变化。因此,可压缩流体的流动比不可压缩流体的流动要复杂得多,本课题只讨论一元气体运动。主要讲了理想气体一元恒定流动的基本方程;可压缩气体的几个基本概念;变截面的等熵流动;可压缩气体的等温管道运动;可压缩气体的绝热管道

流动等。

明渠恒定均匀流,明渠水流运动是在重力作用下形成的,在流动过程中,水流要克服阻力而消耗能量,根据实践经验,给水排水工程中所遇到的明渠水流多属于粗糙区的紊流,其沿程水头损失和流速的平方成正比,明渠恒定均匀流是流线为相互平行直线的液流。主要研究了明渠类型及明渠均匀流特征;明渠均匀流的水力计算;明渠均匀流水力计算的其它问题;无压圆管的水力计算等。

明渠恒定非均匀流,主要研究了恒定非均匀渐变流的基本特性及其水力要素沿程变化的规律。知识点有,明渠水流的流态;断面单位能量与临界水深;水跃和水跌;明渠恒定非均匀渐变流水面曲线分析;明渠非均匀渐变流水面曲线的计算。

堰流与闸孔出流,主要研究了堰流及其特征;薄壁堰;实用堰;宽顶堰;闸孔出流的水力计算。

渗流,研究水在给定的孔隙介质空间(渗流区)内的渗流的流速、压强分布以及渗流流量、渗流的水面线,估计渗流对土壤的破坏作用。渗流的流速较大时,能把土壤中颗粒较小的土粒从孔隙中带走,并形成越来越大的孔隙或空洞,这种现象称为管涌,又称渗流变形。建筑物地基发生渗流变形的可能性,以便采取防止渗流变形的措施等。从而为解决上述实际渗流问题提供理论基础。本课题主要研究渗流的基

本概念和基本定律;地下河槽中恒定均匀渗流和非均匀渐变渗流;无压恒定缓变渗流的基本方程及其浸润线;井的计算;土坝渗流;渗流的基本方程等。

相似性原理和量纲分析,由于流体流动现象的复杂性,实际工程中大部分涉及的流体力学问题是比较复杂的,有些问题还不能够建立相应的微分方程,或在推导过程中引入了某些假设和简化,其结果与实际的流动有一定的偏差。因此,常常需要依靠实验的方法去寻求流动的规律性。通过模型试验,把研究结果转换为原型的流动,从而预测在原型流动中将要发生的现象,只有这样,模型才是有效的模型,实验的研究才有意义。而相似性原理就是模型试验的理论基础。

总的来说,通过这个学期的学习,让我对《流体力学》有了一个基本的认识,对流体运动的基本规律有比较清晰的了解,这门课所学习的知识,并不是孤立的,对我们土木工程专业以后的发展也是有密切的联系的,这是一门不错的学科,让我受益匪浅!

篇二:液压与气压传动系统认识心得

液压心得

每一门的学习我想每个人都有自己的心得体会。液压,当然也不例外。对于液压的学习,流体力学及液压系统回路的组成是入门,是对液压系统分析的基础,而这学期我们学的正是这些基础知识,为以后更深入的学习打下基础。

下面就来介绍一下最主要的液压系统回路:

液压,顾名思义就是通过液压油(具体根据实际情况定)来传递压力的装置。一个完整的液压系统由五个部分:动力元件、执行元件、控制元件、辅助元件和液压油。液压由于其传动力量大,传递及配置都比较简单,在工业、民用行业应用广泛。液压系统的执行元件液压缸和液压马达的作用是将液体的压力能转换为机械能,而获得需要的直线往复运动或回转运动。

一、液压系统结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。

液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。

液压动力部分主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成:

1、动力元件:(油泵)动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片

泵和柱塞泵。

2、执行元件:(油缸、液压马达)它的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。其中,油缸做直线运动,马达做旋转运动。

3、控制元件:在液压系统中控制和调节液体的压力、流量和方

向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压

力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。

4、辅助元件:除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件及油箱等,它们同样十分重要。

5、工作介质:工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。

二、基本回路

由有关液压元件组成,用来完成特定功能的典型油路。任何一个液压传动系统都是由几个基本回路组成的,每一基本回路都具有一定的控制功能。几个基本回路组合在一起,

可按一定要求对执行元件的运动方向、工作压力和运动速度进行控制。根据控制功能不同,基本回路分为压力控制回路、速度控制回路和方向控制回路。

三、压力控制回路

用压力控制阀(见液压控制阀)来控制整个系统或局部范围压力的回路。根据功能不同,压力控制回路又可分为调压、变压、卸压和稳压 4种回路。

(1)调压回路:这种回路用溢流阀来调定液压源的最高恒定压力,溢流阀就起这一作用。当压力大於溢流阀的设定压力时,溢流阀开口就加大,以降低液压泵的输出压力,维持系统压力基本恒定。

(2)变压回路:用以改变系统局部范围的压力,如在回路上接一个减压阀则可使减压阀以后的压力降低;接一个升压器,则可使升压器以后的压力高於液压源压力。

(3)卸压回路:在系统不要压力或只要低压时,通过卸压回路使系统压力降为零压或低压。

(4)稳压回路:用以减小或吸收系统中局部范围内产生的压力波动,保持系统压力稳定,例如在回路中采用蓄能器。

四、速度控制回路

通过控制介质的流量来控制执行元件运动速度的回路。按功能不同分为调速回路和同步回路。

(1)调速回路:用来控制单个执行元件的运动速度,可

以用节流阀或调速阀来控制流量,如图简单磨床的液压传动系统原理图中的节流阀就起这一作用。节流阀控制液压泵进入液压缸的流量(多余流量通过溢流阀流回油箱),从而控制液压缸的运动速度,这种形式称为节流调速。也可用改变液压泵输出流量来调速,称为容积调速。

(2)同步回路:控制两个或两个以上执行元件同步运行的回路,例如采用把两个执行元件刚性连接的方法,以保证同步;用节流阀或调速阀分别调节两个执行元件的流量使之相等,以保证同步;把液压缸的管路串联,以保证进入两液压缸的流量相同,从而使两液压缸同步。

方向控制回路

控制液压介质流动方向的回路。用方向控制阀控制单个执行元件的运动方向,使之能正反方向运动或停止的回路,称为换向回路,图简单磨床的液压传动系统原理图中的换向阀即起这一作用。在执行元件停止时,防止因载荷等外因引起泄漏导致执行元件移动的回路,称为锁紧回路。

五、液压传动的优缺点

1、液压传动的优点

(1)体积小、重量轻,因此惯性力较小,当突然过载或停车时,不会发生大的冲击;

(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速;

(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;

(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;

(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;

(6)操纵控制简便,自动化程度高;

(7)容易实现过载保护。

2、液压传动的缺点

(1)使用液压传动对维护的要求高,工作油要始终保持清洁;

(2)对液压元件制造精度要求高,工艺复杂,成本较高;

