ZL102凝固过程瞬态温度场的模拟与验证

ZL102凝固过程瞬态温度场的模拟与验证
ZL102凝固过程瞬态温度场的模拟与验证

维导热物体温度场的数值模拟

传热大作业 二维导热物体温度场的数值模拟(等温边界条件) 姓名: 班级: 学号:

墙角稳态导热数值模拟(等温条件) 一、物理问题 有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。在下列两种情况下试计算: (1)砖墙横截面上的温度分布; (2)垂直于纸面方向的每米长度上通过砖墙的导热量。外矩形长为,宽为;内矩形长为,宽为。 第一种情况:内外壁分别均匀地维持在0℃及30℃; 第二种情况:内外表面均为第三类边界条件,且已知: 外壁:30℃,h1=10W/m2·℃, 内壁:10℃,h2= 4 W/m2·℃ 砖墙的导热系数λ= W/m·℃ 由于对称性,仅研究1/4部分即可。 二、数学描写 对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程

02222=??+??y t x t 这是描写实验情景的控制方程。 三、方程离散 用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。每一个节点都可以看成是以它为中心的一个小区域的代表。由于对称性,仅研究1/4部分即可。依照实验时得点划分网格: 建立节点物理量的代数方程 对于内部节点,由?x=?y ,有 )(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t 由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。

设立迭代初场,求解代数方程组。图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。以C t 000 为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于,认为已达到迭代收敛。 四、编程及结果 1) 源程序 #include <> #include <> int main() { int k=0,n=0; double t[16][12]={0},s[16][12]={0}; double epsilon=; double lambda=,error=0; double daore_in=0,daore_out=0,daore=0; FILE *fp; fp=fopen("data3","w"); for (int i=0;i<=15;i++) for (int j=0;j<=11;j++) { if ((i==0) || (j==0)) s[i][j]=30; if (i==5) if (j>=5 && j<=11) s[i][j]=0; if (j==5) if (i>=5 && i<=15) s[i][j]=0; } for (int i=0;i<=15;i++)

Ansys计算温度场操作流程学习资料

Instruction of Ansys temperature field calculation Question 1: Consider an infinite (in one direction) plate with initial temperature T0. One end of the plate is exposed to the environment of which the temperature is T e (III type boundary condition). Analyze the temperature distribution in the plate during the period of 2000s. 问题1:考虑一个方向无限长的平板,初始温度为T0,一段暴露在温度为T e的环境中,分析其在2000s内温度分布情况。 Basic parameters基本物性参数 Geometry几何:a=1 m, b=0.1 m Material材料:λ=54 W/m·o C, ρ=7800 kg/m3, c p=465 J/kg·o C Loads载荷:T0=0 o C, T e=1000 o C, h=50 W/m2·o C Jobname and directory settings设置文件名、存储路径 Menu | File | Change Jobname Menu | File | Change Directory Preprocessing前处理 (1) Define Element Type定义单元类型 Preprocessor | Element Type | Add/Edit/Delete Add: Thermal Mass | Solid | Quad 4node 55 (2) Set Material Properties设置材料属性 Preprocessor | Material Props | Material Models Thermal: Conductivity: Isotropic KXX=54 Thermal: Density=7800 Thermal: Specific Heat=465

西安交通大学——温度场数值模拟(matlab)

温度场模拟matlab代码: clear,clc,clf L1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子 T0=500;Tw=100; % 初始和稳态温度 a=0.05; % 导温系数 tmax=600;dt=0.2; % 时间限10min和时间步长0.2s dx=L1/(M-1);dy=L2/(N-1); M1=a*dt/(dx^2);M2=a*dt/(dy^2); T=T0*ones(M,N); T1=T0*ones(M,N); t=0;l=0;k=0; Tc=zeros(1,600);% 中心点温度,每一秒采集一个点 for i=1:9 for j=1:9 if(i==1|i==9|j==1|j==9) T(i,j)=Tw;% 边界点温度为100℃ else T(i,j)=T0; end end end if(2*M1+2*M2<=1) % 判断是否满足稳定性条件 while(t

end i=1:9;j=1:9; [x,y]=meshgrid(i); figure(1); subplot(1,2,1); mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight; xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2); [C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square; xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600; plot(xx,Tc,'k-','linewidth',2) xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18) else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end 实验结果: 时间/s 温度/℃ 中心点的冷却曲线

