数值计算课后答案6

数值计算课后答案6
数值计算课后答案6

习 题 六 解 答

1、在区间[0,1]上用欧拉法求解下列的初值问题,取步长h=0.1。

(1)210(1)(0)2y y y '?=--?=?(2)sin (0)0

x y x e y -'?=+?=? 解:取h=0.1,本初值问题的欧拉公式具体形式为

21(1)(0,1,2,)n n n y y y n +=--=L

由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2;

x 1=0.1,2100(1)211y y y =--=-= x 2=0.2,2211(1)101y y y =--=-= 指出:

可以看出,实际上求出的所有数值解都是1。

2、用欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。

22(00.5)

(0)1

y x y x y '?=-≤≤?

=? 解:由预测校正公式11(,)[(,)(,)]2n n n n n n n n y hf x y h

y f x y f x y ++?=+?

?=++??n+1n+1y y , 取h=0.1,本初值问题的预测-校正公式的具体形式为 12

22

10.1(2)0.05[(2)(2)]

n

n n n n n n n y x y y x y x y ++?=+?-??=+-+-??n+1n+1y y 由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1; x 1=0.1,

2000220001120.1(2)0.8,0.05[(2)(2)]10.05[(02)(0.120.8]0.82

y x y y x y x y =+-==+-+-=+-+-?=11y y

3、试导出解一阶常微分方程初值问题

000

(,)()

()y f x y x a x b y x y '==≤≤??

=?

的隐式欧拉格式

111(,)(0,1,2,)n n n n y y hf x y n +++=+=L

并估计其局部截断误差。

解:在区间[x n ,x n+1]上对常微分方程y /(x)=f(x,y)两端同时积分,得

1

1(,())n n

x n n x y y f x y x dx ++-=?

由右矩形公式得

1

11(,())(,)n n

x n n x f x y x dx hf x y +++≈?

所以有差分格式

111(,)(0,1,2,)n n n n y y hf x y n +++=+=L

这是所谓隐式欧拉公式。

对于隐式欧拉法111(,)(0,1,2,)n n n n y y hf x y n +++=+=L

假定y n =y(x n ),上式右边的y n +1=y(x n +1),则

111111(,)()(,())()()n n n n n n n n n y y hf x y y x hf x y x y x hy x ++++++'=+=+=+ 将y /(x n +1) 按泰勒公式展开,上式为 11()()

()()

()[()()]n n n n n n n n y y x hy x y x hy x h y x h y x hy x ++'=+'=++'''=+++L 将y(x n +1)按泰勒公式展开,得

123

()()

()()()()2!3!

n n n n n n y x y x h h h y x hy x y x y x +=+''''''=++++L

两式相减,得

23

112

3()[()()()()]()[()()]

2!3!

()()

2!n n n n n n n n n n h h y x y y x hy x y x y x y x h y x hy x h y x O h ++'''''''''-=++++--++''=-+L L 即

2

311()()()2!

n n n h y x y y x O h ++''-=-+

所以,

211()()n n y x y O h ++-=

指出:

可以用多种方法导出,其中差商法、数值积分方法是简单的方法。 用导出。

4、验证改进的欧拉公式对任何不超过二次的多项式

2y ax bx c =++

准确成立,并说明理由。

解:因为2y ax bx c =++ 所以2y ax b y ex f ''=+=+@。 记()f x ex f =+,设,0,1,2,i x ih i ==L 改进的欧拉公式为

1

1110((,)(,))2

(()())(0,1,2,)2i i i i i i i

i i h y y f x y f x y h y ex f ex f i y c ++++?

=++??

?=++++=??

=???

L 将上式对i 从0到n -1求和并利用初值条件得

1

1011

100221

11

000

2210

(()())2()((1))22(1)((1))2

21(2)(2(1))222(n n i i i n n i i i i n n n i i i n i h

y ex f ex f c

eh eh x x nfh c ih i h nfh c eh eh i i nfh c i i nfh c eh eh i n nfh c n n n nfh c e nh -+=--+==---===-==++++=+++=++++=++++=++++=+++=?-+++=∑∑∑∑∑∑∑2222)1()221

2

n n n n fnh c e nh fnh c

ex fx c ax bx c ++=++=++=++

所以,改进的欧拉法对任何不超过二次的多项式

2y ax bx c =++

准确成立。

补充题(一)

1、用欧拉公式求解初值问题

0.9(01)12(0)1

y y x x y ?'