(3)液压传动出故障时不易找出原因,使用和维修要求有较高的技术水平;

(4)由于流体流动的阻力和泄露较大,所以效率较低。如果处理不当,泄露不仅污染场地,而且还可能引起火灾和爆炸事故;

(5)由于液体介质的泄露及可压缩性影响,不能得到严格的传动比。

六、三大顽疾

1、发热由于传力介质(液压油)在流动过程中存在各

部位流速的不同,导致液体内部存在一定的内摩擦,同时液体和管路内壁之间也存在摩擦,这些都是导致液压油温度升高的原因。温度升高将导致内外泄漏增大,降低其机械效率。同时由于较高的温度,液压油会发生膨胀,导致压缩性增大,使控制动作无法很好的传递。解决办法:发热是液压系统的固有特征,无法根除只能尽量减轻。使用质量好的液压油、液压管路的布置中应尽量避免弯头的出现、使用高质量的管路以及管接头、液压阀等。

2、振动液压系统的振动也是其痼疾之一。由于液压油在管路中的高速流动而产生的冲击以及控制阀打开关闭过程中产生的冲击都是系统发生振动的原因。强的振动会导致系统控制动作发生错误,也会使系统中一些较为精密的仪器发生错误,导致系统故障。解决办法:液压管路应尽量固定,避免出现急弯。避免频繁改变液流方向,无法避免时应做好减振措施。整个液压系统应有良好的减振措施,同时还要避免外来振源对系统的影响。

3、泄漏液压系统的泄漏分为内泄漏和外泄漏。内泄漏指泄漏过程发生在系统内部,例如液压缸活塞两边的泄漏、控制阀阀芯与阀体之间的泄漏等。内泄漏虽然不会产生液压油的损失,但是由于发生泄漏,既定的控制动作可能会受到影响,直至引起系统故障。外泄漏是指发生在系统和外部环境之间的泄漏。液压油直接泄漏到环境中,除

了会影响系统的工作环境外,还会导致系统压力不够引发故障。泄漏到环境中的液压油还有发生火灾的危险。解决办法:采用质量较好的密封件,提高设备的加工精度

七、空穴现象

在液压系统中,如果某处压力低于油液工作温度下的空气分离压时,油液中的空气就会分离出来而形成大量气泡;当压力进一步降低到油液工作温度下的饱和蒸汽压力时,油液会迅速汽化而产生大量气泡。这些气泡混杂在油液中,产生空穴,使原来充满管道或液压元件中的油液成为不连续状态,这种现象一般称为空穴现象。空穴现象一般发生在阀口和液压泵的进油口处。油液流过阀口的狭窄通道时,液流速度增大,压力大幅度下降,就可能出现空穴现象。液压泵的安装高度过高,吸油管道内径过小,吸油阻力太大,或液压泵转速过高,吸油不充足等,均可能产生空穴现象。液压系统中出现空穴现象后,气泡随油液流到高压区时,在高压作用下气泡会迅速破裂,周围液体质点以高速来填补这一空穴,液体质点间高速碰撞而形成局部液压冲击,使局部的压力和温度均急剧升高,产生强烈的振动和噪声。在气泡凝聚处附近的管壁和元件表面,因长期承受液压冲击及高温作用,以及油液中逸出气体的较强腐蚀作用,使管壁和元件表面金属颗粒被剥落,这种因空穴现象而产生的表面腐蚀称为气蚀。

为了防止产生空穴现象和气蚀,一般可采取下列措施:

1、减小流径小孔和间隙处的压力降,一般希望小孔和间隙前后的压力比p1/p2

2、正确确定液压泵吸油管内径,对管内液体的流速加以限制,降低液压泵的吸油高度,尽量减小吸油管路中的压力损失,管接头良好密封,对于高压泵可采用辅助泵供油。

3、整个系统管路应尽可能直,避免急弯和局部窄缝等。

4、提高元件抗气蚀能力。

篇三:流体力学创新实验(终稿)

实验项目名称:溢洪道流速流态分布测量实验实验类型:自主创新实验

姓名及学号:方平3110103076

其他小组成员:钱晨辉王坤王婕支颖

指导教师:章军军老师实验地点:安中实验大厅时间:溢洪道流速流态分布测量实验

一、实验背景

本工程下水库库区面积较大,蓄洪能力较强,而天然洪水相对较小,XX年一遇洪水24h洪量仅387万m3,经过调洪演算分析,水库可利用蓄洪能力较强的特点,选择操作简便、安全的开敞式溢洪道作为水库主要泄洪设施。

下水库溢洪道布置在右岸,采用岸边开敞式,堰顶高程同正常蓄水位,自由溢流。溢洪道由进水渠、溢流堰、泄槽、挑流鼻坎及出水渠等组成。溢洪道的泄槽轴线与坝轴线成°

夹角,溢洪道全长约。

进水渠底板高程,长,底宽为6m,进水渠轴线由长的直线段、长圆弧段、5m长的渐变段和5m长的直线段组成,圆弧半径为24m,进水渠采用梯形断面,两侧边坡开挖坡比为1:。渐变段以前渠底及两侧设30cm厚混凝土衬砌。

控制段堰顶宽度6m,堰顶高程,堰顶下游堰面采用WES 幂曲线,曲线方程y=,堰面曲线与反弧段相连,反弧半径,反弧末端高程。堰面曲线原点上游由椭圆曲线组成,并与堰上游面相切。溢流堰与两侧闸墩作为一个整体结构,闸墩顶高程与坝顶高程相同,挡墙顶部设交通桥,桥宽8m。

溢洪道泄槽纵坡1:,泄槽横断面采用矩形断面,两侧开挖边坡坡比为1:,泄槽边墙为衡重式挡墙。泄槽底宽6m,混凝土底板厚50cm,底板基础设置锚筋及排水系统。泄槽段衡重式边墙高度为,边墙及底板每约15m长设置垂直缝,并设止水。泄槽中段有仙人洞断裂F9横穿,拟对其进行槽挖后回填混凝土处理。

溢洪道采用挑流消能,挑流鼻坎长6m,连续挑坎坎顶高程,反弧半径,挑角25°。由于挑流鼻坎附近岩体为薄层状的瘤状泥质灰岩、页岩、泥质粉砂岩,物理力学性质较差,易风化,抗冲刷能力差,因此鼻坎后设长9m的平护坦,护坦混凝土衬砌厚,之后设一预挖冲坑,采用宽浅式结构,前段部分坡比为1:3,斜坡及底部采用混凝土衬护,厚度为50cm,

