光学设计报告

光学设计报告
光学设计报告

光学设计课程报告

班级:

学号:

姓名:

日期:

目录

一、双胶合望远物镜的设计 (02)

二、摄远物镜的设计 (12)

三、对称式目镜的设计与双胶合物镜的配合 (20)

四、艾尔弗目镜的设计 (30)

五、低倍消色差物镜的设计 (38)

六、无限筒长的高倍显微物镜的设计 (47)

七、双高斯照相物镜的设计 (52)

八、反摄远物镜的设计 (62)

九、课程总结 (70)

一、 双胶合望远物镜的设计

1、设计指标:

设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:视放大率:3.7?

;出瞳直径:4mm ;出瞳距离:大于等于20mm ;全视场角:

210w =?;物镜焦距:'

=85f mm 物;棱镜折射率:n=(K9);棱镜展开长:

31mm ;棱镜与物镜的距离40mm ;孔径光阑为在物镜前35mm 。 2、初始结构计算 (1) 求

J h h z ,,

根据光学特性的要求4.728

.142===

D h :

44.75tan 85tan ''=?=?=οωf y

0871

.0''==f h u

648.0'''==y u n J

(2)计算平行玻璃板的像差和数

C

S S S I I I I ,,

平行玻璃板入射光束的有关参数为

0871.0=u

0875.0)5tan(-=-=οz u 005

.1-=u u z

平行玻璃板本身的参数为

d=31mm ; n=; 1.64=ν 带入平行玻璃板的初级像差公式可得:

000665.01.51631-1.5163×0.0871×-3113

24

432-==--=I du n n S

0.0006682=(-1.005)×-0.000665=u u ×

=z

I I I S S

000824.0087.05163.11.6415163.131122

22-=??-?-=--=I u n n d

S C υ

(3)根据整个系统的要求,求出系统的像差和数SⅠ,SⅡ,C

SⅠ:

为了保证补偿目镜的像差,要求物镜系统(包含双胶合物镜和棱镜)的

像差为:

'

m

δL=0.1mm,'0.001

m

SC=-,'0.05

FC

L mm

?=

(4)列出初级像差方程式求解双胶合物镜的

C

W

P,,

由于

棱镜

物镜

系统

S

S

S+

=

所以双胶合物镜的像差和数为

000852

.

-

棱镜

系统

-

=

=

I

I

I

S

S

S

0019642

.

-

棱镜

系统

-

=

=

II

II

I I

S

S

S

000444

.

-

棱镜

系统

=

=

I

I

I C

C

S

S

S

C

(5)列出初级像差方程求P,W,C

(6)由P,W,C求

C

W

P,

由于h=,f’=85,因此有

进而可得:

174

.0

)

(3

=

=

?h

P

P

3994

.0

)

(2

=

=

?h

W

W

由于望远镜本身对无限远物平面成像,因此无需再对物平面位置进行归化:

174

.0

=

=

P

P3994

.

=

=

W

W

将带入公式求

根据,查找玻璃组合。

最后选择K10-ZF3。其参数为:

K10:

ZF3:

(7)求透镜组半径

以上半径对应焦距等于1,将它们乘以焦距,得到最后要求的半径为

(8).确定透镜厚度

透镜厚度除了和球面半径和透镜直径有关外,同是要考虑到透镜的固定方法,质量要求,加工难易等因素,参考光学设计手册中的规定,我们

取,。这样,双胶合物镜的全部结构参数为

r d Glass

4 K10

2 ZF3

至此,双胶合望远物镜的初级像差求解全部完成了,物镜系统的全部结构参数如下:

r d n

0(光阑) 35 1

4 (K10)

2 (ZF3)

40 1

0 31 (K9)

3、zmax初始结构输入

将数据输入zmax后,输入结果如图

系统二维结构图

系统二维点列图

初始光线扇形图

初始结构的光学特性参数

System/Prescription Data

File : C:\Users\weihua\Desktop\周视

Title:

Date : WED JAN 14 2015

GENERAL LENS DATA:

Surfaces : 7

Stop : 1

系统光圈 : 入瞳直径 =

Glass Catalogs : SCHOTT CHINA

Ray Aiming : Off

变迹 : 均衡,统一的, 因子 = +000

有效的焦点长度 : (系统温度和压力在空气中)

有效的焦点长度 : (在像空间)

Back Focal Length :

统计轨迹 :

图像空间F/# :

离轴工作面F/# :

工作面F/# :

Image Space NA :

物空间 NA :

光阑半径 :

离轴像高 :

近轴放大率 : 0

入瞳直径 :

入瞳区域 : 0

入瞳直径 :

入瞳直径区域 :

Field Type : Angle in degrees

最大视场 : 5

主光波长 :

镜头单位 : 毫米

角度放大率 :

Fields : 6

Field Type: Angle in degrees

# X-Value Y-Value Weight

1

2

3

4

5

6

Vignetting Factors

# VDX VDY VCX VCY VAN

1

2

3

4

5

6

Wavelengths : 3

Units:

# Value Weight

1

2

3

4、zmax优化

优化过程中采用EFFL评价函数来控制透镜焦距,将双胶合物镜的半径作为自变量。

优化后最终结果如下所示:

优化后的系统参数

系统二维图

系统点列图

系统光线扇形图

优化后系统光学参数

System/Prescription Data

File : C:\Users\weihua\Desktop\周视

Title:

Date : WED JAN 14 2015

GENERAL LENS DATA:

Surfaces : 7

Stop : 1

系统光圈 : 入瞳直径 =

Glass Catalogs : SCHOTT CHINA

Ray Aiming : Off

变迹 : 均衡,统一的, 因子 = +000

有效的焦点长度 : (系统温度和压力在空气中)有效的焦点长度 : (在像空间)

Back Focal Length :

统计轨迹 :

图像空间F/# :

离轴工作面F/# :

工作面F/# :

Image Space NA :

物空间 NA :

光阑半径 :

离轴像高 :

近轴放大率 : 0

入瞳直径 :

入瞳区域 : 0

入瞳直径 :

入瞳直径区域 :

Field Type : Angle in degrees

最大视场 : 5

主光波长 :

镜头单位 : 毫米

角度放大率 :

Fields : 6

Field Type: Angle in degrees

# X-Value Y-Value Weight

1

2

3

4

5

6

Vignetting Factors

# VDX VDY VCX VCY VAN

1

2

3

4

5

6

Wavelengths : 3

Units:

# Value Weight

1

2

3

通过对于点列图等其他报告的比较,可以看出系统的像差有了极大的改善,达到了系统所要求的像差范围。

二、摄远物镜设计

1、设计要求

焦距,通光口径,视场,像距>54mm

r d

13 (BAK3)

5 (ZF6)

1 1 1

8 (ZK7)

1 1 1

4 (BAF8)

(ZK8)

1 1 1

(1)输入摄远物镜的半径、厚度和玻璃材料;

(2)输入光学特性参数:入瞳口径、视场角和三种波长;

(3)确定孔径光阑位置,光阑与第一面重合;

(4)将像距设定为理想像距;

(5)画二维或三维图,观察是否正确;

(6)对像质进行评价,计算扇形像差、点列图、波像差和MTF;

(7)将所有半径(光阑面除外)和厚度间隔设为变量;

(8)建立评价函数,反复进行优化;

(9)评价成像质量

2、zmax初始结构

系统参数

系统二维图

点列图

扇形像差

系统的MTF

系统的结构参数

System/Prescription Data

File : C:\Users\weihua\Desktop\桌面\zmax光学\

Title:

Date : WED JAN 14 2015

GENERAL LENS DATA:

Surfaces : 9

Stop : 1

系统光圈 : 入瞳直径 = 60

Glass Catalogs : SCHOTT CHINA

Ray Aiming : Off

变迹 : 均衡,统一的, 因子 = +000

有效的焦点长度 : (系统温度和压力在空气中)

有效的焦点长度 : (在像空间)

Back Focal Length :

统计轨迹 :

图像空间F/# :

离轴工作面F/# :

工作面F/# :

Image Space NA :

物空间 NA : 3e-009

光阑半径 : 30

离轴像高 :

近轴放大率 : 0

入瞳直径 : 60

入瞳区域 : 0

入瞳直径 :

入瞳直径区域 :

Field Type : Angle in degrees

最大视场 :

主光波长 :

镜头单位 : 毫米

角度放大率 :

Fields : 4

Field Type: Angle in degrees

# X-Value Y-Value Weight

1

2

3

4

Vignetting Factors

# VDX VDY VCX VCY VAN

1

2

3

4

Wavelengths : 3

Units:

# Value Weight

1

2

3

3、zmax系统优化

优化后的系统结构参数

优化后的二维结构图

优化后的点列图

优化后的扇形像差

优化后的MTF

系统的结构参数

System/Prescription Data

File : C:\Users\weihua\Desktop\

Title:

Date : WED JAN 14 2015

GENERAL LENS DATA:

Surfaces : 9

Stop : 1

系统光圈 : 入瞳直径 = 60

Glass Catalogs : SCHOTT CHINA

Ray Aiming : Off

变迹 : 均衡,统一的, 因子 = +000

有效的焦点长度 : (系统温度和压力在空气中)有效的焦点长度 : (在像空间)

Back Focal Length :

统计轨迹 :

图像空间F/# :

离轴工作面F/# :

工作面F/# :

Image Space NA :

物空间 NA : 3e-009

光阑半径 : 30

离轴像高 :

近轴放大率 : 0

入瞳直径 : 60

入瞳区域 : 0

入瞳直径 :

入瞳直径区域 :

Field Type : Angle in degrees

最大视场 :

主光波长 :

镜头单位 : 毫米

角度放大率 :

Fields : 4

Field Type: Angle in degrees

# X-Value Y-Value Weight

1

2

3

4

Vignetting Factors

# VDX VDY VCX VCY VAN

1

2

3

4

Wavelengths : 3

Units:

# Value Weight

1

2

3

由上面可以看出,经过对系统的结构进行优化,系统的焦距达到了预期,并且成像质量也得到了很大的改善,系统的像差得到了极大的优化,通过观察点列图和MTF函数可以看出成像质量达到了预期。

三、对称式目镜的设计与双胶合物镜的配合

1、设计要求

设计并优化对称式目镜;

将反向设计的对称式目镜反转并且与物镜配合,组成望远系统;

R D GLASS

AIR

F3

K9

AIR

K9

F3

0 AIR

由于要与之前设计的双胶合物镜配合,可知目镜有如下系统要求:

焦距

mm f

f97

.

22

7.3

85

'

'=

=

Γ

=物

出瞳大于等于20mm

像方视场角

ο

18

))

tan(

arctan(=

?

Γ

ω’

确定反向光路里面光阑的位置

通过读取双胶合物镜的系统参数,可以知道物镜的出瞳距离(物镜成像面到出瞳面的距离)为,

所以反向光路里面的光阑的位置=+=

2、zmax初始结构

系统初始结构数据

系统二维结构图

扇形像差

点列图

系统特性参数

System/Prescription Data

File : C:\Users\weihua\Desktop\对称式目镜.ZMX

Title:

Date : WED JAN 14 2015

GENERAL LENS DATA:

Surfaces : 9

Stop : 7

系统光圈 : 入瞳直径 = 4

Glass Catalogs : SCHOTT CHINA

Ray Aiming : Off

变迹 : 均衡,统一的, 因子 = +000

有效的焦点长度 : (系统温度和压力在空气中)

有效的焦点长度 : (在像空间)

Back Focal Length :

统计轨迹 :

图像空间F/# :

离轴工作面F/# :

工作面F/# :

Image Space NA :

物空间 NA : 2e-010

光阑半径 :

离轴像高 :

近轴放大率 : 0

入瞳直径 : 4

入瞳区域 :

入瞳直径 :

入瞳直径区域 :

Field Type : Angle in degrees

最大视场 : 18

主光波长 :

镜头单位 : 毫米

角度放大率 :

Fields : 6

Field Type: Angle in degrees

# X-Value Y-Value Weight

1

2

3

4

5

6

Vignetting Factors

# VDX VDY VCX VCY VAN

1

2

3

4

5

6

Wavelengths : 3

Units: 祄

# Value Weight

1

2

3

3、zmax系统优化

由系统参数看出系统的焦距不满足条件,需要优化。采用EFFL ,所有半径均为自变量。对称的半径用P标记跟随。

评价函数如下:

优化后的系统的二维结构图

优化后的扇形像差

优化后的点列图

通过点列图和扇形像差图可以看出,系统的像差已经满足系统的设计要求。

3、目镜与物镜的配合

组合后的系统参数

组合后的系统的二维结构图

组合后的点列图

组合后的系统的扇形像差

组合系统的MTF

组合系统的系统参数

System/Prescription Data

File : C:\Users\weihua\Desktop\组合后.ZMX

Title:

Date : THU JAN 15 2015

GENERAL LENS DATA:

Surfaces : 15

Stop : 1

系统光圈 : 入瞳直径 =

Glass Catalogs : SCHOTT CHINA

Ray Aiming : Off

变迹 : 均衡,统一的, 因子 = +000

有效的焦点长度 : (系统温度和压力在空气中)有效的焦点长度 : (在像空间)

Back Focal Length :

统计轨迹 :

图像空间F/# :

离轴工作面F/# :

工作面F/# :

Image Space NA :

物空间 NA :

光阑半径 :

离轴像高 :

近轴放大率 : 0

入瞳直径 :

入瞳区域 : 0

入瞳直径 :

入瞳直径区域 :

Field Type : Angle in degrees

最大视场 : 5

主光波长 :

镜头单位 : 毫米

角度放大率 :

Fields : 6

Field Type: Angle in degrees

# X-Value Y-Value Weight

1

2

3

4

5

6

Vignetting Factors

# VDX VDY VCX VCY VAN

1

2

3

4

5

6

Wavelengths : 3

Units:

# Value Weight

1

2

3

从点列图和扇形图可以看出,组合系统的成像质量还是很好的,符合系统的设计要求。从特性参数可以看出,出瞳直径为: ,满足系统的出瞳大于20的要求,满足设计要求

四、艾尔弗目镜的设计

1.设计要求:

设计一个艾尔弗目镜,焦距25mm,半视场,出瞳直径,出瞳距离18mm,初

始结构如下:

r d 玻璃材料

AIR

3 F4

14 K9

AIR

K9

AIR

K9

F4

0 AIR

初始结构

初始结构输入

初始结构的二维图形输出

初始结构的点列图

初始结构的扇形像差

初始结构的系统参数

System/Prescription Data

File : C:\Users\weihua\Desktop\艾尔弗.ZMX

Title:

Date : THU JAN 15 2015

GENERAL LENS DATA:

Surfaces : 10

Stop : 1

系统光圈 : 入瞳直径 =

Glass Catalogs : SCHOTT CHINA

Ray Aiming : Off

变迹 : 均衡,统一的, 因子 = +000

有效的焦点长度 : (系统温度和压力在空气中)有效的焦点长度 : (在像空间)

Back Focal Length :

统计轨迹 :

图像空间F/# :

离轴工作面F/# :

工作面F/# :

Image Space NA :

物空间 NA :

光阑半径 :

离轴像高 :

近轴放大率 : 0

入瞳直径 :

入瞳区域 : 0

入瞳直径 :

入瞳直径区域 :

Field Type : Angle in degrees

最大视场 : 25

主光波长 :

镜头单位 : 毫米

角度放大率 :

Fields : 6

Field Type: Angle in degrees

# X-Value Y-Value Weight

1

2

3

4

5

6

Vignetting Factors

# VDX VDY VCX VCY VAN

1

2

3

4

5

6

Wavelengths : 3

Units:

# Value Weight

1

2

3

3、zmax系统优化

我们把系统的8个球面曲率,,,,,,,均作为自变量进行校

正。透镜的厚度以及玻璃的光学常数均不作为自变量使用。

同时将优化函数的相关参数设置如下图所示

即将MNCG MNEG两个函数设置为0在进行优化

优化后的系统结构参数为

优化后的系统的二维图形

优化后的系统的点列图

优化后的系统的扇形像差

优化后的系统的结构参数

System/Prescription Data

File : C:\Users\weihua\Desktop\艾尔弗.ZMX

Title:

Date : THU JAN 15 2015

GENERAL LENS DATA:

Surfaces : 10

Stop : 1

系统光圈 : 入瞳直径 =

Glass Catalogs : SCHOTT CHINA

Ray Aiming : Off

变迹 : 均衡,统一的, 因子 = +000

有效的焦点长度 : (系统温度和压力在空气中)有效的焦点长度 : (在像空间)

Back Focal Length :

统计轨迹 :

图像空间F/# :

离轴工作面F/# :

工作面F/# :

Image Space NA :

物空间 NA :

光阑半径 :

离轴像高 :

近轴放大率 : 0

入瞳直径 :

入瞳区域 : 0

入瞳直径 :

入瞳直径区域 :

Field Type : Angle in degrees

最大视场 : 25

主光波长 :

镜头单位 : 毫米

角度放大率 :

Fields : 6

Field Type: Angle in degrees

光学系统设计报告

《光学课程设计报告》姓名:郑宇婷 学号:U201114912 学院:光学与电子信息学院 专业:光信息科学与技术 年段班级:1104班 成绩: 授课教师:张学明

2013年4 月9 日 一光学课程设计任务 1、课程意义 (1)综合运用课程的基本理论知识,进一步培养理论联系实际的能力和独立工作的能力。(2)初步掌握简单的、典型的、与新型系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、相差曲线绘制、相差优化,光学零件技术要求等。 (3)巩固和消化课程中所学的知识,初步了解新型光学系统的特点,为学习专业课与进行毕业设计打下好的基础。 (4)培养一种对待工作严谨的态度。 2、设计题目 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=6倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm); 3、望远镜的视场角2ω=8°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离>=14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz ′>8~10mm 二物镜外形尺寸计算 1、优化前的初始结构+计算过程 3、相差容限的计算 (1)所需校正的像差 望远镜的特点是:相对孔径小,视场角不大。结构较为简单,要校正的像差比较少,一般主要校正球差、轴向色差以及正弦差。 (2)像差容限 ①球差容限: 边光的球差容限:1倍焦深内 带光的球差容限:6倍焦深内 ②轴向色差的容限:1倍焦深内 ③正弦差的容限:0.0025——0.00025之间 三、目镜外形尺寸的计算 1、未优化前初始结构+计算过程 3、目镜像差容限计算 (1)所需校正的像差