=-

≤≤?+?

?=? 当x 取步长为h=0.02,用欧拉公式解初值问题0,0.02,0.04,…,0.10时的解。 2、取步长为h=0.2,用欧拉公式解初值问题

2(00.6)

(0)1

y y xy x y '?=--≤≤?

=?。 答 案

1. 解:将0.9

(,)12f x y y x

=-+代入欧拉公式,得本初值问题的欧拉公式的具体形式为:

10.9

12n n n n y y h

y x +=-+0.018112n n y x ??=- ?+??

,(0,1,2,3,4,5n =) 取0.02h =由初值y 0=y(0)=0出发计算,所得数值结果如下:

用欧拉公式求解的计算结果

事实上,利用变量分离法,很容易求得该初值问题的准确解为:0.45()(12)y x x -=+ 表中()n y x 的第一列就是精确解()y x 在n x x =处的值。()n n

y x y -表示n y 的局部截

断误差,从表中可以看出,随着n 的增大,()n n y x y -的值也在增大。所以,欧拉

公式虽然计算简便,对一些问题有一定的使用价值,但是它的误差较大,所得的

数值解精度较低。

2. 解:将2

(,)f x y y xy =--代入欧拉公式,得本初值问题的欧拉公式的具

体形式为:

2

1(,)0.2()n n n n n n n n y y hf x y y y x y +=+=+--

2

0.80.2n n n y x y =-

取步长为h=0.2由初值y 0=y(0)=1出发计算,所得数值结果如下:

221000(0.2)0.80.20.810.2010.8y y y x y ≈=-=?-??=

222111(0.4)0.80.20.80.80.20.20.80.6144y y y x y ≈=-=?-??=

2

23222(0.6)0.80.20.80.61440.20.40.61440.4613

y y y x y ≈=-=?-??=

补充题(二)

1、证明对任意的参数t ,如下的龙格-库塔方法是二阶的。

1

231

2131()2

(,)

(,)((1),(1))

n n n n n n n n h y y k k k f x y k f x th y thk k f x t h y t hk +?

=++???=??=++?=+-+-?? 分析与解答

1、证明:

因为1(,)()n n i k f x y y x '==

21212(,)

(,)(,)(,)()()(,)()(,)()n n n n x n n y n n n x n n n y n n k f x th y thk f x y thf x y thk f x y O h y x thf x y thy x f x y O h =++=+++''=+++ 31212((1),(1))

(,)(1)(,)(1)(,)()()(1)(,)(1)()(,)()n n n n x n n y n n n x n n n y n n k f x t h y t hk f x y t hf x y t hk f x y O h y x t hf x y t hy x f x y O h =+-+-=+-+-+''=+-+-+ 则

1232222

3()

2(()(,)()(,)()

2()(1)(,)(1)()(,)())()(,)()(,)()

22

n n n n x n n n y n n n x n n n y n n n n x n n n y n n h

y y k k h

y y x thf x y thy x f x y O h y x t hf x y t hy x f x y O h h h y hy x f x y y x f x y O h +=++''=++++''++-+-+''=++++ 而y(x n+1)泰勒展开得

2

312

3()()()()()

2

()()((,)(,))()

2

n n n n n n x n n y n n h y x y x hy x y x O h h

y x hy x f x y f x y y O h +'''=+++''=++++

比较上面两个关系式,前三项总相等。

所以,无论t取何值,此龙格-库塔法总是二阶数值方法。

计算方法引论课后答案.