预挖冲坑顶高程为。预挖冲坑以1:4的坡比与天然河床相连,底部采用60cm厚干砌石护底并铺设土工布,出水渠长度约为。

二、实验目的

(1)、验证两种流量情况下溢洪道的泄流能力;(2)、观测溢洪道各部位的流态;(3)、分析各部分流速及流态,提出相应建议。

三、模型设计及实验装置

根据试验目的和要求及溢洪道水工模型试验的具体情况,模型选用几何比尺:λl=30。以水工(专题)模型实验规程SL156-165-95及水工(常规)模型实验规程SL155-95为标准。开敞式溢洪道主要受重力作用,选用佛汝德准则即重力相似准则设计,试验采用正态水工模型。模型试验布置:为保证试验目的和要求,模型范围为上游库区溢洪道进水口左右两侧约150米(包括坝段)和进水渠上游150米,下游冲坑上下游约200米。库区为定床模型,下游冲坑设为局部动床模型。流量由模型进水阀门控制。试验时9m高的平水塔经引水管道,经稳水墙,进入模型试验区,经试验模型系统后流向回水廊道。考虑到糙率相似和制作工艺,库区以混凝土抹面,溢洪道用机玻璃制作。流量测量用电磁流量计。试验完成后保留模型3个月以上,试验在模型在征得设计单位其同意后再拆除。

观测仪器:超声波管道流量计,旋桨流速仪,针式毕托管流速测量仪,压差式测压电测仪等。

四、实验内容

实验的主要内容为观测在设计和校核工况下溢流堰面、泄槽及挑流鼻坎段流速分布、水面线及水流流态。具体操作如下:

①、实验前准备。启动模型装置,模拟水库蓄满水,检核各个部分是否正常运行,保证整个装置达到实验要求。

②、调整进入库区的管道流量。用超声波管道流量计,测量管道流量,调整阀门,使流量达到设计流量或校核工况流量。

③、测量进水渠流速。进水渠选取4个断面和堰顶断面(图在下文标出),每个断面取9个均匀分布点,用旋桨流速仪测流速大小及方向。

④、测量泄洪口河床流速。沿流速方向每隔17cm取4个断面,每个断面取大约10个点,点与点间隔17cm,用旋桨流速仪测流速大小及方向。⑤、数据检核。

五、数据记录与处理

(1)、原始数据整理

①、溢洪道进水渠相关流速数据(模型)

②、泄洪口河床流速数据(模型)

(2)、换算过程

已知模型与实际溢洪道的比例尺为1:30,即L30,在重力相似条件下,

.5

,故只需将模型流速按此比例放大即流速的换算比例公式为 V0L

为实际流速。

(3)、经过换算后的实际数据整理(直接标示在图上)

①、溢洪道进水渠相关流速数据(实际)

篇四:建筑环境学心得体会

浅谈建筑环境学

这学期开始接触专业课,其中一门就是建筑环境学,下面就谈一下我对这门专业课的认识与问题。

首先,我们从专业的名字来谈一下这门课的地位,我们专业的名字叫做建筑环境与设备工程,一本书占了专业名字的一半,它的重要性是显而易见的。我们学校的建环专业的方向主要是空调技术与设备设计安装,其主要目的是给人们提供安全、健康、舒适的生活环境。在设计时就不得不考虑室内的环境,这就不能不对室内环境有所认识,所以说这门课是我们以后进一步学习的基础,必须要比较好的掌握住。

其次,我们从课程内容来大致了解一下这门课。我快速浏览了一下课本了解到建筑环境主要由建筑外环境、建筑热湿环境、人体对热湿环境的反应、室内空气质量品质、气流

高等流体力学笔记第6讲

第六讲 例二、点源、线源、面源及体积源引起的流动问题求解举例,这一类问题的基本方程可表示 为:?????=??=??0 e e V q V 或q e =??2 属于已知散度、旋度为零流场求解问题。 1、 点源问题(无旋有势流动):(求解实际问题的具体方法:奇点法) 点源的定义:若)(lim t Q qd ='???' →'τ ττ此时称其为强度为Q 的点源式中q 为点源的体密度,Q 可以是常数,也可以是Q(t),为体积流量。 对于点源问题,因为气仅在源点有源因此散度不为零,而在其它点上无源散度为零,故该问题的基本方程为:???? ?=??=??0 e e V V 或02=?e ? 为了便于求解e ?,根据点源所产生的流场为球对称的性质选用球坐标系来求解e ?。在球坐标系中02=?e ?的表达式为: 0sin 1)(sin sin 1)(2 222=??+????+????ε?θθ?θθθ?e e e R R R 设点源处于原点,由于其形成的速度场是球对称,故)(R e e ??=与εθ,无关,且所有的 0=??=??εθ,()()dR d R =??。 所以上面球坐标下的02=? e ?的表达式可简化为: 0)(2=??R R dR d e ? 积分上式可得:c R R e =???2,再次积分可得:21c R c e +=?式中c c -=1,2c 均为积分常数,将由边界条件确定。由于由点源引起得速度e V 是径向的,故0==εV V e ,R R V V R e =,根据其和流速的关系:R R dR d R R R R R V V e e R e ??=??==。 由点源的条件可得包围点源任何一个半径为R 的球体均有: ????????' →''==?=??τ τ ττqd Q dA V n d V e lim 高斯定理

工程流体力学公式资料讲解

工程流体力学公式

第二章 流体的主要物理性质 ? 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: 12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 T V V ??=1αp V V ??-=1κV P V K ??-=κ1n A F d d υ μ=dn d v μτ±=n v d /d τμ=

第三章 流体静力学 ? 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力 学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a 离心惯性力ΔFR = Δm·r ω2 . 2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即:p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 单位质量流体的力平衡方程为: z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??-=ρ0 1=??-x p f x ρ10y p f y ??-=ρ

高等流体力学笔记第2讲

第二章 流体运动学 §2.1描述流体运动的两种方法 一、拉格朗日法(Lagrange methord ) 从流体质点为研究对象研究流体运动的一种方法。也叫质点系法。在拉格朗日法中,流体质点的运动轨迹的方程可表示为: ?? ???===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x (2—1) 式中x,y,z 为流体质点的轨迹座标值。a,b,c 称为拉格朗日变量,是流体质点的标识符,不同的流体质点a,b,c 的值不同t 为时间变量。 式(2—1),当a,b,c 为一组常数时t 为变数时,表示某个确定的流体质点随时间t 运动的运动轨迹座标值轨迹线。当t 为固定值,a,b,c 为一组变数时,表示该组质点在某一固定时刻所处的位置(即空间位置的座标值)。 流体质点的轨迹也可用向径表示: ),,,(t c b a r k z j y i x r =++= 对于某个确定的流体质点,其速度向量V 可用向径随时间的变化率表示: dt dF V = 对于不同质点的流体质点,a,b,c 为变数所以速度向量应表示为r 对时间的偏导数形式: ),,,(t c b a V t r V =??= 在直角正交坐标系中速度向量的表达为: k w j v i u V ++= 其中 t x u ??=,t y v ??=,t z w ??= 质点的加速度: ),,,(22t c b a a t F t V a =??=??= k a j a i a a z y x ++= 22t x t u a x ??=??=,22t y t v a y ??=??=,2 2t z t w a z ??=??= 同样,其它流体质点的物理量也均可表示成为拉格朗日变数的函数:

船舶流体力学习题答案

习题5 5.1 已知2,2,2,x y z v y z v z x v x y =+=+=+求: (1)涡量及涡线方程;(2)在z=0平面的面积dS=0.0001上的涡通量。 解:(1) ()()()(21)(21)(21)y y x x z z i j k y z z x x y i j k i j k ??????Ω=-+-+-??????=-+-+-=++νννννν 所以 流线方程为 y=x+c1,z=y+c2 (2) 2J 2*0.5*0.00010.0001/wnds m s ===? 5.4设在(1,0)点上有0Γ=Γ的旋涡,在(-1,0)点上有0Γ=-Γ的旋涡,求下列路线的速度环流。 2222(1)4;(2)(1)1;(3)2,20.5,0.5x y x y x y x y +=-+==±=±=±=±的方框。 (4)的方框。 解:(1)由斯托克斯定理可知:因为涡通量为0,所以c 20s vdl wnds ==??? (4)由斯托克斯定理可知:因为涡通量为0,所以c 0vdl - =?? 5.6如题图5.6所示,初始在(0,1)、(-1,0)、(0,1)和(0,-1)四点上有环量Γ等于常值的点涡,求其运动轨迹。 解:取其中一点(-1,0)作为研究对象。 42222cos 45cos 4534CA BA BA A CA BA BA v v v v v v v τππ π τπ ====++=

由于四个涡相对位置将不会改变,转动角速度为: 3434v w ar v wt t τπτ π= === 用极坐标表示为r=1, 34t τθπ = 同理,其他点的轨迹与之相同。 5.10如题图5.10所示有一形涡,强度为,两平行线段延伸至无穷远,求x 轴上各点的诱导速度。 解:令(0,a )点为A 点,(0.-a )为B 点 在OA 段与OB 段 1222222212(cos90) 4(cos 0) 42()() 2x v x a x v xa a x v v v x a x xa τπτπτ π= ++=++∴=+=++ 习题六 6.1平面不可压缩流动的速度场为 (1),;x y v y v x ==- (2) ,;x y v x y v x y =-=+ (3) 2 2 ,2;x y v x y v xy y =-=-- 判断以上流场是否满足速度势和流函数存在条件,进而求出。 解: V 0 (v ) v y x x y φ???=?-?=??存在 存在

流体力学—习题答案

一、选择题 1、流体传动系统工作过程中,其流体流动存在的损失有( A ) A、沿程损失和局部损失, B、动能损失和势能损失, C、动力损失和静压损失, D、机械损失和容积损失 2、液压千斤顶是依据( C )工作的。 A、牛顿内摩擦定律 B、伯努力方程 C、帕斯卡原理 D、欧拉方程 3、描述液体粘性主要是依据( D ) A、液体静力学原理 B、帕斯卡原理 C、能量守恒定律 D、牛顿内摩擦定律 4、在流场中任意封闭曲线上的每一点流线组成的表面称为流管。与真实管路相比(C )。 A、完全相同 B、完全无关 C、计算时具有等效性 D、无边界性 5、一般把( C )的假想液体称为理想液体 A、无粘性且可压缩, B、有粘性且可压缩, C、无粘性且不可压缩, D、有粘性且不可压缩 6、进行管路中流动计算时,所用到的流速是( D ) A、最大速度 B、管中心流速 C、边界流速 D、平均流速 7、( A )是能量守恒定律在流体力学中的一种具体表现形式 A、伯努力方程, B、动量方程, C、连续方程, D、静力学方程 8、( A )是用来判断液体流动的状态 A、雷诺实验 B、牛顿实验 C、帕斯卡实验 D、伯努力实验 9、黏度的测量一般采用相对黏度的概念表示黏度的大小,各国应用单位不同,我国采用的是( D ) A、雷氏黏度 B、赛氏黏度 C、动力黏度 D、恩氏黏度 10、流体传动主要是利用液体的( B )来传递能量的 A、动力能 B、压力能, C、势能, D、信号 11、静止液体内任一点处的压力在各个方向上都( B ) A、不相等的, B、相等的, C、不确定的 12、连续性方程是( C )守恒定律在流体力学中的一种具体表现形式 A、能量, B、数量, C、质量 D、动量 13、流线是流场中的一条条曲线,表示的是( B ) A、流场的分布情况, B、各质点的运动状态 C、某质点的运动轨迹, D、一定是光滑曲线 14、流体力学分类时常分为( A )流体力学 A、工程和理论, B、基础和应用 C、应用和研究, D、理论和基础 15、流体力学研究的对象( A ) A、液体和气体 B、所有物质, C、水和空气 D、纯牛顿流体 16、27、超音速流动,是指马赫数在( B )时的流动 A、0.7 < M < 1.3 B、1.3 < M ≤5 C、M > 5 D、0.3 ≤M ≤0.7 17、静压力基本方程式说明:静止液体中单位重量液体的(A )可以相互转换,但各点的总能量保持不变,即能量守恒。 A、压力能和位能, B、动能和势能, C、压力能和势能 D、位能和动能 18、由液体静力学基本方程式可知,静止液体内的压力随液体深度是呈( A )规律分布的 A、直线, B、曲线, C、抛物线 D、不变 19、我国法定的压力单位为( A ) A、MPa B、kgf/cm2 C、bar D、mm水柱 20、理想液体作恒定流动时具有( A )三种能量形成,在任一截面上这三种能量形式之间可以相互转换。 A压力能、位能和动能,B、势能、位能和动能, C、核能、位能和动能, D、压力能、位能和势能 21、研究流体沿程损失系数的是(A) A、尼古拉兹实验 B、雷诺实验 C、伯努力实验 D、达西实验 22、机械油等工作液体随温度升高,其粘度( B ) A、增大, B、减小, C、不变 D、呈现不规则变化

大学工程流体力学实验-参考答案

流体力学实验思考题 参考答案 流体力学实验室二○○六年静水压强实验1.同一静止液体内的测压管水头线是根什么线?测压管水头指z p ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当p B 0 时,试根据记录数据,确定水箱内的真空区域。 p B 0 ,相应容器的真空区域包括以下三个部分: (1)过测压管2 液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而 言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管 4 中,该平面以上的水体亦为真 空区域。 (3)在测压管5 中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4 液面高于小水杯液面高度相等。3.若再备一根直尺,试采用另外最简便的方法测定0 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5 油水界面至水面和油水界面至油面的垂直高度h和h0 ,由式w h w 0h0 ,从而求得0 。4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体容量;d 为测压管的内径;h 为毛细升高。常温的水, 0.073N m ,0.0098N m3。水与玻璃的浸润角很小,可以认为cos 1.0。 于是有 h 29.7 d (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10 mm时,毛细影响可略而不计。另外,当水质 不洁时,减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角较大,其h 较普通玻璃管小。如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5 及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2 及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5 个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5 与水箱之间不符合条件(4),相对管5 和水箱中的液体而言,该水平面不是水平面。

