缠绕贮罐技术说明

缠绕贮罐技术说明
缠绕贮罐技术说明

缠绕贮罐技术说明

我公司先后从意大利、美国等公司引进了微控缠绕机,结合我公司十几年的实践经验及上海华东理工大学等对各种树脂纤维等材料的实验数据,运用计算机进行产品设计开发,保证设计准确性。我公司的玻璃钢产品设计水平在国内玻璃钢行业处于领先地位。

一、原材料的选用

我公司生产的玻璃钢缠绕制品在选材坚持质量优先、兼顾价格的原则。在实际生产中玻璃钢缠绕容器的壁结构一般为内衬层、结构层。由于各层的作用不同,在材料选择上各有不同。内衬层直接与介质接触,其材料选择正确与否,对控制缠绕容器的渗漏起关键作用。贮存酸性介质通常选用乙烯基脂环氧树脂,要求容器耐酸、耐碱、耐水采用无碱玻纤布,内衬则采用表面毡、短切毡共同增强,以便提高含胶量,增强抗渗能力。强度层主要满足容器的强度及刚度要求。选材应充分考虑所选树脂基体必须与缠绕用玻纤有良好的浸润性,以便形成致密的结构层,外表面与外界环境直接接触,按耐老化要求选材。介于以上特点求此次投标设备选材如下:

a、内衬树脂层:采用上海华东理工大学生产的W2-1型树脂。

树脂质量指标:

其物理性能:

c、缠绕纱:采用泰山玻璃纤维有限公司生产的Tex2400型无碱无捻缠绕纱,30克表面毡,450克短切毡。

b、加强树脂层:采用南京金陵帝斯曼化工有限公司生产的间苯型聚脂树脂。符合国

标,具有良好的耐热性可在90℃下长期使用。

其技术指标:

酸值:(mgKOH/g.25℃)26

粘度:(MPa.s/25℃)600

其物理性能:

巴氏硬度50

热变形温度130℃

断裂伸长率 2.5%

拉伸强度62MPa

拉伸模量3600MPa

e、最外层:防老化层为武汉助剂厂生产的uv-9产品。

[树脂特点]

该树脂综合性能优良,具有良好的成型工艺性、力学性能和优秀的耐化学性。

适用于手糊、挤拉、缠绕等玻璃钢成型工艺。

[适用场合]

制作各种规格耐蚀整体玻璃钢制品。

制作金属结构和混凝土结构表面的玻璃钢防护层。

制作耐蚀整体树脂砂浆地坪、花岗石、耐酸砖板的胶泥勾(灌)缝材料。

[包装与贮存]

本产品包装在清洁干燥不影响质量和安全的容器内,密封桶口,净重200kg。

阴凉通风处,20℃以下三个月。

二、工艺结构

耐腐蚀玻璃钢缠绕制品的结构处理是玻璃钢缠绕制品设计的关键,常有因为结构未处理好而引起设备的损坏和渗漏等情况发生。

我公司的生产加工采用如下工艺结构:

耐腐蚀设备的结构,通常采用复合结构与介质接触的最内层(I层)称为化学阻挡层,-1型乙烯基酯树脂,含胶量控制在90%以上;由表面纤维毡与增强耐腐蚀树脂合成,是W

2

含胶量控制在70%以上,是防介质渗透的第二屏障,称为次内层(Ⅱ层);中间层(III层)是结构层,一般由短切毡与纤维织物重复交替铺层得到,厚度由强度设计决定,是结构的主要承载部分,其含胶量在50%左右,外层(Ⅳ层)也是富树脂防腐层,防大气腐蚀,防老化的外表层。这种复合结构的主要原则是富树脂层组成设备完整的耐蚀防渗阻挡层,荷载则由玻璃纤维含量高的结构层承担。(此原则被纳入美国商业部产品标准PS15-69)。三、投标设备的质量标准、检测标准、测试手段