ANSYS计算温度场及应力场

基于ANSYS有限元软件实现施工温控仿真的主要技术(1)研究方法和分析流程 本次计算利用ANSYS软件来进行象鼻岭碾压混凝土拱坝全过程温控仿真计算分析。具体分析流程如下: 1)收集资料:包括工程气象水文资料、大坝体型、热力学参数、工程进度、施工措施、防洪度汛和蓄水等。 2)整理分析资料:参数拟合、分析建模方法。 3)建模:采用ANSYS软件进行建模,划分网格。 4)编写计算批处理程序:根据资料结合模型编写计算温度场的ANSYS批处理程序。 5)检查计算批处理程序:首先检查语句,然后导入计算模型检查所加荷载效果。 6)计算温度:使用ANSYS软件温度计算模块进行计算。 7)分析温度结果:主要分析各时刻的温度场分布和典型温度特征值。 8)应力计算建模:模型结构尺寸与温度分析模型相同,需要改变把温度分析材料参数改为应力分析材料参数。 9)计算应力:使用ANSYS软件温度应力计算模块和自编的二次开发软件进行计算。 10)分析应力结果:主要分析应力场分布和典型应力特征值。 11)编写报告:对计算流程和结果实施进行提炼总结,提出可行的温控指标和措施。 (2)前处理 1)建模方法选择。 有限元建模一般有两种方法:一种为通过点线面几何拓扑的方法建模,这种建模方法精确,但是比较费时。对于较大规模的建模任务花费时间太多。另一种为通过其他软件导入,如CAD,通过在其他软件中建模,然后输出为ANSYS 可以识别的文件类型,再导入ANSYS中完成建模过程,这种建模方式精度较直接建模的精度要稍低一些,但是由于要求建模的模型已经在CAD软件中完成了

初步建模,可以直接拿来稍作处理即可应用,时间花费较少。本计算选用从CAD 软件导入ANSYS中来建立模型。 2)建模范围。 建模范围可以分为全坝段建模和单坝段建模,全坝段建模可以全面反映整个坝体的温度和应力情况,但是建模难度高、计算量大;单坝段建模建模难度小,计算量也相对较小,一般情况下单坝段建模即可满足要求。 3)施工模拟层厚。 根据已建碾压混凝土坝经验,碾压层厚一般为0.3m左右,按照0.3m一层建模是最精确的,但是如果按照0.3m一层建模,计算网格数量巨大,计算时间长,对于硬件要求较高,在硬件和时间达不到要求的情况下,按照3m一层以下精度都是可以基本满足要求的。 4)分区模拟。 由于各分区混凝土水化热差别较大,对于温度计算影响较大,因此建模要尽量反映混凝土大坝内部分区变化。基岩由于对混凝土只是导热作用,且影响范围在10m左右,因此在计算时可以认为是均质体,计算热力学参数采用靠近建基面的地层参数。 5)参数选取。 参数一般选择可研阶段的材料试验报告,如果项目部未能提供这些资料,可以在征求同意的前提下,通过查阅相关书籍,尽量采取相似工程的资料。 (3)计算 1)ANSYS计算模块。 ANSYS计算温度场模块由其自带,可以直接进入模块计算。 2)化学产热模拟。 通过ANSYS中产热命令BFE模拟。 3)边界条件模拟。 ①对流边界条件通过命令SFA模拟。 ②接触散热边界条件通过命令D模拟。 4)浇筑模拟。 通过ANSYS中的生死单元功能实现,初始阶段所有单元均为死单元,死单

铸件充型凝固过程数值模拟

铸件充型凝固过程数值模拟 1 概述 欲获得健全的铸件,必先确定一套合理的工艺参数。数值模拟或称数值试验的目的,就是要通过对铸件充型凝固过程的数值计算,分析工艺参数对工艺实施结果的影响,便于技术人员对所设计的铸造工艺进行验证和优化,以及寻求工艺问题的尽快解决办法。 铸件充型凝固过程数值计算以铸件和铸型为计算域,包括熔融金属流动和传热数值计算,主要用于液态金属充填铸型过程;铸件铸型传热过程数值计算,主要用于铸件凝固过程;应力应变数值计算,用于铸件凝固和冷却过程;晶体形核和生长数值计算,主要用于金属铸件显微组织形成过程和铸件机械性能预测;传热传质传动量数值计算,主要用于大型铸件或凝固时间较长的铸件的凝固过程。数值计算可预测的缺陷主要是铸件形成过程中易发生的冷隔、卷气、缩孔、缩松、裂纹、偏析、晶粒粗大等等,另外可以通过数值计算,提出合理的铸造工艺参数,包括浇注温度、铸型温度、铸件凝固时间、打箱时间、冷却条件等等。目前,用于液态金属充填铸型过程的熔融金属流动和传热数值计算以及用于铸件凝 固过程的铸件铸型传热过程数值计算已经比较成熟,逐渐为铸造厂家在实际生产中采用,下面主要介绍这两种数值试验