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生 的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

简便运算的练习试题和答案

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 38×25×4 42×125×8 25×17×4 (25×125)×(8×4) 49×4×5 38×125×8×3 (125×25)×4 5 ×289×2 (125×12)×8 125×(12×4) 乘法交换律和结合律的变化练习 125×64 125×88 44×25 125×24 25×28 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 357+288+143 158+395+105 167+289+33 129+235+171+165 378+527+73 169+78+22 58+39+42+61 138+293+62+107 乘法分配律:(a+b)×c=a×c+b×c (80+4)×25 (20+4)×25 (125+17)×8 25×(40+4)15×(20+3)

乘法分配律正用的变化练习: 36×3 25×41 39×101 125×88 201×24 乘法分配律反用的练习: 34×72+34×28 35×37+65×37 85×82+85×18 25×97+25×3 76×25+25×24 乘法分配律反用的变化练习: 38×29+38 75×299+75 64×199+64 35×68+68+68×64 其他的一些简便运算。 800÷25 6000÷125 3600÷8÷5 58×101-58 74×99

姓名: (1)125×15×8×4 (2)25×24 (3)125×16 (4)75×16 (5)125×25×32 (6)25×5×64×125 (7)125×64+125×36 (8)64×45+64×71-64×16 (9)21×73+26×21+21 姓名:(1)(720+96)÷24 (2)(4500-90)÷45 (3)6342÷21 (4)8811÷89 (5)73÷36+105÷36+146÷36 (6)(10000-1000-100-10)÷10 (7)238×36÷119×5 (8)138×27÷69×50 (9)624×48÷312÷8 (10)406×312÷104÷203

数值计算课后答案

习 题 四 解 答 1、设010,1x x ==,写出()x f x e -=的一次插值多项式1()L x ,并估计插值误差。 设插值函数为1()L x ax b =+,由插值条件,建立线性方程组为 1 01 1a b a b e -?+=???+=? 解之得11 1a e b -?=-?=? 则11()(1)1L x e x -=-+ 因为(),()x x y x e y x e --'''=-= 所以,插值余项为 (1)(2) (2)011 ()()()()() (1)! 1()()2!1 ()()()2!1 (0)(1)((0,1))2n r x f x p x f x n f x f x x x x e x x ξξπξπξξ+-=-=+= =--=--∈ 所以 01 0101 ()max max (1) 2111248x r x e x x e ξξ-≤≤≤≤-≤-=??=。 2选用合适的三次插值多项式来近似计算f 和f 。 解:设三次插值多项式为230123()f x a a x a x a x =+++,由插值条件,建立方程组为 23012323 012323 01232301 23(0.1)(0.1)(0.1)0.9950.30.30.30.995 0.70.70.70.7651.1 1.1 1.10.454 a a a a a a a a a a a a a a a a ?+?-+?-+?-=?+?+?+?=??+?+?+?=??+?+?+?=?

即 012301230123 123012312301230.10.010.0010.9950.10.010.0010.9950.30.090.0270.9950.40.080.02800.70.490.3430.7650.80.480.344 1.761.1 1.21 1.3310.454a a a a a a a a a a a a a a a a a a a a a a a a a a -+-=-+-=??+++=++=??? +++=++=??+++=?12301231232330.40.720.9880.3110.10.010.0010.9950.40.080.02800.320.288 1.760.384 3.831a a a a a a a a a a a a a ??????++=-? -+-=??++=??? +=? ?-=-? 解之得 01 230.416.293.489.98 a a a a =??=-?? =-??=? 则所求的三次多项式为23()0.41 6.29 3.489.98f x x x x =--+。 所以 2323 (0.2)0.41 6.290.2 3.480.29.980.20.91 (0.8)0.41 6.290.8 3.480.89.980.8 1.74f f =-?-?+?=-=-?-?+?=- 3、设(0,1,2,,)i x i n =L 是 n+1个互异节点,证明: (1)0()(0,1,2,,)n k k i i i x l x x k n ===∑L ; (2)0 ()()0(0,1,2,,)n k i i i x x l x k n =-==∑L 。 证明: (1)由拉格朗日插值定理,以x 0,x 1,x 2,…x n 为插值节点,对y=f(x)=x k 作n 次插值,插值多项式为 0()()n n i i i p x l x y ==∑, 而y i =x i k , 所以0 ()()()n n k n i i i i i i p x l x y l x x ====∑∑ 同时,插值余项 (1)(1)11 ()()()()()()0(1)!(1)! n k n k n r x x p x f x x x n n ξξππ++=-= ==++ 所以0 ()n k k i i i l x x x ==∑ 结论得证。 (2)取函数()(),0,1,2,,k f x x t k n =-=L 对此函数取节点(0,1,2,,)i x i n =L ,则对应的插值多项式为