(完整版)光学系统设计(一)答案

光学系统设计(一) 参考答案及评分标准 20 分) 二、填空题(本大题14小题。每空1分,共20 分) 21.球心处、顶点处、齐明点处(r n n n L '+=) 22.%100y y y q z ?''-'=' 23.0 24.球差 25.冕牌、火石 26.?ννν?2111-=、?ννν?2 122--= 27.两面的公共球心处、两面的公共球心处 28.阿贝常数、C F D D n n 1n --= ν 29.畸变 30.圆 31.0 32.二级光谱 33.f 00052.0L FCD '='? 34.EFFL 三、名词解释(本大题共5 小题。每小题2 分,共 10 分) 35.像差:实际光学系统所成的像和近轴区所成的像之间的差异称为像差。 评分标准:主要意思正确得2分。 36.子午场曲:某一视场的子午像点相对于高斯像面的距离称为子午像面弯曲,简称子午场曲。 评分标准:答对主要意思得2分。 37.二级光谱:如果光学系统已对两种色光校正了位置色差,这两种色光的公共像点相对于第三种色光的像点位置仍有差异,该差异称为二级光谱。 评分标准:答对主要意思得2分。 38.色球差:F 光的球差和C 光的球差之差,称为色球差,该差值也等于边缘光和近轴光色差之差。 评分标准:答对得2分。 39.渐晕:轴外点成像光束的宽度较轴上点成像光束的宽度要小,造成像平面边缘部分照度要比像平面中心部分照度低的现象,称为渐晕。 评分标准:答对主要意思得2分。

四、简答题(本大题共 6 小题。每小题 5 分,共30 分) 40.一物体的峰-谷比(peak to valley )是λ23.0,问是否满足Rayleigh 条件? 答:满足Rayleigh 条件,因为根据Rayleigh 判断,实际波面和参考波面之间的最大波像差(峰谷比)不超过0.25λ时,此波面可看作是无缺陷的成像质量较好。 评分标准:答对主要意思得5分。 41.在七种几何像差中,仅与孔径有关的像差有哪些?仅与视场有关的像差有哪些?与视场和孔径都有关系的又有哪些? 答:仅与孔径有关的像差有:球差、位置色差;仅与视场有关的像差有:像散、场曲、畸变、倍率色差;与视场和孔径都有关系的有:彗差 评分标准:第一问中每个答案正确得1分,第二问中每个答案正确得0.5分,第三问中每个答案正确得1分。 42.一物体置于折射球面的球心处,其像在哪?放大倍率多少?若物在球面顶点,其像又在何位置?放大倍率多少? 答:像分别在球心处和顶点处,放大倍率分别为n 1和1。 评分标准:两位置答对各得1分,第一个放大倍率答对得2分,第二个得1分。 43. 什么是焦深,若像面向前或向后离焦半倍焦深,引起的波像差多大? 答:(1)实际像点无论在高斯像点之前或之后'?0l 范围内,波像差都不会超过1/4 波长,所以把'02l 定义为焦深,即20u n l 2''='λ (2)引起的波像差为4/λ。 评分标准:第一问答对大意得3分,第二问答案正确得2分。 44. 近视眼应佩戴何种透镜加以矫正?为什么? 答:应佩戴凹透镜加以矫正,使光线经过水晶体后发散,重新汇聚到视网膜上。 评分标准:答对大意得5分。 45. 在对称式光学系统中,当1-=β时,哪几种初级像差可以得到自动校正?其它初级像差有何特性? 答:垂轴像差:彗差、畸变、倍率色差均为0。 轴向像差:球差、像散、场曲、位置色差均为半部系统相应像差的两倍。 评分标准:第一问每个答案正确得1分,共3分;第二问每个答案正确得0.5分,共2分。 五、计算题(每题10分,共20分) 46.设计一齐明透镜,第一面曲率半径95m m r 1-=,物点位于第一面曲率中心处,第二球面满足启明条件,若该透镜厚度5mm d =,折射率5.1n =,该透镜位于空气中,求 (1)该透镜第二面的曲率半径; (2)该启明透镜的垂轴放大率。 解: (1)根据题意得,物点发出光线经第一面后按直线传播,相对于第二面,其物距100m m 595l 2-=--=,根据齐明条件100mm r n n n l 22 222-='+=,可得

微波光学实验 实验报告

近代物理实验报告 指导教师:得分: 实验时间:2009 年11 月23 日,第十三周,周一,第5-8 节 实验者:班级材料0705 学号200767025 姓名童凌炜 同组者:班级材料0705 学号200767007 姓名车宏龙 实验地点:综合楼503 实验条件:室内温度℃,相对湿度%,室内气压 实验题目:微波光学实验 实验仪器:(注明规格和型号) 微波分光仪,反射用金属板,玻璃板,单缝衍射板 实验目的: 1.了解微波分光仪的结构,学会调整并进行试验. 2.验证反射规律 3.利用迈克尔孙干涉仪方法测量微波的波长 4.测量并验证单缝衍射的规律 5.利用模拟晶体考察微波的布拉格衍射并测量晶格数 实验原理简述: 1.反射实验 电磁波在传播过程中如果遇到反射板,必定要发生反射.本实验室以一块金属板作为反射板,来研究当电磁波以某一入射角投射到此金属板上时所遵循的反射规律。 2.迈克尔孙干涉实验 在平面波前进的方向上放置一块45°的半透半反射版,在此板的作 用下,将入射波分成两束,一束向A传播,另一束向B传播.由于A,B 两板的全反射作用,两束波将再次回到半透半反板并达到接收装置 处,于是接收装置收到两束频率和振动方向相同而相位不同的相干 波,若两束波相位差为2π的整数倍,则干涉加强;若相位差为π的奇 数倍,则干涉减弱。 3.单缝衍射实验 如图,在狭缝后面出现的颜射波强度并不均匀,中央最强,同时也最 宽,在中央的两侧颜射波强度迅速减小,直至出现颜射波强度的最小 值,即一级极小值,此时衍射角为φ=arcsin(λ/a).然后随着衍射角的增