方法。 1.1 数学模型 熔融金属充型与凝固过程为高温流体于复杂几何型腔内作有阻碍和带有自由表面的流动及向铸型和空气的传热过程。该物理过程遵循质量守恒、动量守恒和能量守恒定律,假设液态金属为常密度不可压缩的粘性流体,并忽略湍流作用,则可以采用连续、动量、体积函数和能量方程组描述这一过程。 质量守恒方程 ? u/? x+? v/? y+? w/? z= 0 (2-1) 动量守恒方程 ?(ρ u)/? t+u?(ρ u)/? x+v?(ρ u)/? y+w?(ρ u) /?z = -? p/? x+μ(?2u/? x2+?2v/?y2+? 2w/? z2)+ρ g x (2-2a) ?(ρ v)/? t+u?(ρ v)/? x+v?(ρ v)/? y+w?(ρ v) /?z = -? p/?y+μ (?2u/?x2+?2v/?y2+? 2w/? z2)+ρ

不同滑动速度下干接触体瞬态温度场计算

2007年5月 笫32卷第5期 润滑与密封 LUBRICATl0NENGINEERING Mav2007 V01.32No.5不同滑动速度下干接触体瞬态温度场计算8 陈辉胡元中王慧高晓军李瑞 (清华大学摩擦学国家重点试验室北京100084) 摘要:工程实际中,由于摩擦力的存在,接触副的运动将导致接触区内产生大量的摩擦热,使接触副温度升高;由此产生的瞬时高温会使接触副更易发生弹塑性变形、引起表层下裂纹的萌生及扩展,甚至使接触副表面发生化学变化。 建立了不同滑动速度下干接触体的滑动接触模型,利用快速傅立叶变换,通过求解拉普拉斯热传导方程,获得光滑及粗糙表面接触副的瞬时温升以及接触体内部各离散点的温度分布,即半无限体干接触的温度场。结果表明,相同载荷及摩擦因数条件下,相对滑动速度对接触体的温升及其温度分布有重要影响;粗糙峰表面接触处的瞬时温升远高于光滑表面接触处的瞬时温升。 关键词:粗糙表面;温度场;瞬时温升;F盯 中图分类号:TQl38.1文献标识码:A文章编号:0254一0150(2007)5一004—4 CalculationofTemperatureFieldinDrySliding ContactatDifferentSpeeds ChenHuiHuYuanzhongWangHuiGaoXlaojunLiRui (StateKeyLabomtoryofTribology,fI≮nghuauniversity,Beijing100084,china)AbstI翟ct:Withtheinteraction0fthe衔ctionforcebetweensud'acesofactualcontact,thetemperatureinsli出ngcontactwiUrise,evenleadtoatransienttemperatureaIising,andbecauseofthisthesud知eswiUtendtowardelasticorplasticdistortion,occuH_enceandextensionofthecrackunderthesu—’aces,evenchemicalchanges.Adrycontactmodelunderthedif亿I℃ntspeedswasdeveloped.WiththeequationofL印laceheateonductionsolVedusingF肼,thetransienttempeI|a—ture撕singatthecontactspots“twosmoothorroughslidingsu矗aceswascalculated,a11dthetemperaturedistributionofdiscretespotsinthecontactfield,namelytemperaturefieldunderdrycontactinthecontactfieldwasdrawn.TheresultsindicatetllatwiththesameloadandfHctionf如tor,therelativespeedoftheslidinghasgreatinnuencetothetemperaturearisingandthetemperaturedistributioninslidingcontact;thetransienttemperature碰singatthecontactspotsoftwoslid?ingroughsurfacesismorehigherthanthatoftwoslidingsmoothsu—'aces. Keywords:roughsu—'ace;tempemturefield;transienttemperatureadsing;F壬”r 工程实际中,零部件在接触过程中发生相对滑动,瞬时产生大量的热,从而引起接触体温度上升,进而影响零部件的物理和化学性能,甚至使用寿命。自Blok和Jaeger发表关于接触温度的研究以来H11,许多研究者对滑动接触过程的温升进行了广泛研究,他们大都利用简化模型对接触体温升进行了预测。 Archard¨。研究了滑动速度及表面膜对表面闪温的影响;BrianVick等Hj计算了多点滑动接触的情况,即在假定接触区为一系列矩形的条件下,初步计算了粗糙度形状和分布对温度上升的影响;Barber∞1利用热电偶实际测量了相对滑动过程中摩擦副表层下 t基金项目:清华大学国际科技合作项目(0211A22):美国GM公司合作项目(0410A58). 收稿日期:2006一12—18 作者简介:陈辉(1973一),男,博士研究生,主要研究方向为表面的模拟与表征与磨损的数值模拟.E—mail:chenhui02@mails.tsin小ua.edu.cn.一定位置处的温度,证明了表面闪温的存在;Bos等"。运用多重网格法对不同相对滑动速度下的光滑接触体表面温度进行了计算分析;Gecim等"。考察了二维条件下粗糙峰附近的温升;Gao等H。利用FF,I’方法提高了计算闪温的速度;Tian等∽“0。研究了不同形状热源以及不同滑动速度下表面及粗糙峰接触时的温度上升情况,并给出了最大闪温和平均闪温的拟合公式;Ling¨¨通过指定点热源的随机分布研究了界面温度;近年来,Jin¨引通过建立分型模型求解了界面温度,schneider等‘13‘通过实验研究了界面温度对磨损的影响。 以上模型或是过于简化,或是只计算了表面温度,而研究表明,表面损伤和磨损一般起源于距离表层下一定位置处,因此了解表层下的温度有极其重要的意义。利用快速傅立叶变换,通过求解拉普拉斯热传导方程,可以计算接触体的温度场,包括表面和表层下的温度分布,获得光滑及粗糙表面接触副的瞬时 万方数据