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

小学四年级简便运算的练习题和答案

运算定律练习题 (1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 38×25×4 42×125×8 25×17×4 (25×125)×(8×4) 49×4×5 38×125×8×3 (125×25)×4 — 5 ×289×2 (125×12)×8 125×(12×4) (2) 乘法交换律和结合律的变化练习 | 125×64 125×88 44×25 125×24 25×28 (3)加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 357+288+143 158+395+105 167+289+33 129+235+171+165 ~ 378+527+73 169+78+22 58+39+42+61 138+293+62+107

(4)乘法分配律:(a+b)×c=a×c+b×c 正用练习 (80+4)×25 (20+4)×25 (125+17)×8 25×(40+4)15×(20+3) (5)乘法分配律正用的变化练习: 36×3 25×41 39×101 125×88 201×24 ( (6)乘法分配律反用的练习: 34×72+34×28 35×37+65×37 85×82+85×18 25×97+25×3 76×25+25×24 ~ (7)乘法分配律反用的变化练习: 38×29+38 75×299+75 64×199+64 35×68+68+68×64 ; ☆思考题:(8)其他的一些简便运算。 800÷25 6000÷125 3600÷8÷5 58×101-58 74×99

【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。 325÷25 =(325×4)÷(25×4) =1300÷100 =13 【练一练1】 (1)450÷25 (2)525÷25 (3)3500÷125 / (4)10000÷625 (5)49500÷900 (6)9000÷225 ! 【经典例题二】计算25×125×4×8 【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。运用了乘法交换律和结合律。 25×125×4×8 =(25×4)×(125×8) =100×1000 =100000【练一练2】 (1)125×15×8×4 (2)25×24 (3)125×16 (4)75×16 (5)125×25×32 (6)25×5×64×125 (

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

计算方法习题

《计算方法》练习题一 练习题第1套参考答案 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( 2 10- )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( ))((!2) (b x a x f --''ξ ) 。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P (5 2 )。 4.乘幂法是求实方阵(按模最大 )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( ]0,2[-)。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε(C )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( A )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( C ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有(B )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( C ). A .)(h o B.)(2 h o C.)(3 h o D.)(4 h o 三、计算题 1.求矛盾方程组:??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2 212 212 2121)2()42()3(),(--+-++-+=x x x x x x x x ?, 由 0,021=??=??x x ? ?得:???=+=+9 629232121x x x x , 解得14 9 ,71821== x x 。

六年级数学简便计算专项练习题(附答案+计算方法汇总)

六年级数学简便计算专项练习题(附答案+计算方法汇总) 小学阶段(高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。因此,培养学生思维的灵活性就显得尤为重要。 下面,为大家整理了8种简便运算的方法,希望同学们在理解的基础上灵活运用,不提倡死记硬背哟! 1.提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。 注意相同因数的提取。 例如: 0.92×1.41+0.92×8.59 =0.92×(1.41+8.59) 2.借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。 考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如: 9999+999+99+9 =9999+1+999+1+99+1+9+1-4 3.拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 例如: 3.2×12.5×25 =8×0.4×12.5×25 =8×12.5×0.4×25 4.加法结合律 注意对加法结合律 (a+b)+c=a+(b+c) 的运用,通过改变加数的位置来获得更简便的运算。 例如: 5.76+13.67+4.24+ 6.33 =(5.76+4.24)+(13.67+6.33) 5.拆分法和乘法分配律结合 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。 例如: 34×9.9 = 34×(10-0.1) 案例再现:57×101=? 6.利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。 例如: 2072+2052+2062+2042+2083