①生产标准

JC552--94、JC/T587--1995

②检验标准

GB/T 2577-89 《增强塑料树脂含量试验方法》

GB/T 3854-83 《增强塑料巴氏硬度试验方法》

GB/T 1449-83 《增强塑料弯曲强度试验方法》

GB/T 2406-93 《塑料燃烧性能试验方法-氧指数法》

GB 3139-82 《玻璃钢导热系数试验方法》

GB1462-1463-88 《增强塑料吸水性、密度试验方法》

GB/T 1040-92 《塑料拉伸性能试验方法》

GB3354-3357-82 《纤维增强塑料力学性能试验方法》

GB1458-78 《纤维缠绕玻璃钢形式式样试验方法》

GB8923-1998 《涂装前钢材表面浸蚀等级和除锈等级》

③检测设备

力学试验机30~50KN、标准检验筛、高压实验车GSC型、手压实压泵SY-5-2、滚动磨损试验仪GM-I I型、分析天平、旋转粘度计等

④检测项目

设备出厂时对设备的外观质量、树脂含量、拉伸强度、巴氏硬度、外载钢度、水压渗漏按标准进行检测,达标后方可出厂。

四、设备的设计、制造、安装、测试采取的技术及组织措施

①玻璃钢缠绕制品的设计

玻璃钢缠绕制品的设计主要包括:力学结构设计、铺层工艺设计、固化脱模时间合理确定等。缠绕制品的力学结构设计确保设备的强度及刚度满足使用要求,使设备的变形量在规定的范围内。设计主要依据是,设备结构层所受的应力小于结构层的许用应力,即δ<[δ];机构层的应变小于许用应变,即ε<[ε]。以此二者确定设备的结构层的缠绕线型和缠绕层数。力学结构设计十分重要,若设计不合理,设备受力变形导致局部微裂纹,结构层受到破坏将直接导致设备渗漏。铺设工艺设计主要依据缠绕制品力学结构设计确定具体铺层结构和生产实践方案,将力学结构设计的结果工艺化。

玻璃钢缠绕制品固化工艺参数十分关键。固化时间的长短和固化情况将影响产品的质

量及其耐渗性能。同一制品在不同的固化度下强度区别很大。由于玻璃钢缠绕制品在实际生产中分阶段成型及固化,在脱模和使用前,制品必须达到预定的强度要求。一般来讲,当固化24h后或巴柯尔硬度达到35以上时就可脱模,进入下一道工序。制品强度达到最佳后,方可投入使用。

②玻璃钢制品的制造

a.工艺流程(螺旋缠绕)

b.内衬层的质量控制

内衬层的质量控制十分关键。内衬层是富树脂层,其厚度一般在0.5~3mm。富树脂层达到一定厚度时,由于纤维含量过低,内衬层的自身强度不够,缠绕制品受到极小的变形就会破坏,出现微裂纹等不良现象。为解决这一问题,在制造时内衬层分为两层并控制好树脂含量。第一层是树脂含量90%的表面毡,第二层是含胶量70%的短切毡,并形成一个层结构。根据介质和强度要求,将上述结构重复若干次。

c.组装的质量要求

玻璃钢缠绕制品渗漏有时出现在组装接缝处,这是由于组装不妥所致。组装时,接头与筒体内衬一定要对接好。在搭接内径处安装组装环,确保对接处平整。对联结处内外进行充分打磨,打磨宽度不小于300mm。然后,用玻纤毡和树脂处理接缝。

d.缠绕工序

缠绕是玻璃钢制品生产的核心工序,在组装完毕,进行缠绕之前一定要对设备体内衬层进行充气。充气的目的是为了确保设备缠绕时所需的刚度及强度,另外一方面可对内衬质量进行检验,看其是否有气眼、气孔。一旦有这类缺陷,充气气压无法保证,应及时处理。缠绕的主要目的是使贮罐的整体强度及刚度达到使用要求,在缠绕时一定要注意控制好缠绕纱的张力、缠绕角度和树脂含量,确保缠绕纱有良好的浸润性,缠绕层无气泡、裂纹、滑纱等缺陷。

五、加工设备的配置及设备加工能力

1、贮罐缠绕机FW-800型微控缠绕机2台

制品规格:可制成DN300~8000×12000mm任何圆形、柱形、锥形物体。

年生产能力:50000m3

排纱精度±0.5mm,缠绕角度450~890

引纱方式:直线引纱

装夹芯模式:手动离合

可实现任意锁定缠绕角,纱片宽,缠绕长度三参数中任意一个

可实现从芯模的左端或从芯模的右端作为零点缠绕

可实现单环向缠绕切换到螺旋缠绕

可实现环向螺旋、环向缠绕(螺旋-环向-螺旋自动切换)

该套设备所配套的计算机软件为无“零点飘移”软件

该设备配套部件:

主轴:进口变频调速电机、编码器、变频调速系统为德国西门子原装进口产品,主轴功率为15kw

张力系统:机械式可调简式张力纱架,容纱量为60团

拖链:为德国在上海合资公司生产

控制柜:除显示用户输入的结构及工艺参数、结构设计结果等数据外,同时还显示运动中的动态参数

2、整型机XZ-2500型微机控制整型机2台

管道缠绕机FWL-2500型微机控制贮罐生产线1套

喷射机VENUS.SYSTEM88短切喷射成型机 2台

水压试验机1台

封头成型机1台

压缩空气脱模装置1台

主要生产检验设备表

主机:

美国进口立式大型缠绕机2台

意大利威德罗乐西娜微控缠绕机2台

美国PCX-2400第三代微控缠绕机1台

配套设备:

切毡机2台

树脂配料机2台

制衬机2台

固化机带远外线加热装置8台

脱模机2台

修剪机2台

大型行吊车3台

塔吊1台

质量检测、试验设备一览表

液压式万能试验机1台

微控数显万能试验机1台

机械式拉力试验机1台

冲击试验机1台

水压试验机1台

负压(真空)试验机1台

管内壁磨损旋转试验机1台

化学、物理实验室备有玻璃钢原材料和玻璃钢成品检验的全套物理化学指标的分析仪器,如旋转粘度计、茂福炉、电热恒温箱、恒温水浴、氧指数测定仪、巴氏硬度计、凝胶时间测定仪、热膨胀仪、分析天平、托盘天平及各种玻璃器皿。热分析仪、测厚仪、电击穿测定仪、耐漏电起痕指数测定仪等试验设备。

焊接工艺方案设计

T/P92钢焊接工艺方案设计 1 、T/P92钢焊接性简述 T/P92钢的标准化学成分和机械性能列入表1和表2。欧洲开发的新型马氏体耐热钢—E911钢属于T/P92钢。日本开发的新型马氏体耐热钢—NF616钢属于T/P92钢,已列入ASTM/ASME A 213 T91和ASTM/ASME A335 P92标准。 表1 T/P92钢的化学成分 表2 T/P92钢的机械性能 1.1 T/P92在T/P91钢的基础上加入了1.7%的钨(W),同时钼(Mo)含量降低至0.5%,用钒、铌元素合金化并控制硼和氮元素含量的高合金铁素体耐热钢,通过加入W元素,显著提高了钢材的高温蠕变断裂强度。在焊接方面,除了有相应的焊接材料,并由于W是铁素体形成元素,焊缝的冲击韧性有所下降外,其余对预热、层间温度、焊接线能量,待马氏体完全转变后随即进行焊后热处理以及热处理温度、恒温时间的要求都是比较相近的。 1.2 T/P92钢中有关C、S、P等元素含量低、纯净度较高,且具有高的韧性,焊接冷裂纹倾向大为降低,但由于其钢种的特殊性,仍存在一定的冷裂纹倾向,所以焊接时必须采取一些必要的预防措施。 1.3 T/P92钢中添加W元素,促进了δ铁素体的形成,使冲击韧性比

T/P91有所降低,所以焊缝的冲击韧性与其母材、HAZ和熔合线的韧性相比,也存在明显降低的问题。

1.4与T/P91钢相似,存在焊接接头热影响区“第四类”软化区的行为。焊接接头经过长期运行后,焊接断裂在远离焊缝区的软化带,此软化带强度明显降低。 2、 T/P92钢的应用 2.1 T/P92钢具有与T/P91优良的常温及高温力学性能。通过加入W 元素,显著提高了钢材的高温蠕变断裂强度,T/P92钢的工作温度比T/P91钢高,可达630℃。 2.2 T/P92钢中碳的含量保持在一个较低的水平是为了保证最佳的加工性能,高温蠕变断裂强度非常高,抗腐蚀性能好,提高了耐热钢的工作温度,减少了钢材的厚度,降低了钢材的消耗量,降低了管道热应力。在国内首台USC机组玉环电厂机组对主蒸汽管道的设计中,曾有两套方案,若采用P91钢材,其规格为φDn349×103mm;若采用P92钢材,由规格可减为φDn349×72mm。 2.3用于替代电厂锅炉的过热器和再热器的不锈钢(不锈钢焊接有严重的晶间腐蚀及与铁素体、珠光体钢等异种钢的焊接问题),用于极苛刻蒸汽条件下的集箱和蒸汽管道(主蒸汽和再热蒸汽管道),其热传导和膨胀系数也远优于奥氏体不锈钢。 2.4由于T/P92钢的含碳量低于T/P91钢材,是低碳马氏体钢,须在马氏体组织区焊接,其预热温度和层间温度可以大大降低,据国外资料研究,通过斜Y型焊接裂纹试验法测定的止裂预热温度为100-250℃左右。 3 、T/P92钢焊接接头质量的各种影响因素的分析 3.1影响T/P92焊接接头质量的主要因素及影响结果见表1