凝固模拟实验

凝固模拟实验 【实验性质】综合性实验;学时:4 ;选做实验 1实验目的 通过模拟实验了解实际高温钢液凝固过程,观察以下三种现象: (1)直接观察自然对流现象,目测其流速,观察宏观组织(Λ形偏析)形成的过程及“沟槽”产生的方位。 (2)观察结晶雨现象导致钢锭底部的负偏析(沉积锥)。 (3)观察凝固过程中氯化铵形成的基本晶形。 2实验原理及设备 2.1实验原理 金属凝固过程是从液态转化为固态的过程,从微观来讲,凝固就是金属原子从无序状态到有序状态的排序过程。也就是液态中无规则原子集团转变为原子按一定规则排列的固态结晶。从宏观来讲,是把液态金属所储藏的热和凝固潜热通过模壁转移到外界,使液态金属转变成为具有一定形状的固体金属。整个凝固过程将发生一系列的物理化学变化。 凝固过程的收缩,密度的差异以及温度场的变化而产生的自然对流现象对钢坯的质量影响是特别显著的。特别是在模铸生产中,大型镇静钢锭由于成分不均匀性而产生Λ形偏析(也就是冶金中常说的倒V形偏析,偏析部位表现在钢锭的柱状晶带上),以及钢锭底部的沉积锥偏析等内部缺陷。 2.1.1 倒“V”形偏析的形成 含有不同物质的熔体在凝固过程中,由于温度、密度、体积以及温度场的变化,液体中会产生对流现象。这种对流现象使流动的液体在通过柱状晶凝固前沿时不易凝固,随着柱状晶的生长延伸而夹入中间,形成带有一定角度的液体流。在选分结晶过程中,高熔点的物质首先结晶,低熔点的物质向液体中扩散,形成液体流中低熔点的物质富集,我们称为正偏析。在钢锭的表现形式称为“Λ”形偏析或称倒“V”形偏析。在钢坯的横断面上通过低倍腐蚀表现得形状又称为“方框形”偏析或称“锭形”偏析。 2.1.2 沉积锥偏析 熔体在凝固过程由于选分结晶,高熔点的物质首先形核结晶称为固体。密度小的物质上浮,密度大的物体自然下落。根据形核机理,在一定温度下会形成大量的晶体,由于其密度大于熔体而下落,在下落过程逐渐长大,此现象称为结晶雨。柱状晶向中心生在阻碍了边沿晶体的下落,在底部形成一个锥体,称为沉积锥。由于高熔点的物质成分富集,所以称为负偏析。 2.1.3 减少偏析生成的措施 (1)提高熔体的纯洁度,减少钢中有害元素。 (2)改善熔体的凝固条件控制浇注过程的注温、注速。 (3)改善熔体凝固过程的动力学条件。 2.2实验方法 本实验采用NH4Cl-H2O溶液模拟钢锭凝固过程,NH4Cl-H2O系二元相图如图1所示。由于NH4Cl-H2O溶液的透明性和NH4Cl-H2O树枝晶体的半透明性,因而可以观察晶体及凝固结构形成的过程,更可形象地观察到晶体的结构。再者氯化铵溶液熔化焓低,便于模拟实验操作。由图1可知,氯化铵溶液的浓度超过19.7%以后为过共晶系,实验中可采用35%的

二维导热物体温度场的数值模拟

金属凝固过程计算机模拟题目:二维导热物体温度场的数值模拟 Solidworks十字接头的传热分析 作者:张杰 学号:S2******* 学院:北京有色金属研究总院 专业:材料科学与工程 成绩: 2015 年12 月