数值计算方法答案

数值计算方法习题一(2) 习题二(6) 习题三(15) 习题四(29) 习题五(37) 习题六(62) 习题七(70) 2009.9,9

习题一 1.设x >0相对误差为2%4x 的相对误差。 解:由自变量的误差对函数值引起误差的公式: (())(())'()()()() f x x f x f x x f x f x δδ?= ≈得 (1)()f x = 11 ()()*2%1% 22x x δδδ≈ ===; (2)4 ()f x x =时 44 4 ()()'()4()4*2%8%x x x x x x δδδ≈ === 2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。 (1)12.1x =;(2)12.10x =;(3)12.100x =。 解:由教材9P 关于1212.m n x a a a bb b =±型数的有效数字的结论,易得上面三个数的有效 数字位数分别为:3,4,5 3.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352) 哪个较精确? 解:(1)31.97+2.456+0.1352 ≈2 1 ((0.3197100.245610)0.1352)fl fl ?+?+ =2 (0.3443100.1352)fl ?+ =0.3457210? (2)31.97+(2.456+0.1352) 2 1 (0.319710(0.245610))fl fl ≈?+? = 21 (0.3197100.259110)fl ?+? =0.34562 10? 易见31.97+2.456+0.1352=0.3456122 10?,故(2)的计算结果较精确。 4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?

用简便方法计算下面各题

用简便方法计算下面各题 4.8×0.25 2.4×12.5 1.25×1.6×2.5 4.76×99+4.76 58.5×101-58.5 18.7×99+18.7 2.85×99 4.23×101 5.8×102 5.4×10.1 6.8×9.9 2.5×10.2 12.5×(100+8)9.4×10.1 93.7×0.32+93.7×0.68 2.52×101 1.25×0.7+1.25×1.2+12.5 3.6×2.5 7.2×0.2+2.4×1.4 12.7×9.9+1.2710.7×16.1-151×1.07

1、学校图书室长9.7 m,宽5.3 m,用边长0.9 m的正方形瓷砖铺地,70块够吗?(不考虑损耗。) 2、某公司出租车的收费标准如下:收费标准4 km及以内10元,超出4 km (不足1 km按1 km计算)每千米1.2元,某乘客要乘出租车去30 km处的某地,应付车费多少元? 3小强家的固定电话收费标准如下:前3分钟收费0.4元,超过3分钟每分钟收费0.12元(不足1分钟按1分钟计算)。小强给爷爷和奶奶打电话用时8分钟52秒,他这一次通话的费用是多少? 4、某市自来水公司供水收费标准如下:每月用水在12吨及以内,每吨收费2.65元;超出12吨部分,每吨3.8元。王琼家八月份用水18吨,付给自来水公司收费人员100元,应找回多少钱? 5、刘强从家骑车到学校要用0.4小时,刘强的家离学校有多远?如果他改为步行,每小时走4.8km,0.9小时能到学校吗?(骑车:12千米/时) 6、我市某出租车公司租车计费方法如下:乘车路程不超过4km,收费8.5元(起步价);超过部分按每千米1.5元加收费(不足1km,按1km计算)。爸爸和小亮乘车回家的路程为14.1km,付给出租车司机100元,应找回多少元?

数值计算课后答案

习 题 三 解 答 1、用高斯消元法解下列方程组。 (1)1231231 22314254 27x x x x x x x x -+=?? ++=??+=?①②③ 解:?4②+(-)①2,1 2 ?③+(-)①消去第二、三个方程的1x ,得: 1232323231425313222 x x x x x x x ? ?-+=? -=???-=?④⑤⑥ 再由5 2)4 ?⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组: 1232332314272184x x x x x x ? ?-+=? -=???-= ? 回代,得: 36x =-,21x =-,19x = 所以方程组的解为 (9,1,6)T x =-- 注意: ①算法要求,不能化简。化简则不是严格意义上的消元法,在算法设计上就多出了步骤。实际上,由于数值计算时用小数进行的,化简既是不必要的也是不能实现的。无论是顺序消元法还是选主元素消元法都是这样。 ②消元法要求采用一般形式,或者说是分量形式,不能用矩阵,以展示消元过程。 要通过练习熟悉消元的过程而不是矩阵变换的技术。 矩阵形式错一点就是全错,也不利于检查。 一般形式或分量形式: 1231231 22314254 27x x x x x x x x -+=?? ++=??+=?①②③ 矩阵形式 123213142541207x x x -?????? ??? ?= ??? ? ??? ???????