储罐焊接工艺方案

目录 一工程概况 二现场焊接执行标准、规范三坡口加工与接头形式 四一般要求 五焊接施工要点 六防变形措施 七质量检验 八无损探伤程序 九安全技术措施

一、工程概述 上海孚宝漕泾罐储罐区共计47台储罐,详见储罐安装工艺方案: 二、现场焊接执行标准、规范 1、API650标准 2、《立式圆桶形钢制焊接油罐施工及验收规范》GBJ128-90 三、坡口加工与接头形式 坡口加工与接头形式应符合施工图纸的要求,其中坡口、碳钢采用半自动氧烟切割机、不锈钢采用等离子切割机加工,加工后用角向磨光机打磨表面硬化层。碳钢用砂轮片不得与不锈钢混用。 四、一般要求: 1、焊工必须持有技术监督局颁发的焊工证(在有效期内),并通过孚宝现场检验考试,取得孚宝发放的合格证书。焊工施焊的相应位置应与此次考试合格证的合格项目相符。上岗必须佩戴专用标识,并在焊缝附近用记号笔标出焊工编号。 2、焊接设备完好,接线牢固。 3、严格遵守所给定的工艺参数施焊,不得改变和随意突破。 4、储罐主体主要使用三种焊材 碳钢Q235-A采用J422酸性焊条(不需烘烤) 不锈钢304、304L采用A002焊条 碳钢+不锈钢(Q235-A+304L)采用 焊条的烘烤、发放、回收由我公司负责。焊条烘烤温度150℃,烘烤时间1小时。各焊工班组应于前一天下班提出焊条用量,并负责

领出新焊条,放入焊条烘箱内,现场使用焊条(包括J422)必须采用保温筒携带,焊条放在保温筒最多6个小时。当天未用完的焊条应交回焊条库保管或复烘。 5、焊前应将坡口表面及其周边不小于20mm范围内的油、锈迹、漆、垢、水分、毛刺等清理干净,并检查确认其坡口角度、对口间隙、错边量等。 6、引弧、收弧均应在焊道上或用引弧板,禁止随意在母材上打火,试电流。 7、点固焊、工卡具焊接应采用与正式焊接相同的焊条和焊接工艺。工卡具及其他临时焊点拆除时,严禁用大锤强力打下,宜采用氧-乙炔焰切割或砂轮机打磨,避免损伤母材。 8、焊接环境出现下列任一情况时,无有效防护措施,禁止施焊: 风速大于8m/s; 相对湿度大于90%; 气温低于0℃; 雨、雪天气。 附:储罐WPS选用图(见图1) 储罐焊接用WPS

焊接施工方案及工艺措施

第一节焊接施工方案及工艺措施 (一) 焊接专业施工总体安排 1、工程主要特点 1.1 焊接作业主要特点 本机组为1000MW超超临界机组,焊接工程量大(受监焊口数量);中高合金焊口比例大;T/P91、T/P92焊口量相当大;结构焊接合金件较多,密封焊接量大,要求严格。T/P92钢材在本机组的大量使用,这种钢材属马氏体热强钢,其焊接性较差,对焊接工艺要求极高。 1.2 热处理作业主要特点 机组中需要经焊后热处理的焊口多,壁厚大,所涉及的部件的焊口遍布机组炉、机的各个部位,所以在焊接热处理的施工上一定要调度合理、施工过程有序、规范,做到机械、材料的利用率上升、耗损率下降,确保焊接工程的顺利施工。 2、焊接施工原则 (1) 焊接时尽量减少热输出量和尽量减少填充金属; (2) 地面组合焊接应合理分配各个组对单元,并进行合理组对焊接; (3) 密集管排及中大径管道采用双人对称焊接; (4) 位于构件刚性最大的部位最后焊接; (5) 由中间向两侧对称焊接; (6) 结构焊接先焊短焊缝,后焊长焊缝; (7) 当存在焊接应力时,先焊拉应力区,后焊剪应力和压应力区; (8) 膜式壁焊接采用分段退焊法。 3、总体工程安排 焊接专业独立管理,主要配合锅炉、汽机等专业焊接施工需求。针对焊接专业特点,拟采取以下安排。 (1) 建立健全焊接质量管理机构,制定质检人员岗位责任制。焊接、热处理施工按照公司质量体系文件规定的程序、有关规程规范、合同文件及监理的要求进行施工、检查验收。