二维导热物体温度场的数值模拟 图1 二维均质物体的网格划分 用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x ?与y ?可以是不变的常量,即等步长,也可以是变量(即在区域内的不同处是不同的),即变步长?如果区域内各点处的温度梯度相差很大,则在温度变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些?至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定? 在有限的区域内,将二维不稳定导热方程式应用于节点 ,)i j (可写成: ,2222 ,i j P P p i j T T T C x y ρλτ?????=+ ?????? ,1 , ,()i j P P P i j i j T T T οτττ+-???= +? ????? () , 1 , , 1 ,22 2()i j P P P P i j i j i j T T T T x x x ο+--+??? =+? ????? () , ,1 , ,122 2()i j P P P P i j i j i j T T T T y y y ο+--+???=+? ?????τ?、x ?、y ? 当τ?、x ?、y ?较小时,忽略()οτ?、2()x ο?、2 ()y ο?项。当x y ?=?时, 即x 、y 方向网格划分步长相等?最后得到节点 ,)i j (的差分方程: ()1 , ,0 1 , 1 , ,1 ,1 ,4P P P P P P P i j i j i j i j i j i j i j T T F T T T T T ++-+-=++++- 式中:() 02 p F C x λτ ρ?= ??

直燃式热烟气炉内部流场温度场数值模拟

硕士学位论文开题报告及论文工作计划书 课题名称:直燃式热烟气炉内部流场温度场数值模拟学号1000611 姓名张 专业机械设计及理论 学院机械工程与自动化 导师张 副导师 选题时间2011年10月10日 东北大学研究生院 年月日

填表说明 1、本表一、二、三、四、五项在导师指导下如实填写。 2、学生在通过开题后一周内将该材料交到所在学院、研究所。 3、学生入学后第三学期应完成论文开题报告,按有关规定,没有完成开题报告的学生不能申请论文答辩。

一、立论依据 课题来源、选题依据和背景情况、课题研究目的、理论意义和实际应用价值 (一)课题来源和背景情况: 热风炉主要是干燥机配套使用的一种高效节能供热设备,能够为干燥机提供不同温度、不同洁净程度的热空气或热烟气,于20世纪70年代末在我国开始广泛应用[1]。热风炉品种多、系列全,根据燃料类型可分为固体燃料热风炉、液体燃料热风炉和气体燃料热风炉;根据燃料或热源的不同可分为燃生物质材料热风炉、燃气热风炉、燃煤热风炉、燃油热风炉、电加热器和太阳能集热器等;按加热形式分主要有直接烟道气式热风炉和间接换热式热风炉。 直燃式烟气热风炉就是采用燃料直接燃烧,经过降尘净化处理形成热烟气,热烟气和物料直接接触对物料进行加热干燥或烘烤。这种方法燃料的消耗量约比用蒸汽式或其他间接加热器减少一半左右[34]。因此,在不影响烘干产品质量的情况下,完全可以使用直接烟道气式热风炉。直燃式热烟气炉用于高含水、处理量大、不怕污染物料的干燥,如污泥、糟渣类、褐煤、各种矿粉的热风源。直燃式烟气热风炉的燃料使用范围很广,可分为:固体燃料,如煤、焦炭;液体燃料,如柴油、重油;气体燃料,如煤气、天然气、液体气。燃料经燃烧反应后得到的高温燃烧气体进一步与外界空气接触,混合到某一温度后直接进入干燥室或烘烤房,与被干燥物料相接触,加热、蒸发水分,从而获得干燥产品。直燃式燃煤烟气热风炉是直燃式烟气热风炉最常用的一种形式,其特点有:煤燃烧连续稳定,操作简单可靠;自动化运行,机械上煤操作,运行简单;总热效率高;出风温度1000℃下连续可调;设备使用安全,无爆炸危险;耐用性强,运行费用低,维护简单[34]。 块煤直接加热热风炉,主要由炉膛、沉降室和混合室组成。沉降室和炉膛之间为燃尽室,这里保持着较高的温度,使可燃性挥发气体燃烧完全。燃料从炉门加入,在炉排上形成燃烧层。燃料燃烧时所需要的空气,由出灰门进入,通过炉排和燃烧层,使燃料燃烧。灰渣则通过炉缝隙落入灰坑,在出灰门排出。炉膛中的燃烧产生的烟气经燃尽室充分燃烧和沉降室分离炉灰、火花后,进入混合室,同来自冷风口的冷空气混合达到要求的温度后,通过通风机吸出并被压入干燥设备的热风室中。二次空气先由炉排下面侧壁上的小孔进入空气隔层预热,然后由炉膛上方侧壁的小孔进入炉膛,从而使炉膛中未燃尽的挥发物或由气流带上来的细小碳粒进一步燃尽。 直燃式煤粉热风炉,将初碎、干燥后的煤加入破碎输送机,破碎至粒度小于10mm,经过