湖南大学《流体力学》考研重点笔记

考试复习重点资料(最新版) 资料见第二页 封 面 第1页

1 第一章绪论 1.1基本概念 一流体力学的概述 流体力学:主要研究流体与流体、流体与固体之间的相互作用力,即研究流体的机械运动规律。 液压流体力学 多相流体力学 渗流力学 流体力学黏性流体力学 非牛顿流体力学 计算流体力学 空气动力学二流体力学的发展阶段 1流体静力学以前时期 公元前10世纪到1世纪中国木橹和尾舵 约公元前700年管仲科学地总结了中国的治河与修渠经验约两世纪后阿基米德提出了浮力的定量理论 流体的基础:阿基米德的浮力理论和帕斯卡静压理论 2理想流体力学时期 1500年意大利达·芬奇一维不可压缩流体的质量守恒方程1738年伯努利定常不可压流伯努利定理1748年俄国科学家罗蒙诺索夫质量守恒定律 1752年达伯朗流体连续方程 1775年欧拉提出了流体运动的描述方法和无黏性流体运动的方程组,并开始研究理想无旋流体的平面和空间流动,为理论流体力学奠定了基础。 1781年拉格朗日引进流函数概念,并提出了理想无旋流体运动时所应满足的动力学条件(拉格朗日定理)及解决这类流的复位势法,进一步完善了理想流体力学的基本理论。 3流体动力学时期 研究特征:18世纪末和19世纪中叶,理论与实验相结合。 纳维与斯托克斯1823年和1845年 N-S 方程黏性流体运动。哈根和泊肃叶1839年和1840年细小圆管中层流流动的实验结果 雷诺、弗洛德、瑞利相似理论实验流体力学的基础。 ?? ???

亥姆霍兹和汤姆逊漩涡理论 普朗特边界层流理论, 冯·卡门湍流理论 中国周培原钱学森郭永怀 4计算流体力学 理论流体力学、计算流体力学和实验流体力学构成了流体力学的完整体系 三流体力学的基本概念 1流体 定义:在静力平衡时,不能承受剪切力的物质 特点:①有一定体积和自由面 ②分子间距较大 流体与固体的区别 ①固体的变形与受力的大小成正比; ②任何一个微小的剪切力都能使流体发生连续的变形 2流体质点和连续介质 流体质点:流体质点宏观尺寸充分小(数学描述)lim0 ?V,微 → 观尺寸足够大 说明:①流体质点的体积远远大于流体分子之间的间距,可容纳足够多的流体分子,是流体分子集团,个别分子运动参数的变化不影 响这群分子运动参数的平均统计值 ②流体质点是流体的最小构成单元 ③流体质点之间无任何间隙 ④流体质点没有固定形状,但有能量 连续介质:流体占据空间所有点或由连续发布质点的组合 说明:①流体是由无穷多个、无穷小的、紧密毗邻、连绵不断的流体质点组成的绝无间隙的连续介质 ②连续介质的概念来自数学,实验证明基是正确的 连续介质假设的优点: ①避免了流体分子运动的复杂性,只需研究流体的宏观运动 ②可以利用数学工具来研究流体的平衡与运动规律 流体微团:流体中任意小的微元 3理想流体 定义:无内聚力的流体质点构成的连续介质 4系统与控制体 系统:流体力学中所称的系统是指含有确定不变物质的任何集合 2

2019年上海交通大学船舶与海洋工程考研良心经验

2019年上海交通大学船舶与海洋工程考研良心经验 我本科是武汉理工大学的,学的也是船舶与海洋工程,成绩属于中等偏上吧,也拿过两次校三等奖学金,六级第二次才考过。 由于种种原因,我到了8月份才终于下定决心考交大船海并开始准备,只有4个多月,时间比较紧迫。但只要你下定决心,什么时候开始都不算晚,也不要因为复习得不好,开始的晚了就降低学校的要求,放弃了自己的名校梦。每个人情况不一样,自己好好做决定,即使暂时难以决定,也要早点开始复习。决定是在可以在学习过程中做的,学习计划也是可以根据自己的情况更改的。所以即使不知道考哪,每天学习多久,怎样安排学习计划,那也要先开始,这样你才能更清楚学习的难度和量。万事开头难,千万不要拖。由于准备的晚怕靠个人来不及,于是在朋友推荐下我报了新祥旭专业课的一对一,个人觉得一对一比班课好,新祥旭刚好之专门做一对一比较专业,所以果断选择了新祥旭,如果有同学需要可以加卫:chentaoge123 上交船海考研学硕和专硕的科目是一样的,英语一、数学一、政治、船舶与海洋工程专业基础(801)。英语主要是背单词和刷真题,我复习的时间不多,背单词太花时间,就慢慢放弃了,就只是刷真题,真题中出现的陌生单词,都抄到笔记本上背,作文要背一下,准备一下套路,最好自己准备。英语考时感觉着超级简单,但只考了65分,还是很郁闷的。数学是重中之重,我八月份开时复习,直接上手复习全书,我觉得没有必要看课本,毕竟太基础,而且和考研重点不一样,看了课本或许也觉得很难,但是和考研不沾边。计划的是两个月复习一遍,开始刷题,然后一边复习其他的,可是计划跟不上变化,数学基础稍差,复习的较慢,我又不想为了赶进度而应付,某些地方掌握多少自己心里有数,若是只掌握个大概,也不利于后面的学习。所以自打复习开始,我就没放下过数学,期间也听一些网课,高数听张宇、武忠祥的,线代肯定是李永乐,概率论听王式安,课可以听,但最主要还是自己做题,我只听了一些强化班,感觉自己复习不好的地方听了一下。我真题到了11月中旬才开始做,实在是太晚,我8月开始复习时网上就有人说真题刷两遍了,能不慌吗,但再慌也要淡定,不要因此为了赶进度而自欺欺人,做什么事外界的声音是一回事,自己的节奏要自己把握好,不然

流体力学简单计算MATLAB程式

用matlab进行编程计算 第一问: z=30;p1=50*9.8*10^4;p2=2*9.8*10^4;jdc=0.00015;gama=9800;d=0.257;L=50000 ;mu=6*10^(-6); hf=z+(p1-p2)/(0.86*gama) xdc=2*jdc/d; beta=4.15;m=1; Q=(hf*d^(5-m)/(beta*mu^m*L))^(1/(2-m)); v=4*Q/(pi*d^2); Re=v*d/mu; Re1=59.7/xdc^(8*xdc/7); Re2=(665-765*log(xdc))/xdc; i=hf/L; if Re<3000 Q=Q; elseif 3000