大衍射波强度也逐渐增大,直至出现一级衍射极大值,此时衍射角为 Φ=arcsin(3/2*λ/a ),随着衍射角度的不断增大会出现第二级衍射极小值,第二级衍射极大值,以此类推。 4. 微波布拉格衍射实验 当X 射线投射到晶体时,将发生晶体表面平面点阵散射和晶体内部平面点阵的散射,散射线相互干涉产生衍射条纹,对于同一层散射线,当满足散射线与晶面见尖叫等于掠射角θ时,在这个方向上的散射线,其光程差为0,于是相干结果产生极大,对于不同层散射线,当他们的光程差等于波长的整数倍时,则在这个方向上的散射线相互加强形成极大,设相邻晶面间距为d,则由他们散射出来的X 射线之间的光程差为CD+BD=2dsin θ,当满足 2dsin θ=K λ,K=1,2,3…时,就产生干涉极大.这就是布拉格公式,其中θ称为掠射角,λ为X 射线波长.利用此公式,可在d 已测时,测定晶面间距;也可在d 已知时,测量波长λ,由公式还可知,只有在 <2d 时,才会产生极大衍射 实验步骤简述: 1. 反射实验 1.1 将微波分光仪发射臂调在主分度盘180°位置,接收臂调为0°位置. 1.2 开启三厘米固态信号发射器电源,这时微安表上将有指示,调节衰减器使微安表指示满刻度. 1.3 将金属板放在分度小平台上,小分度盘调至0°位置,此时金属板法线应与发射臂在同一直线上, 1.4 转动分度小平台,每转动一个角度后,再转动接收臂,使接收臂和发射臂处于金属板的同义词,并使接收指示最大,记下此时接收臂的角度. 1.5 由此,确定反射角,验证反射定律,实验中入射角在允许范围内任取8个数值,测量微波的反射角并记录. 2. 迈克尔孙干涉实验 2.1 将发射臂和接收臂分别置于90°位置,玻璃反射板置于分度小平台上并调在45°位置,将两块金属板分别作为可动反射镜和固定反射镜. 2.2两金属板法线分别在与发射臂接收臂一致,实验时,将可动金属板B 移动到导轨左端,从这里开始使金属板缓慢向右移动,依次记录微安表出现的的极大值时金属板在标尺上的位置. 2.3 若金属板移动距离为L,极大值出现的次数为n+1则,L )2 ( λn ,λ=2L/n 这便是微波的波长,再令金属板反向移动,重复上面操作,最后求出两次所得微波波长的平均值. 3. 单缝衍射实验 3.1 预先调整好单缝衍射板的宽度(70mm),该板固定在支座上,并一起放到分度小平台上,单缝衍射板要和发射喇叭保持垂直, 3.2 然后从衍射角0°开始,在单缝的两侧使衍射角每改变1°,读一次表头读数,并记录.

扬大工程光学课程设计20140412

工程光学课程设计 班级 学号 姓名 一、目的 了解光学系统外形尺寸计算在光学系统设计中的作用,学习和掌握外形尺寸计算的内容和一般方法。根据使用要求确定光学系统整体结构尺寸的设计过程称为光学系统的外形尺寸计算。光学系统的外形尺寸计算要确定的结构内容包括系统的组成、各光组元的焦距、各光组元的相对位置和横向尺寸。 外形尺寸计算基本要求: 第一,系统的孔径、视场、分辨率、出瞳直径和位置; 第二,几何尺寸,即光学系统的轴向和径向尺寸,整体结构的布局; 第三,成像质量、视场、孔径的权重。 二、要求 对题中所涉及的光学系统 ⑴按照工作原理正确作出光路图并能正确描述; ⑵完整叙述及列举计算的过程,步骤要详细不能省略中间中程; ⑶完成设计报告 三、内容 (一)只包括物镜和目镜的望远系统 计算一个镜筒长L=f1′+f2′=200+(学号最后两位)mm,放大率Γ= -24+(学号最后一位),视场角2ω=1°40′的刻普勒望远镜的外形尺寸。 1、求物镜和目镜的焦距;

图1只包括物镜和目镜的望远系统结构图 2、求物镜的通光孔径D1。可根据望远系统的有效放大率求出D1。 3、求出瞳直径D1’; 4、视场光阑的直径D3; 5、目镜的视场角2ω′; 6、求出瞳距lz′; 7、求目镜的口径D2; 8、目镜的视度调节(目镜相对视场光阑的移动量x); 9、选取物镜和目镜的结构。 (二)带有棱镜转像系统的望远镜 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=8倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm); 3、望远镜的视场角2ω=10°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz′=8~10mm 要求计算棱镜转像望远镜的各类尺寸

光学计算机辅助设计报告

光学设计辅助报告 姓名:张雨辰 学号:1011100139

光学计算机辅助设计报告 内容一:已知参数双胶合望远物镜的像质评价 1)像质评价的意义: 任何一个光学系统不管用于何处,其作用都是把目标发出的光按仪器工作原理的要求改变它们的传播方向和位置,送入仪器的接收器,从而获得目标的各种信息,包括目标的几何形状、能量强弱等。因此,对光学系统成像性能的要求主要有两个方面:第一方面是光学特性,包括焦距、物距、像距、放大率、入瞳位置、入瞳距离等;第二方面是成像质量,光学系统所成的像应该足够清晰,并且物像相似,变形要小。第一方面的内容即满足光学特性方面的要求属于应用光学的讨论范畴,第二方面的内容即满足成像质量方面的要求,则属于光学设计的研究内容。 从物理光学或波动光学的角度出发,光是波长在400~760nm的电磁波,光的传播是一个波动问题。一个理想的光学系统应能使一个点物发出的球面波通过光学系统后仍然是一个球面波,从而理想地聚交于一点。但是实际上任何一个实际光学系统都不可能理想成像。所谓像差就是光学系统所成的实际像与理想像之间的差异。由于一个光学系统不可能理想成像,因此就存在一个光学系统成像质量优劣的评价问题,从不同的角度出发会得出不同的像质评价指标。从物理光学出发,推导出几何像差等像质评价指标。有了像质评价的方法和指标,设计人员在设计阶段,即在制造出实际的光学系统之前就能预先确定其成像质量的优劣,光学设计的任务就是根据对光学系统的光学特性和成像质量两方面的要求来确定系统的结构参数。 2)像质评价的方法与Zemax实现: 对于像质评价有两个阶段:1 设计完成后,加工前,对成像情况进行模拟仿真;2 加工装配后,批量生产前,要严格检测实际成像效果。当前我们所作的工作就是对第一阶段进行实际讨论。对于像质评价的方法有两种:1 不考虑衍射:光路追迹法(点列图,像差曲线); 2 考虑衍射:绘制成像波面,光学传递函数等;有: 瑞利判断:几何像差曲线进行图形积分得到波像差; 中心点亮度(斯托列尔准则):成像衍射斑的中心亮度和不存在像差时衍射斑的中心亮度之比S.D来表示成像质量; 分辨率:反映光学系统分辨物体细节的能力,可以评价成像质量; 点列图:由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