凝固过程模拟仿真课程论文

凝固过程模拟仿真课程论 文 铸造过程数值模拟的研究发展现状 (Research on the development status of numerical simulation of casting process) 学院名称:材料科学与工程学院 专业班级:复合材料1102 学生姓名:不知道 学号:3110703451 指导教师:怯喜周

铸造过程数值模拟的研究发展现状 摘要:随着电子计算机技术的飞速发展,铸造工艺计算机辅助设计CAD,铸件凝固过程数值模拟CAE等多项技术已大量应用于生产实际。工业发达国家制定的下一代制造(NGM)计划所提出的十项关键基础技术中就包括建模与仿真。铸件的凝固过程数值模拟技术主要包括铸件及其工艺的几何造型、三维传热数值计算技术和缺陷判据这三部分,并可对凝固过程中出现的缺陷进行预测,评判铸造工艺设计的合理性,以减少工艺实验的次数,降低工艺设计成本,提高工艺出品率和合格率。 关键词:凝固模拟;数值仿真;铸造CAE;CAD;铸造充型; Research on the development status of numerical simulation of casting process Abstract: with the rapid development of computer technology, computer aided design of foundry technology CAD, numerical simulation of casting solidification process of CAE and many other technology has been widely applied in actual production. Industrial developed countries to develop the next generation manufacturing (NGM) are ten key basic technology plan put forward in includes modeling and simulation. The casting defects of computing technology and criterion of this three part of numerical heat transfer, including 3D geometric modeling and Simulation of the process of casting solidification process numerical, and to predict the defects that appear during the solidification process of casting process design, evaluation of rationality, in order to reduce the times of experiment process, reduce the design cost, increase the process yield and the qualified rate. Keywords: solidification simulation; numerical simulation; CAE CAD; casting; mold filling; 1 前言 凝固在自然界及人类生产实践中占有十分重要的地位。从熔岩冻结为地壳到

数值模拟在铸造充型及凝固过程的应用进展

数值模拟在铸造充型及凝固过程的应用进展 摘要:综述了铸造过程中数值计算的基本理论,简要介绍了铸造充型及凝固当前国内外发展状况以及所存在的问题,并对铸造过程数值模拟的相关软件进行评述。最后指出合理地利用铸造模拟软件,能够优化铸件的微观组织,提高产品质量,降低产品成本,缩短产品设计和试制周期。 关键词:铸造;充型过程;数值模拟;模拟软件

The Application of Numerical Simulation in Mold Filling and Solidification Process Abstract:The basic theory of numerical calculations is summarized, and a brief introduction of the developing situation and existing problems of the casting mold filling and solidification process at home and abroad,reviewed the numerical simulation software of casting process. In the end, it also clearly shows that it can optimize the casting microstructure, improve the quality, decrease the cost and reduce the design and trial cycle for the products by using the numerical simulation software properly. Key words: Casting; Filling and Solidification process; Numerical Simulation; Simulation Software

Ansys有限元分析温度场模拟指导书

实验名称:温度场有限元分析 一、实验目的 1. 掌握Ansys分析温度场方法 2. 掌握温度场几何模型 二、问题描述 井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。井式炉炉壁体材料的各项参数见表1。 表1 井式炉炉壁材料的各项参数 三、分析过程 1. 启动ANSYS,定义标题。单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine” 2.定义单位制。在命令流窗口中输入“/UNITS, SI”,并按Enter 键

3. 定义二维热单元。单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE55 4.定义材料参数。单击Main Menu→Preprocessor→Material Props→Material Models菜单

5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。 6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。 7.建立模型。单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。