国内外流体力学研究机构

国内外流体力学研究机构 分类:标签:字号大中小订阅 .北京航空航天大学流体力学研究所 包括国家计算流体力学重点实验室(由李椿萱院士和张函信院士主持)和流体力学开放实验室 . 美国布朗大学流体机械研究中心 了解流体机械的诸多方面 .美国公司技术服务中心 美国一个著名的计算流体服务机构,解决计算和工程问题的专家 .英国大学研究中心 主要介绍的在各个领域的应用。 .欧洲流体湍流及燃烧研究协会(, ) 领导管理欧洲的流体,湍流及燃烧方面的科研教育和工业的联合组织。 .美国国家航空和宇宙航行局 的各项动态和进展,信息很多。 . 加拿大计算流体力学学会( ) 介绍计算流体力学的进展和应用 . 免费软件下载中心( ) 免费软件下载() . 美国普林斯顿大学空气动力学实验室( ) 进行流体力学的前沿研究 . 澳大利亚大学湍流研究所( ) 进行湍流的理论和实验研究及应用 . 美国大学超音速中心( )

介绍超音速材料,实验测量及超音速的计算 . 美国流体动力学研究中心( () ) 流体力学研究中心 . 美国大学流体力学研究实验中心(教授领导)( ) 主要研究涡,湍流和分离流动及其应用 . 荷兰科技大学流体力学实验室( ) 流体力学和热传导的科研和教育机构,主要研究涡,湍流及空气动力学 . 美国公司() 研究流体力学,热力学,自动控制和测量设备的工业公司研究领域包括,实验,理论及流体机械设备 .瑞士机械及机械处理工程能源系统试验室( , , ) 内容:研究建筑物内的空气流动,燃烧,能源和环境问题。 .瑞士机械及机械处理工程涡轮机械试验室( , , ) 提供研究及人员信息的摘要。 .瑞士机械工程压力机械及流体力学实验室(, , ) 介绍流体力学实验室()在方面的工作。 .瑞士机械及机械处理工程实验室( , ) 流体力学,能源系统,燃烧,涡轮机械等。 .英国大学航空学院计算中心, , 算法研究,类牛顿方法,加速收敛,跨音速激波控制,高超音速加热,激波边界层干扰,湍流模型,超音速涡流等。 提供,超级计算机或高性能机的计算软件 .美国航空软件开发公司( )

船舶流体力学考试答案

船舶流体力学考试答案

————————————————————————————————作者:————————————————————————————————日期:

船舶流体力学 试题卷 考试形式:闭卷 ,答题时间:100分钟,本卷面满分100分,占课程成绩的100 % 题号 一 二 三 四 五 卷 面 总 分 平 时 成 绩 课 程 总 成 绩 分数 一、(20分) 某对称机翼展长10m ,弦长2.0m ,厚度0.5m ,前缘半径0.2 m ,后缘半径近似为零,升角为12o。 (1) 画出翼型示意图,并在图上注明上述各部分(8分)。 (2) 求出展弦比、相对厚度、相对拱度。(6分) (3) 该机翼在水中运动,速度为2m/s ,水的动力粘度1×10-3 Pa·s ,密度1000kg/m 3,当升力系数0.75时,所产生的升力有多大?(6分)。 解: (1) 翼型示意图如下 (2) 展弦比=b/l ;相对厚度=t/b ;相对拱度f/b ; (3) 升力L =C L 21ρv 2lb =0.75×2 1×1000×22×10×2=30000N 姓名: 班级: 遵 守 考 试 纪 律 注 意 行 为 规 范 教研室主任签字:

二、 (20分) 有一圆柱体将两侧的水分开。已知圆柱体的半径a=1m,圆柱左边水深2a,右边水深a,水的密度1000kg/m3,周围都是大气压力p a。 求:(1) 单位长圆柱面上所受静止流体的x方向总压力P x;(6分) (2) 单位长圆柱面上所受静止流体的z方向总压力P z;(6分) (3) 单位长圆柱面上所受静止流体的作用的总压力P。(8分 ) 得分 解: (1)水平方向单位宽度作用力 F x =ρg(2a·a-a·a/2) =1.5ρg a2 =1.5×1000×9.8×12=14700N 方向向右。 铅锤方向作用力 (2)F y=ρg(πa2-πa2/4) =0.75ρgπa2 =0.75×1000×9.8×π×12=23100N 方向向上。 (3)总作用力大小及方向。

流体力学创新实验(终稿)

实验项目名称:溢洪道流速流态分布测量实验实验类型:自主创新实验 姓名及学号: 方平 3110103076 其他小组成员: 钱晨辉王坤王婕支颖 指导教师: 章军军老师 实验地点:安中实验大厅 时间: 2013.12.21

溢洪道流速流态分布测量实验 一、实验背景 本工程下水库库区面积较大,蓄洪能力较强,而天然洪水相对较小,2000年一遇洪水24h洪量仅387万m3,经过调洪演算分析,水库可利用蓄洪能力较强的特点,选择操作简便、安全的开敞式溢洪道作为水库主要泄洪设施。 下水库溢洪道布置在右岸,采用岸边开敞式,堰顶高程同正常蓄水位,自由溢流。溢洪道由进水渠、溢流堰、泄槽、挑流鼻坎及出水渠等组成。溢洪道的泄槽轴线与坝轴线成82.46°夹角,溢洪道全长约268.75m。 进水渠底板高程79.00m,长41.05m,底宽为6m,进水渠轴线由10.55m长的直线段、20.5m长圆弧段、5m长的渐变段和5m长的直线段组成,圆弧半径为24m,进水渠采用梯形断面,两侧边坡开挖坡比为1:0.5。渐变段以前渠底及两侧设30cm厚混凝土衬砌。 控制段堰顶宽度6m,堰顶高程81.00m,堰顶下游堰面采用WES幂曲线,曲线方程y=0.2898x1.85,堰面曲线与反弧段相连,反弧半径5.0m,反弧末端高程78.58m。堰面曲线原点上游由椭圆曲线组成,并与堰上游面相切。溢流堰与两侧闸墩作为一个整体结构,闸墩顶高程与坝顶高程相同,挡墙顶部设交通桥,桥宽8m。 溢洪道泄槽纵坡1:7.85,泄槽横断面采用矩形断面,两侧开挖边坡坡比为1:0.5,泄槽边墙为衡重式挡墙。泄槽底宽6m,混凝土底板厚50cm,底板基础设置锚筋及排水系统。泄槽段衡重式边墙高度为2.5m,边墙及底板每约15m长设置垂直缝,并设止水。泄槽中段有仙人洞断裂F9横穿,拟对其进行槽挖后回填混凝土处理。 溢洪道采用挑流消能,挑流鼻坎长6m,连续挑坎坎顶高程58.49m,反弧半径5.0m,挑角25°。由于挑流鼻坎附近岩体为薄层状的瘤状泥质灰岩、页岩、泥质粉砂岩,物理力学性质较差,易风化,抗冲刷能力差,因此鼻坎后设长9m 的平护坦,护坦混凝土衬砌厚0.5m,之后设一预挖冲坑,采用宽浅式结构,前段部分坡比为1:3,斜坡及底部采用混凝土衬护,厚度为50cm,预挖冲坑顶高程为52.00m。预挖冲坑以1:4的坡比与天然河床相连,底部采用60cm厚干砌石护底并铺设土工布,出水渠长度约为58.60m。 二、实验目的 (1)、验证两种流量情况下溢洪道的泄流能力; (2)、观测溢洪道各部位的流态; (3)、分析各部分流速及流态,提出相应建议。