傅里叶光学实验报告

实验原理:(略) 实验仪器: 光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜 实验内容与数据分析 1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM ) 光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏 操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。 112.1913.2011.67 12.3533 f cm ++= = 0.7780cm σ= = 1.320.5929 p A p t t cm μ=== 0.68P = 0.0210.00673 B p B p t k cm C μ?==?= 0.68P = 0.59cm μ== 0.68P = 1(12.350.59)f cm =± 0.68P =

2.利用弗朗和费衍射测光栅的的光栅常数 光路:激光器→光栅→屏(此光路满足远场近似) 在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据sin d k θλ=测出光栅常数d (1)利用夫琅和费衍射测一维光栅常数; 衍射图样见原始数据; 数据列表: sin || i k Lk d x λλ θ= ≈ 取第一组数据进行分析: 2105 13 43.0910******* 4.00106.810d m ----????==?? 210 523 43.0910******* 3.871014.110d m ----????==?? 2105 33 43.0910******* 3.95106.910d m ----????==?? 210 543 43.0910******* 4.191013.010 d m ----????==?? 554.00 3.87 3.95 4.19 10 4.0025104 d m m --+++= ?=? 61.3610d m σ-=? 忽略b 类不确定度:

工程光学课程设计

工程光学课程设计 设计名称:工程光学课程设计 院系名称: 专业班级: 学生姓名: 学号: 指导教师: XXX教务处制 20 13 年12 月

工程光学课程设计评分表 最后成绩的以优(90~100)、良(80~89)、中(70~79)、及格(60~69)和不及格(少于60分)五级给出。

第1章引言 1.1 简单介绍 对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG等,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础,要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成。记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了。对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失。其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等。

光学设计报告

湖北第二师范学院《光学系统设计》 题目:望远镜的设计 姓名:刘琦 学号:1050730017 班级:10应用物理学

目录 望远系统设计............................................................................................... 第一部分:外形尺寸计算 .......................................................................... 第二部分:PW法求初始结构参数(双胶合物镜设计) ....................... 第三部分:目镜的设计 .............................................................................. 第四部分:像质评价 .................................................................................. 第五部分心得体会 ..................................................................................

望远镜设计 第一部分:外形尺寸计算 一、各类尺寸计算 1、计算'f o 和'f e 由技术要求有:1 '4 o D f = ,又30D mm =,所以'120o f mm =。 又放大率Γ=6倍,所以' '206o e f f mm ==。 2、计算D 出 30 3056 D D D mm =∴= = =Γ物出物 3、计算D 视场 2'2120416.7824o o D f tg tg mm ω==??=视场 4、计算'ω(目镜视场) ''45o tg tg ωωωΓ?=?≈ 5、计算棱镜通光口径D 棱 (将棱镜展开为平行平板,理论略) 该望远系统采用普罗I 型棱镜转像,普罗I 型棱镜如下图: 将普罗I 型棱镜展开,等效为两块平板,如下图:

光学系统设计作业

显微物镜光学参数要求为:β=2?,NA =0.1,共轭距离为195mm 。 1)根据几何光学计算相应参数; 2)运用初级像差理论进行光学系统初始结构计算; 3)使用光学设计软件对初始结构进行优化,要求视场角o 5±; 4)根据系统的特点列出优化后结构的主要像差分析; 5)计算优化后结构的二级光谱色差。 一、显微物镜的基本参数计算 为有效控制显微镜的共轭距离,显微镜设计时,一般总是逆光路设计,即按1/β进行设计。该显微物镜视场小,孔径不大,只需要校正球差、正弦差和位置色差。因此,采用双胶合物镜。 '''' 1 2 195111l l l l l l f β==- -=-= 解,得 ''6513043.33l l f ==-= 正向光路 根据 '' ' J nuy n u y == sin NA n u = 在近轴情况下 NA nu = ' 2y y β== 由此可求解 ''' 0.05NA n u == 由此可知逆向光路的数值孔径 综上,该显微物镜的基本参数为 NA 'f 'l l 0.05 43.33 65 130- 二、求解初始基本结构

1)确定基本像差参量 根据校正要求,令'0L δ=、'0SC =、' 0FC L ?=,即 0C S S S I ∏ I ===∑∑∑,即 43332220 00 z C S h P S h h P Jh W S h C φφφφI I ∏ I ===+===∑∑∑ 解,得 0P W C I === 将其规化到无穷远 11sin 0.1NA n u ==,11n = 则 11sin 0.1/2u U β=?=-,11 6.5h l u mm =?= 规化孔径角为 110.1 20.3333071 6.543.33 u u h φ-== =-? 由公式 () ()() 21141522P P W u W W u μμ∞∞ =++++=++可求得规化后的基本像差参量 代入可得 0.36560.8832 P W ∞∞ ==- 2)选择玻璃组合 取冕牌玻璃在前 得 ( ) 2 00.850.1 0.155792P P W ∞ ∞ =-+=- 根据0P 和C I ,查表选取相近的玻璃组合为BaK7-ZF3,其参数为 Bak7:56,5688.111==v n ZF3:5.29,7172.122==v n 0010.11520, 4.295252, 2.113207P Q ?=-=-= 2.397505A =, 1.698752K = 3)求形状系数Q

光学课设报告

光学课设报告

燕山大学 光学系统设计课程 设计说明书 题目:基于Zemax的潜望镜的设计 学院(系): 年级专业:电子科学与技术 学号: 学生姓名: 指导教师: 共12页第2页

1.课程设计目的与意义 目的:让学生从书面理论知识,转接到实践解决具体的问题,理解潜望镜的设计原理,以及对即将继续深造考研的同学提前了解和熟悉光学设计的流程和相关应用软件的使用。 意义:纸上得来终觉浅,绝知此事要躬行,真理是实践出来的。课程设计教学是把理论和实践相互结合,如此可让学生真正理解所学学科之作用,激发学生向更深层次追求的动力,知行合一,教学才真正完整。 2.课程设计的内容简介 课程设计内容分为三个任务,第一个任务是设计单透镜并研究其球差特性,及优化双胶合结构的球差和轴向色差。第二个 共12页第3页