环境辐射温度场计算

在封闭的室内环境中,当空调工作并使室内温度湿度分布情况达到稳定时,地板上任一块立体空间的能量流动处于动态平衡状态,即单位时间内从该空间辐射出的能量等于该空间接收的辐射能量。当人进入室内,并站在该空间的瞬间,人体感受到的温度就是该空间的温度,因此,根据地板温度以及墙体温度求解目标空间温度,对空调温度的调节具有重要的指导意义。 墙2,T 2,X 2 墙3,T 3,X 3 当(假设1)只考虑三面墙体和地板的辐射对目标空间的作用时,根据能量守恒可得式(1) 123T floor E E E E E =+++ (1) 式中,E T 是该立体空间辐射出的能量,E 1、E 2、E 3、E floor 分别为墙1、墙2、墙3以及 地板面对该处空间的辐射能量。 (假设2)将墙、地面看做有限尺寸的朗伯辐射体,当目标空间距离墙面或地面距离为L 时,墙面对空间的辐射照度为 2 2 2 X H AW X L =+ (2) 式中,辐射照度H 表示空间的单位面积在单位时间内接收到的能量,单位为W/cm 2;W 称为辐射功率密度,指单位面积的辐射源在单位时间内发出的能量,单位也是W/cm 2;X 代表墙的尺寸,其值等于墙半高和半宽的平均值;A 为修正因子,其值与目标空间相对于墙或地面辐射中心法线的偏离角度有关,A <=1。(假设3) 将式(2)代入式(1),得到单位时间内目标空间单位面积内的能量关系为

222 1231122334222222 112233 T floor X X X W AW A W AW A W X L X L X L =++++++ (3) 当忽略比辐射率的影响时,目标空间、地板、墙面的辐射可近似为黑体辐射(假设4),辐射功率密度与其温度满足如下关系 4W T σ= (4) 对其微分可得,在T 变化范围不大时 30004dW W W T W T T dT σ??=+?=+? ??? (5) 由于黑体辐射的辐射功率密度只与物体的温度相关,在同一室内环境下,墙壁和地板的平均温度差相对较小(假设5),故各墙壁的辐射功率密度可表示为 ()()() 3 11322333444floor floor floor floor floor floor floor floor floor W W T T T W W T T T W W T T T σσσ=+-=+-=+- (6) 目标空间的辐射功率密度为 ()34T floor floor T floor W W T T T σ=+- (7) 式中,T T 即是目标空间温度,即人体感受温度。将式(6)、式(7)代入式(3),得 ()()()222 123112233222222 112233 222 12312342222223 11 223314T floor floor floor floor floor floor X X X T T A T T A T T A T T X L X L X L W X X X A A A A X L X L X L T σ-=-+-+-+++????++++-?? ?+++???? (8) 在理想状态下,房间温度完全均匀分布时,各墙面、空间与地板不存在温差,式(8)左右应为0,计算得到式(8)中,最后一项为0(假设6),从而得到式(9) ()()()2221231122332222 2 2 112233T floor floor floor floor X X X T T A T T A T T A T T X L X L X L =+-+-+-+++ (9) 即为立体空间温度的求解公式。 对于系数A ,目前学术上对单面墙辐射时,空间偏离辐射中心法线的情况有一个较为精确的计算公式,但形式比较复杂。为了使公式更适用于室内多面墙的情况,建议进行室内实验,通过数据拟合求出A 的值。

瞬态热温度场分析

ANSYS工程应用教程——热与电磁学篇47页-瞬态热温度场分析例1:有一长方形金属板,其几何形状及边界条件如图4—7所示。其中,板的长度为15cm,宽度为5cm,板的中央为一半径为1cm的同孔。板的初始温度为500℃,将其突然置于温度为20℃且对流换热系数为100W/m‘℃的流体介质中,试计算:1.第1s及第50s这两个时刻金属板内的温度分布情况。 2.金属板上四个质点的温度值在前50s内的变化情况。 3.整个金属板在前50s内的温度变化过程。 该金属板的基本材质属性如下: 密度=5000Kx/m’ 比热容=200J/Kg K 热传导率=5W/m K Finish $/ clear $/title,transient slab problem !进入前处理 /prep7 Et,1,plane55 Mp,dens,1,5000 Mp,kxx,1,5 Mp,c,1,200 Save !创建几何模型 Rectng,0,0.15,0,0.05 Pcirc,0.01,,0,360 Agen,,2,,,0.075,0.025,,,,1 Asba,1,2 Save !划分网格 Esize,0.0025 Amesh,3 Save !进入加载求解 /solu Antype,trans !设定分析类型为瞬态分析 Ic,all,temp,500 !为所有节点设置初始温度500度 Save Lplot Sfl,1,conv,100,, 20 !设定金属板外边界1-4的对流载荷