工程流体力学笔记

第一章流体及其主要物理性质 研究内容:1、流体在外力作用下,静止与运动的规律 2、流体与边界的相互作用 工程中的三大问题:A、流体荷载(设计管道壁厚) B、流体的输送能力(确定流量) C、流动的形态(确定能量损耗) §1.1 流体的概念 一、流体的定义 自然界物质存在的主要形态:固态、液态和气态 流体包括液体和气体 具有流动性的物体(即能够流动的物体) 流动性:在微小剪切力作用下会发生连续变形的特性。 流体与固体的区别 固体:可以抵抗压力、拉力、剪切力,固体的变形与受力的大小成正比; 流体:无固定形状,能抵抗压力,不能抵抗拉力,静止流体不能抵抗剪切力; 任何一个微小的剪切力都能使流体发生连续的变形。 液体与气体的区别 液体的流动性小于气体,很难压缩;液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积;气体可以压缩。 二、流体连续介质模型 ●实际流体:由大量不断地作无规则运动的分子组成 ●流体的物理量:空间上分布不连续:分子间存在着间隙 时间分布不连续:分子不间断热运动 因此,以分子为对象研究流体运动规律极其复杂。 ●在实际工程中,所研究的流体的空间尺度远比分子尺寸大得多,而且要解决的问题 也不是流体微观运动特性,而是流体宏观运动特性,即大量分子运动的统计平均特性。 ●欧拉提出了连续介质假说:流体所占有的空间连续而无空隙地充满着流体质点 ●采用流体连续介质假设的优点 1.避免了流体分子运动的复杂性,只需研究流体的宏观运动。 2. 可以利用数学工具来研究流体的平衡与运动规律。

U §1.2 流体的主要物理性质 一、流体的密度 惯性是物体保持其原有运动状态的一种性质 表示惯性大小的物理量是质量,质量的单位为kg 单位体积的质量是密度,密度的单位为g/cm3或kg/m3 ● 均匀流体: 单位:kg/m3 ρ f ——流体的密度 相对密度:流体的密度与4oC 时水的密度的比值。 ρ w ——40C 时水的密度 比容: 单位质量的流体所占有的体积,流体密度的倒数。 单位: m3/kg ● 混合气体的密度: 式中:ρ 1 , ρ 2 ,… ρn ——各组分气体的密度 a 1 , a 2 ,… a n ——各组分气体所占的体积百分数 二、重度 三、流体的压缩性 1、压缩系数:单位压力增加所引起的体积相对变化量 2.体积模量: 四、流体的膨胀性 流体体积随着温度的增大而增大的性质。 体胀系数:单位温度增加所引起的体积相对变化量 五、流体的粘性 1、 粘性的定义: 流体内部各流体微团之间发生相对运动时,流体内部会产生摩擦力阻力(即粘性力)的性质。 2、牛顿内摩擦定律 (1)牛顿平板实验: 当h 和U 不是很大时,两平板间沿y 方向的流速呈线性分布。 1 运动较慢的流体层在较快的流体层带动 下才运动; 2 快层受到慢层的阻碍,不能运动得更快; 3 相邻流体层发生相对运动,产生切力和 阻力,构成了内摩擦力。 dV dM =ρV M =ρw f d ρρ=ρ 1 =v ∑ ==+++=n i i i n n a a a a 12211.......ρρρρρg V mg V ργ==G =) /(/2N m dp V dV p -=β) /(1E 2m N dV Vdp p -==β) /1(/K dt V dV t =βy h U y h U u d du ==或

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

流体力学 期末试题(答案)

中北大学 《流体力学》 期末题

目录 第四模块期末试题 (3) 中北大学2013—2014学年第1学期期末考试 (3) 流体力学考试试题(A) (3) 流体力学考试试题(A)参考答案 (6) 中北大学2012—2013学年第1学期期末考试 (8) 流体力学考试试题(A) (8) 流体力学考试试题(A)参考答案 (11)

第四模块 期末试题 中北大学2013—2014学年第1学期期末考试 流体力学考试试题(A ) 所有答案必须做在答案题纸上,做在试题纸上无效! 一、 单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符 合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.交通土建工程施工中的新拌建筑砂浆属于( ) A 、牛顿流体 B 、非牛顿流体 C 、理想流体 D 、无黏流体 2.牛顿内摩擦定律y u d d μ τ =中的 y u d d 为运动流体的( ) A 、拉伸变形 B 、压缩变形 C 、剪切变形 D 、剪切变形速率 3.平衡流体的等压面方程为( ) A 、0=--z y x f f f B 、0=++z y x f f f C 、 0d d d =--z f y f x f z y x D 、0d d d =++z f y f x f z y x 4.金属测压计的读数为( ) A 、绝对压强 p ' B 、相对压强p C 、真空压强v p D 、当地大气压a p 5.水力最优梯形断面渠道的水力半径=R ( ) A 、4/h B 、3/h C 、2/h D 、h 6.圆柱形外管嘴的正常工作条件是( ) A 、m 9,)4~3(0>=H d l B 、m 9,)4~3(0<=H d l C 、m 9,)4~3(0>>H d l D 、m 9,)4~3(0<

(完整版)华科船舶流体力学习题答案

习题二 2.1 设质量力2 2 2 2 2 2 f ()()()y yz z z zx x x xy y =++++++++i j k 在此力场中,正压流 体和斜压流体是否可以保持静止?说明原因。 解:22 (22)(22)()0f y z i z x j x xy y k ??=-+-+++≠r r r u v Q 333333 ()2222220f f y z z x x y ???=-+-+-=u u r u r u v 固正压流体不能保持静止,斜压流体可以保持静止。 2.2 在自由面以下10m 深处,水的绝对压力和表压分别是多少?假定水的密度为1000kg 3 m -g ,大气压为101kpa 。 解: 表压为: 10p p p gh ρ=-==1000*9.81=98100pa. 绝对压力为: 10p p p =+=98100+101000=199100pa. 2.3 正立方体水箱内空间每边长0.6m,水箱上面装有一根长30m 的垂直水管,内径为25mm, 水管下端与水箱内部上表面齐平,箱底是水平的。若水箱和管装满水(密度为 1000kg 3 m -g ),试计算:(1)作用在箱底的静水压力;(2)作用在承箱台面上的力。 解: (1)p gh ρ==1000*9.8*(30+0.6)=300186pa (2) F gv ρ==1000*9.8*(0.216+0.015)=2264N. 2.4 如题图2.4所示,大气压力为a p =100kN 2m -g ,底部A 点出绝对压力为130kN 2m -g ,问压力计B 和压力计C 所显示的表压各是多少? 解:C 表显示: 1c A p p gh ρ=-=130-9.81*1=120.43kN 2m -g B 表显示: 2B A p p gh ρ=-=100+9.81*1*3=139.43kN 2m -g