任务是人眼的几何光学仿真及远视校正。第三个任务就是潜望镜的设计。 3. 课程设计步骤 (1)熟悉和理解设计题目的要求。(2)熟悉如何使用ZEMAX软件。(3)掌握各种操作数的使用,以及分析窗口的使用。 (4)设计结构以及优化参数。 3.1潜望镜的设计 设计要求:EFL=200mm,前透镜到光阑的距离为90mm,光阑到后透镜的距离也为90mm。透镜材料为SF2,波长为0.55um。前后透镜厚度均为15mm,视场角分别设ο0、ο5.10、ο15。选择近轴工作F数为10(既数值孔径为20mm),物距800mm。 共12页第4页

共12页 第5页 图1.1 初始的LDE 表图 其中,曲径半径关系为面4“pick up ”面2值做-1值,面5“pick up ”面1做+1值跟随。厚度是STO 面对面2做+1值跟随。 此时打开3D Layout 如图: 图1.2 潜望镜的初始结构图 然后设置MFE 操作数,如图所示:

工程光学课程设计.

实习报告 实习名称:工程光学课程设计院系名称:电气与信息工程专业班级:测控12-1 学生姓名:张佳文 学号:20120461 指导教师:李静

黑龙江工程学院教务处制2014 年 2 月

工程光学课程设计任务书

目录 1摘要 ...................................................................... 错误!未定义书签。2物镜设计方案 . (1) 3物镜设计与相关参数 (2) 3.1物镜的数值孔径 (2) 3.2物镜的分辨率 (3) 3.3物镜的放大倍数 (4) 3.4物镜的鉴别能力 (4) 3.5设计要求参数确定 (4) 4 显微镜物镜光学系统仿真过程 (5) 4.1选择初始结构并设置参数 (5) 4.2自动优化 (5) 4.3物镜的光线像差(R AY A BERRATION)分析 (6) 4.4物镜的波像均方差(OPD)分析 (7) 4.5物镜的光学传递函数(MTF)分析 (8) 4.6物镜的几何点列图(Stop Diagrams)分析 (10) 4.7仿真参数分析 (11) 5心得体会 (11) 6参考文献 (12)

1摘要 ZEMAX是Focus Software 公司推出的一个综合性光学设计软件。这一软件集成了包括光学系统建模、光线追迹计算、像差分析、优化、公差分析等诸多功能,并通过直观的用户界面,为光学系统设计者提供了一个方便快捷的设计工具。十几年来,研发人员对软件不断开发和完善,每年都对软件进行更新,赋予ZEMAX更为强大的功能,因而被广泛用在透镜设计、照明、激光束传播、光纤和其他光学技术领域中。 ZEMAX采用序列和非序列两种模式模拟折射、反射、衍射的光线追迹。序列光线追迹主要用于传统的成像系统设计,如照相系统、望远系统、显微系统等。这一模式下,ZEMAX 以面作为对象来构建一个光学系统模型,每一表面的位置由它相对于前一表面的坐标来确定。光线从物平面开始,按照表面的先后顺序进行追迹,追迹速度很快。许多复杂的棱镜系统、照明系统、微反射镜、导光管、非成像系统或复杂形状的物体则需采用非序列模式来进行系统建模。这种模式下,ZEMAX以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹,可按任意顺序入射到任意一组物体上,也可以重复入射到同一物体上,直到被物体拦截。与序列模式相比,非序列光线追迹能够对光线传播进行更为细节的分析。但此模式下,由于分析的光线多,计算速度较慢。 ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其它软件不同的是ZEMAX 的CAD 转文件程序都是双向的,如IGES 、STEP 、SAT 等格式都可转入及转出。而且ZEMAX可仿真Sequential 和Non-Sequential 的成像系统和非成像系统。 ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户光学设计程界面中。而且工作界面简单,快捷,很方便的就能找到我们想哟实现的功能,ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。ZEMAX能够模拟连续和非连续成像系统及非成像系统。 2物镜设计方案 消色差物镜(Achromatic)是较常见的一种物镜,由若干组曲面半径不同的一正一负胶合透镜组成,只能矫正光谱线中红光和蓝光的轴向色差。同时校正了轴上点球差和近轴点慧差,这种物镜不能消除二级光谱,只校正黄、绿波区的球差、色差,未消除剩余色差和其他波区的球差、色差,并且像场弯曲仍很大,也就是说,只能得到视场中间范围清晰的像。使用时宜以黄绿光作照明光源,或在光程中插入黄绿色滤光片。此类物镜结构简单,经济实用,常和福根目镜、校正目镜配合使用,被广泛地应用在中、低倍显微镜上。在黑白照相时,可采用绿色滤色片减少残余的轴向色差,获得对比度好的相片。消色差通常由两个分离的双胶组合透镜组成,这类物镜也称为里斯特物镜,它的倍率一般在6×至30×

光学设计报告

光学设计课程报告 班级: 学号: 姓名: 日期:

目录 双胶合望远物镜的设计 (02) 摄远物镜的设计 (12) 对称式目镜的设计与双胶合物镜的配合 (20) 艾尔弗目镜的设计 (30) 低倍消色差物镜的设计 (38) 无限筒长的高倍显微物镜的设计 (47) 双高斯照相物镜的设计 (52) 反摄远物镜的设计 (62) 课程总结 (70)

双胶合望远物镜的设计 1、设计指标: 设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:视放大率: 3.7?;出瞳直径:4mm ;出瞳距离:大于等于20mm ;全视场角:210w =?;物 镜焦距: ' =85f mm 物;棱镜折射率:n=(K9);棱镜展开长:31mm ;棱镜与物镜的 距离40mm ;孔径光阑为在物镜前35mm 。 2、初始结构计算 (1) 求 J h h z ,, 根据光学特性的要求4.728.142=== D h : 44.75tan 85tan ''=?=?=οωf y 0871 .0''==f h u 648.0'''==y u n J (2)计算平行玻璃板的像差和数 C S S S I I I I ,, 平行玻璃板入射光束的有关参数为 0871.0=u 0875.0)5tan(-=-=οz u 005 .1-=u u z 平行玻璃板本身的参数为 d=31mm ; n=; 1.64=ν 带入平行玻璃板的初级像差公式可得: 000665.01.51631-1.5163×0.0871×-3113 24 432-==--=I du n n S 0.0006682=(-1.005)×-0.000665=u u × =z I I I S S 000824.0087.05163.11.6415163.131122 22-=??-?-=--=I u n n d S C υ