Sfl,2,conv,100,,20 Sfl,3,conv,100,,20 Sfl,4,conv,100,,20 /psf,conv,hcoe,2 Time,50 !设定瞬态分析时间/制定载荷步的结束时间 Kbc,1 !设定为阶越的载荷(载荷步是恒定的,如是随时间线性变化应用ramped——0)Autots,on !打开自动时间步长(求解过程中自动调整时间步长) Deltim,1,0.1,2.5 !设定时间步长为1(最小0.1最大2.5),载荷子步数nsubst Timint,on !打开时间积分,off为稳态热分析 Outres,all,all !输出每个子步的所有结果到*.rth文件中(outpr将输出到*.Out文件中) Solve !进入后处理 /post1 Set,,,1,,1,, !载荷步m=1,子步,比例因子,0-读实数部分/1读虚数部分,时间点,, Plnsol,temp,,0, !该画面显示了在第1秒钟时金属板的温度分布状况 Set,,,1,,50 Plnsol,temp,,0 !该画面显示了在第50秒钟时金属板的温度分布状况 ! /post26 Nsol,2,82,temp,,left-up !变量2,节点82(左上点),项目,,名字 Plvar,2 !显示变量2 ! /post1 !查看金属板在前50秒内的温度变化过程 Set,last Plnsol,temp, Animate,10,0.5,,1,0,0,0 !捕捉的张数(默5),时间的推迟(默0.1),动画循环次数,自动缩放比!例(默0),用于动画的结果数据(默认0——目前载荷步),最小数据点,最大数据点 Save /eof !退出正在读取的文件 瞬态热温度场分析例2:一个半径为10mm,温度为90℃的钢球突然放入盛满了水的、完全绝热的边长为100mm的水箱中,水温度为20℃,如图7—5所示;。求解0.5小时之后铁球与水的的温度场分布。(忽略水的流动,铁球置于水箱正小央) 材料性能参数: 密度:水=l OOOkg/m^3,铁=7800 kg/m^3 导热系数:水=0.6W/(m.℃),铁=70W/(m·℃) 比热容:水=4185J/(kg·℃),铁=448J/J/(kg·℃) 分析:该问题属于瞬态热力学问题。根据问题的对称性面的四分之一建立有限元计算模型,如图7—6所示。

平板对接温度场及应力-应变场模拟

-1- 平板对接温度场及应力-应变场模拟 王龙 北京工业大学机械工程专业,北京(100022) E-mail: xiaobei123@https://www.360docs.net/doc/693716875.html, 摘要:本文是通过使用计算机模拟技术,用ANSYS 软件模拟平板对接焊接工艺的温度场, 并用间接求解的方法计算出焊接残余应力场。作者对比了面部加载高斯热源和内部热生成这 两种方法,总结两种热源的优缺点,并将两者结合起来作为一种复合热源。复合热源的计算 结果与传统的分析结果和理论相吻合。 关键词:计算机模拟;温度场;残余应力场;复合热源 1 引言 焊接是一个涉及到电弧物理、传热、冶金和力学的复杂过程,由于高度集中的瞬时热输入,在焊接过程中和焊后将产生相当大的残余应力(焊接残余应力)和变形(焊接残余变形、焊接收缩、焊接翘曲),而这是影响焊接结构质量和生产率的主要问题之一,焊接变形的存在不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。焊接应力和变形不但可能引起热裂纹、冷裂纹、脆性断裂等工艺缺陷,而且在一定条件下将影响结构的承载能力,如强度,刚度和受压稳定性。除此以外还将影响到结构的加工精度和尺寸稳定性。因此,在设计和施工时充分考虑焊接应力和变形这一特点是十分重要的[1][2]。随着大规模工业生产和高新技术的发展,焊接结构正朝着大型化、复杂化、高容量、高参数方向发展,其复杂程度越大,工作条件越苛刻,造成焊接事故也越频繁,危害性也越大,所以提高和保证焊接质量已经成为当前焊接中的关键问题。 焊接过程中局部集中的热输入,使焊件形成非常不均匀、不稳定温度场。温度场不仅直 接通过热应变,而且还间接通过显微组织变化引起相变应变决定焊接残余应力。因此,温度场的分析是焊接应力和变形分析前提[3]。本文就是利用大型通用的有限元软件ANSYS 对焊接温度场、应力场和变形进行了计算机的三维实时动态数值模拟,通过先计算焊接温度场,再把温度场结果作为应力和变形计算时的载荷,从而得到任何时刻、任何点的焊接应力、变形的具体计算数值,这无论是对焊接设计还是工艺都很有价值。 2 平板对接温度场模拟 2.1 材料物理性能参数以及单元类型的选择 由于是探讨性的模拟,所以模型假设为100mm×50mm×6mm,电弧中心沿Z 方向移动。 并用以下命令流依次定义导热系数,比热容以及密度用于进行温度场模拟。 mp,kxx,1,66.6 mp,c,1,460 mp,dens,1,7800 单元类型的选择原则为 1.必须具备单元生死功能 2.具有耦合功能,可以进行热-应力耦 合分析3.必须为三维单元4.焊缝处单元可以进行规则划分。根据以上原则,选用ANSYS 单元库中的热分析单元,二维模型用四节点四边形单元PLANE55,三维模型用八节点六面

相关文档
最新文档