流体动力学及工程应用

1、定常流和非定常流的判别? 2、为何提出“平均流速”的概念? 3、举例说明连续性方程的应用。 3.4 流体微元的运动分析 一、流体微元运动的三种形式 1.平移运动 x 、y 方向的速度不变,经过dt 时间后,ABCD 平移到A ‘B ’C ‘D ’位置,微元形状不变。 2.直线变形运动 流体微元沿x (流动)方向变形。 3.旋转运动与剪切变形运动 流体微元沿x 方向和y 方向均有变形,且流体微元

除了产生剪切变形外,还绕z 轴旋转。 实际流体微元运动常是上述三种或两种(如没有转动)基本形式组合在一起的运动。 二、作用在流体微元上的力 有表面力(压力)、质量力、惯性力、粘性力(剪切力) 龙卷风 水涡旋 3.5 理想流体的运动微分方程及伯努利积分 一、理想流体的运动微分方程(15分钟) 讨论理想流体受力及运动之间的动力学关系,即根据牛顿第二定律,建立理想流体的动力学方程。 如图所示,从运动的理想流体中取一以C (x 、y 、z )点为中心的微元六面体1-2-3-4,作用于其上的力有质量力和表面力,分析方法同连续性方程的建立,只是这是一个运动的流体质点。 根据牛顿第二定律,作用在微元六面体上的合外力在某坐标轴方向投影的代数和等于此流体微元质量乘以其在同轴方向的分加速度。 在x 轴方向 x x ma F =∑ 图 微元六面体流体质点 可得1122x x p p dF p dx dydz p dydz ma x x ??? ?? ?+- -+= ? ???? ?? ? 因为 dt du a dt u d a x x = =, ,dt du a dt du a z z y y ==, 所以流体微元沿x 方向的运动方程为 x x du p f dxdydz dxdydz dxdydz x dt ρρ?- =? 整理后得

船舶流体力学第7章(打印)

第七章 势流理论(二) 本章主要讨论: 轴对称有势流动和机翼绕流的有关理论。 §7.1 轴对称流动 一条曲线绕轴旋转一周形成的物体形状称为旋成体。 当来流沿旋成体中轴线方向绕流旋成体时,通过中轴线的各子午面上的流动均相同,这种流动称为轴对称流动。比如,均匀流绕圆球的流动。 对于无旋轴对称流动,存在速度势函数φ和流函数ψ 。 但,速度势函数φ是调和函数,流函数 ψ 不是调和函数。 采用柱坐标(r ,θ,x ),设 x 轴为对称轴,流动参数不随 θ 变化。 ),,(t x r v v r r = ),,(t x r v v x x = 不可压缩流体的轴对称势流应该满足: ()()0=??+??x rv r rv x r 连续性方程: 0=??-??r v x v x r 无旋条件: 如果存在物体壁面S ,速度应该在物面上满足边界条件: 0=v 物面法向流速为零: ∞=V 无穷远处流速: 求解不可压缩流体轴对称势流问题的主要任务就是寻求满足以上方程组和边界条件的速度矢量。 有两种数学求解途经: r x V ∞ 轴对称轴

途径一:0122222 =??+??+??=?x r r r φφφφ控制方程: 0=物面无穿透条件: ∞=无穷远处来流: x v r v x r ??= ??= φφ,这里: 速度势函数φ是调和函数,可以采用叠加法求解。 途径二:012 2222 =??+??-??=x r r r D ψψψψ控制方程: 0=物面无穿透条件: ∞=无穷远处来流: r r v x r v x r ??= ??- =ψ ψ1,1这里: 流函数函数Ψ不是调和函数,称为斯托克斯函数。但它是线性的,也可采用叠加法求解。 一.基本的轴对称势流: 1.均匀直线流: 0,,0===∞θv V v v x r ∞=??==??= V x v r v x r φφ,0Θ x V ∞=∴φ ∞=??==??-=V r r v x r v x r ψψ1,01Θ 又 22 1 r V ∞=∴ ψ 2.空间点源(汇)流: (0 , 0)处有一点源 Q : R v R Q 2 4π=

北航《建筑备》第一章 流体力学基本知识 课堂笔记

北航《建筑设备》第一章流体力学基本知识课堂笔记 ◆主要知识点掌握程度 重点掌握流体运动的基本知识;熟悉流体的静压强及分布;了解流体的主要物理性质;了解流体阻力的流动状态。 ◆知识点整理 一、建筑设备绪论 (一)建筑设备的作用 建筑设备对于现代建筑的作用,好比人的五脏对了人的作用相似。如果把建筑外形、结构及建筑装修比作人的体形、骨路及服饰,那么,建筑设备可比作人的内脏及器官。空调与通风好比人的呼吸系统。室内给排水好比人的肠胃系统。供配电好比人的供血系统。自动控制与弱电好比人的神经及视听系统。人的外形与内部器官和建筑外形与设备,均是互为依存。缺一不可的。 从经济上看,一座现代建筑物的初投资产,土建、设备与装修,大约各占三分之一左右。现代化程度愈高.设备及装修所占的比例愈大。从建筑物的使用成本看,建筑设备的设汁及其性能的优劣,耗能的多少,是直接影响经济效益的重要因素。一座星级宾馆,假如其空调效果很差或供电系统经常故障而停电.或通讯系统不完善、不方便,不可想象其经济效益及使用效果会是令人满意的。 (二)建筑设备的特点 1、时代性。 2、节能与低污染。 3、多学科综合性。 (三)建筑设备的种类 现代建筑设备内容广泛,种类繁多。从其作用可分以下四类: 1、创造环境的设备:如创造空气温、湿度环境的空调设备等; 2、追求方便的设备:如通讯、电梯、卫生器具等; 3、增强安全的设备:如报警、防火、防烟、防盗、防振等; 4、提高控制性及经济性设备:如自动控制、电脑管理等。 从专业分,—般包括以下各专业:空调通风与采暖、给排水、供配电、弱电、动力、环保、洗衣设备、厨房设备、运输设备等。 (四)建筑设备的内容 1、空调与通风设备 (1)冷源设备 (2)热源设备 (3)空调及通风设备 (4)防排烟设备 2、室内给徘水设备 3、供配电设备 4、弱电设备 5、环保设备 6、洗衣设备 7、厨房设备 8、室内垂直运输设备(电梯) 9、娱乐及健身设备 二、流体的主要物理性质 (一)流体的密度和容重 流体单位体积的质量称为流体的密度,用ρ表示,即 ρ=(1——1) / m V

相关文档
最新文档