向量形式 123213142541207x x x -???????? ? ? ? ?++= ? ? ? ? ? ? ? ????????? ③必须是方程组到方程组的变形。三元方程组的消元过程要有三个方程组,不能变形出单一的方程。 ④消元顺序12x x →→L ,不能颠倒。按为支援在方程组中的排列顺序消元也是存储算法的要求。实际上,不按顺序消元是不规范的选主元素。 ⑤不能化简方程,否则系数矩阵会变化,也不利于算法设计。 (2)1231231231132323110 221x x x x x x x x x --=?? -++=??++=-? ①②③ 解:?23②+( )①11,1 11 ?③+(-)①消去第二、三个方程的1x ,得: 123232311323523569111111252414111111x x x x x x x ? --=?? ? -=? ? ? +=-??④⑤⑥ 再由25 11)5211 ?⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组: 123233113235235691111111932235252x x x x x x ? ?--=? ? -=?? ? =-?? 回代,得: 32122310641 ,,193193193 x x x =- ==, 所以方程组的解为 41106223(,,)193193193T x =- 2、将矩阵 1020011120110011A ?? ? ?= ?- ???

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。( ) 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( )

4. 用 2 12x -近似表示cos x 产生舍入误差。 ( ) 5. 3.14和3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算()()2334912111y x x x =+-+---的乘除法次数尽量少,应将该表达式改写为 ; 2. *x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则 是 。 三、选择题 1.*x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值

3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是 在时间t 内的实际距离,则s t s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题 1. 3.142,3.141,22 7分别作为π的近似值,各有几位有效数字? 2. 设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少? 3. 利用等价变换使下列表达式的计算结果比较精确: (1)1||,11211<<+-++x x x x , (2) 1||1112<<+?+x dt t x x (3) 1||,1<<-x e x , (4) 1)1ln(2>>-+x x x 4.真空中自由落体运动距离s 与时间t 的关系式是s =21 g t 2,g 为重力加速度。现设g 是精确的,而对t 有0.1±秒的测量误差,证明:当t 增加时,距离的绝对误差增加,而相对误差却减少。

四年级下册简便方法计算练习题

四年级下册简便方法计算练习题126×6×8 600÷25÷4 55×36+64×55 755-122-78 600÷25 (8+80)×125 125×18 234×80×5 781-499 125×38+125×30 25×32 4004×25 25×16-25×10 25×16×125 (125+16)×8 79×99+79 781×101-781 79×16+79×78+79×6 25×101

789×99 800÷125 1736+403 2000÷125 65+93×65+6×65 9999+999+99+9 158+262+138 375+219+381+225 5001-247-1021-232 (181+2564)+2719 378+44+114+242+222 276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+286 3065-738-1065 899+344

2370+1995 3999+498 1883-398 12×25 75×24 138×25×4 (13×125)×(3×8) (12+24+80)×50 704×25 25×32×125 32×(25+125) 88×125 102×76 58×98 178×101-178 84×36+64×84 75×99+2×75 83×102-83×2 98×199 123×18-123×3+85×123 50×(34×4)×3 25×(24+16) 178×99+178 79×42+79+79×57 7300÷25÷4 8100÷4÷75 16800÷120 30100÷2100 32000÷400 49700÷700

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案

0.1算法 1、 (p.11,题1)用二分法求方程013 =--x x 在[1,2]的近似根,要求误差不超过 10-3. 【解】 由二分法的误差估计式31 1*102 1 2||-++=≤=-≤ -εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10 ln 3≈-≥ k ,因此取9=k ,即至少需 2、(p.11,题2) 证明方程210)(-+=x e x f x 在区间[0,1]有唯一个实根;使用二 分法求这一实根,要求误差不超过2102 1 -?。 【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且 012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]有唯一实根.