光学系统设计七个例子

光学系统设计(Zemax初学手册) 蔡长青 ISUAL 计画团队 国立成功大学物理系 (第一版,1999年7月29日) 前言 整个中华卫星二号“红色精灵”科学酬载计画,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软体作光学系统设计练习,整个需要Zemax光学系统设计软体。它基本上是Zemax使用手册中tutorial的中文翻译,由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参与“红色精灵”计画,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)与后续更多的习作与文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注) (回内容纲目) 习作一:单镜片(Singlet) 你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。 首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。 然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。现在在第一列键入0.486,以microns为单位,此为氢原子的F-line 光谱。在第二、三列键入0.587及0.656,然后在primary wavelength上点在0.486的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 再来我们要决定透镜的孔径有多大。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,在aper value上键入25,而aperture type被default为Entrance Pupil diameter。也就是说,entrance pupil的大小就是aperture的大小。 回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO即aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按滑鼠,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面 (surface),于是在STO栏上,选取insert cifter,就在STO后面再插入一个镜片,编号为2,通常OBJ 为0,STO为1,而IMA为3。 再来如何输入镜片的材质为BK7。在STO列中的glass栏上,直接打上BK7即可。又

光学课程设计大纲

《光学软件课程设计》教学大纲 适用专业:光电、通信工程、电子信息工程专业 (学分:1学分,学时:20学时) 一、课程的性质和任务 光学软件课程设计是在学习工程光学,光学等基础课程的基础上,基于光学软件进行光学系统的设计,让学生了解光学设计中的主要环节,掌握光学系统的设计、开发的基本方法,以便今后从事光学仪器的设计、研发工作。 通过光学软件课程设计,以求达到如下目的: 1)要求综合运用工程光学课程中所学到的理论知识,独立完成一个设计课题。 2)通过查阅手册和文献资料,培养学生独立分析和解决实际问题的能力。 3)培养学生严肃认真的工作作风和严谨的科学态度。 二、课程的教学内容 题目1:双高斯物镜的优化设计 设计一组双高斯物镜镜头,镜头的技术指标要求如下: 1、焦距:f’=40mm; 2、相对孔径D/f’不小于1/2 ; 3、视场 5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>35% @100 lp/mm,轴外0.707 >25%@100 lp/mm。 7、校正球差、色差、场曲、像散。 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 题目2:摄影物镜的优化设计 镜头的技术指标要求如下 1、焦距:f’=12mm; 2、相对孔径D/f’不小于1/2.8; 3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm; 4、后工作距>6mm

5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>40% @100 lp/mm,轴外0.707 >35%@100 lp/mm。 7、最大畸变<1% 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 三、课程的教学基本要求 1)要独立完成设计任务,通过课程设计,锻炼自己综合运用所学知识的能力,并 初步掌握镜头优化设计的方法和步骤。 2)学会查阅资料和手册,根据我们的设计目标,选择合适的初始结构。 3)ZEMAX是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、 分析、公差以及报表集中在一起,学生可以运用是ZEMAX进行镜头的优化设计,并对设计的镜头系统进行像质评价。 4)学会进行镜头优化设计及像差分析,并得出像质评价报告。 5)能够写出完整的课程设计总结报告。 四、课程的学时分配 教学内容进度 布置任务,仿真软件介绍第一周 学习ZEMAX像差控制和优化方法第一周 查询资料,确定初始结构,并进行优化设计第二周 验收设计结果第三周 验收课程设计报告第四周 五、实践性教学环节(含实验、设计、实习等)的内容安排及要求 (1)设计报告需包含:设计要求、初始结构选择与分析、像差校正、评价函数的设置、优化方法的选择、像差结果分析与评价报告、总结与体会、参考文献和辅助软件。 ①说明设计题目及要求。 ②对题目进行剖析并选择合适的初始结构。 ③对初始结构的像差结果进行分析,与我们设计目标进行比较。 ④根据选择的初始结构,进行像差控制和优化设计 ⑤对设计优化结果给出像质评价报告并与我们的设计目标进行比较。 ⑥写出自己在仿真的过程中遇到的问题、如何排除故障以及仿真结果。

光学课程设计报告

光学课程设计报告 姓名: 班级: 学号:

一.设计目的 (1)重点掌握设计光学系统的思路。初步掌握简单的、典型的系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、像差曲线绘制、光学零件技术要求等。 (2)在熟练掌握基本理论知识的基础上,通过上机实训,锻炼自己的动手能力。在摸索的过程中,进一步培养优化数据的能力和理论联系实际的能力。 (3)巩固和消化应用光学和本课程中所学的知识,牢固掌握典型光学系统的特点,并初步接触以后可能用到的光学系统,为学习专业课打下好的基础。 二.设计题目 双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计) 三.技术要求 双筒棱镜望远镜设计,采用普罗I 型棱镜转像,系统要求为: (1)望远镜的放大率Γ=6 倍; (2)物镜的相对孔径D/f′=1:4(D 为入瞳直径,D=30mm); (3)望远镜的视场角2ω=8°; (4)仪器总长度在110mm 左右,视场边缘允许50%的渐晕; (5)棱镜最后一面到分划板的距离>=14mm,棱镜采用K9 玻璃,两棱 镜间隔为2~5mm; (6)lz′=8~10mm。

七.上机结果 1.物镜 (1)优化前数据 程序注释: 设计时间:2013年4月10日星期三 08:59:50 下午 -------输入数据-------- 1.初始参数 物距半视场角(°) 入瞳半径 0 4 15 系统面数色光数实际入瞳上光渐晕下光渐晕 7 3 0 1 -1 理想面焦距理想面距离 0 0 面序号半径厚度玻璃 STO 84.5460 5.741 1 2 -44.9920 2.652 K9 3 -134.9690 56.800 F5 4 0.0000 33.500 1 5 0.0000 4.000 K9 6 0.0000 33.500 1 7 0.0000 12.630 K9 ☆定义了下列玻璃:

相关文档
最新文档