由二分法的误差估计式21 1*1021 2 12||-++?=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322 ln 10 ln 2=?≈≥ k ,因此取7=k ,即至少需二分 0.2误差 1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71, 718.23=x 各有几位有效数字?并给出它们的相对误差限。 【解】有效数字: 因为111021 05.001828.0||-?= <=- x e ,所以7.21=x 有两位有效数字; 因为1 2102105.000828.0||-?=<=- x e ,所以71.22=x 亦有两位有效数字; 因为3 3102 10005.000028.0||-?=<=- x e ,所以718.23=x 有四位有效数字; %85.17.205 .0||111=<-= x x e r ε; %85.171 .205 .0||222=<-= x x e r ε;

第3章 MATLAB数值计算-习题 答案

roots([1 -1 -1]) x=linspace(0,2*pi,10); y=sin(x); xi=linspace(0,2*pi,100); y1=interp1(x,y,xi); y2=interp1(x,y,xi,'spline'); y3=interp1(x,y,xi,'cublic'); plot(x,y,'o',xi,y1,xi,y2,xi,y3) x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); yi=1.0332*exp(-(xi+500)/7756); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'o',xi,yi,xi,y1,'*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'o',xi,yi,xi,y2,'*') x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'-o', xi,y1,'-*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'-o',xi,y2,'-*')

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 1122k k k k k k x a x x x x +-??=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ? ?+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数)

则7.21=x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为00678.07 .20183.011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 2102 1 722-?≤-∴ π,具有3位有效数字

数值计算课后答案4

习 题 四 解 答 1、设010,1x x ==,写出()x f x e -=的一次插值多项式1()L x ,并估计插值误差。 设插值函数为1()L x ax b =+,由插值条件,建立线性方程组为 解之得11 1 a e b -?=-?=? 则11()(1)1L x e x -=-+ 因为(),()x x y x e y x e --'''=-= 所以,插值余项为 所以 01 0101 ()max max (1) 2111248x r x e x x e ξξ-≤≤≤≤-≤ -=?? =。 2选用合适的三次插值多项式来近似计算f(0.2)和f(0.8)。 解:设三次插值多项式为230123()f x a a x a x a x =+++,由插值条件,建立方程组为 即 解之得 则所求的三次多项式为23()0.41 6.29 3.489.98f x x x x =--+。 所以 3、设(0,1,2, ,)i x i n =是 n+1个互异节点,证明: (1)0()(0,1,2, ,)n k k i i i x l x x k n ===∑; (2)0 ()()0(0,1,2, ,)n k i i i x x l x k n =-==∑。 证明: (1)由拉格朗日插值定理,以x 0,x 1,x 2,…x n 为插值节点,对y=f(x)=x k 作n 次插值,插值多项式为 0()()n n i i i p x l x y ==∑, 而y i =x i k ,

所以0 ()()()n n k n i i i i i i p x l x y l x x ====∑∑ 同时,插值余项 所以0()n k k i i i l x x x ==∑ 结论得证。 (2)取函数()(),0,1,2,,k f x x t k n =-= 对此函数取节点(0,1,2,,)i x i n =,则对应的插值多项式为 0()()()n k n i i i p x x t l x ==-∑, 由余项公式,得 (1) (1)011 ()()()()()()()()0 (1)!(1)! n n k k n k i i i r x x t x t l x f x x t x n n ξ ξππ++==---= =-=++∑所以 令t=x , 4 ()f x = (1)试用线性插值计算f(2.3)的近似值,并估计误差; (2)试用二次Newton 插值多项式计算f(2.15)的近似值,并估计误差。 解:用线性插值计算f(2.3),取插值节点为2.2和2.4,则相应的线性插值多项式是 用x=2.3代入,得 (2) 根据定理2f(x)=f(x 0)+f[x 0,x 1](x-x 0)+f[x 0,x 1,x 2](x-x 0)(x-x 1)+… +f[x 0,x 1,…,x n ](x-x 0)(x-x 1)…(x-x n -1) +f[x 0,x 1,…,x n ,x]π(x) 。 以表中的上方一斜行中的数为系数,得 f(2.15)=1.41421+0.3501 ×(2.15-2.0)-0.047 ×(2.15-2.0) ×(2.15-2.1) =1.663725

相关文档
最新文档