(2) 焊接施工前,工程技术人员对焊接施工基础资料的前期准备,对现场焊接人员资质的认证和焊前考核,以及对现场将投入使用的焊接机械及热处理设备等的检查、校验及标定。 (3) 焊接施工前,建立二级焊条库,库内设置的烘干箱、恒温箱数量满足工程使用、并配备除湿器、电暖器、空调等设施。地面铺设防潮材料,保持库内温湿度在标准范围内。 (4) 本工程受热面管子全部采用GTAW或GTAW+SMAW方法焊接,视管子规格和位置难易程度并结合焊接工艺评定决定使用哪一种焊接方法。 (5) 本工程中大口径管道采用GTAW+SMAW方法焊接,焊接时应特别注意根部打底质量,确保熔透,层间清理应干净。中径管焊接时,为确保表面工艺质量,宜选用φ3.2焊条盖面。需预热和热处理的应及时进行预热和焊后热处理。 (6) 主蒸汽、再热热段管道材质为SA-335P92,焊接要求比较高,施焊焊工必须严格按照作业指导书和焊接工艺卡规定焊接。焊丝和焊条按工艺评定上的材料选用。焊接过程中应控制焊接线能量,防止线能量过大。 (7) 中低压管道及二次门后焊口采用氩弧焊打底(主要是汽机房内的管道),汽轮机、发电机的冷却、润滑系统管道及燃油管道必须进行氩弧焊打底。 (8) 凝汽器与低压缸连接由6名以上焊工对称施焊,采用分段退焊法。施焊过程中,在下汽缸四侧台板处,应装设监视变形的千分表,并设专人监视。 (9) 仪表、压力测点、温度测点、取样等管道的直径都在25mm以下,焊接方法为GTAW。壁厚≤2mm的管道焊接可采用一道成型,壁厚>2mm的管道焊接应焊至2~3层,以保证焊缝有规定的余高。 (10) 铝母线焊接场所允许的环境温度应在0℃以上,如环境温度过低时,应采取有效方法提高环境温度。焊接铝锰合金时,选用铝锰焊丝(丝321)或铝硅焊丝(丝311)。 (11) 锅炉密封采用手工电弧焊方法进行施工,焊接前应将坡口边缘的油、漆、锈、垢等清理干净。锅炉密封焊接应采用分段跳焊,采用合理顺序、消除焊接应力变形焊接引起的变形,超出规定尺寸时,应采用火焰或锤击等方法校正。 (12) 本工程热处理的用电加热方式,温度曲线用打点式自动温度记录仪记录。热处理参数(如加热温度、升降温速率、恒温温度、恒温时间等)按《火力发电厂焊接热处理技术规程》(DL/T819-2010)中的有关规定执行。

大型储罐施工方案

§1施工方案

§1.1 总体施工方案 1、液压提升倒装自动焊工艺 a、本工程二台20000m3浮顶罐采用液压提升倒装自动焊工艺进行施工,施工工艺流程图如 后图所示。 b、罐底板、罐壁板在本部生产基地进行深度工厂化预制,利用进口的龙门自动切割机,切割 下料和坡口加工一次成型。 c、油罐纵缝和环缝外口采用CO2气体保护自动焊,口采用CO2气体保护半自动焊;油 罐底板采用埋弧焊+碎丝焊。 2、液压提升倒装自动焊施工工艺流程图

§1.2 油罐预制方案 1、罐底预制 a、罐底预制主要是弓形边缘板和中幅板的切割。罐底中幅板、边缘板采用净料预制技术, 用龙门自动切割机切割钢板的直边和坡口,罐底边缘板弧线采用半自动火焰切割机切割。 b、罐底板预程序如下: c、底板预制前应绘制排板图,并应符合下列规定 ●罐底的排板直径,宜按设计直径放大0.1%-0.2%; ●边缘板沿罐底半径方向的最小尺寸,不得小于700mm; ●弓形边缘板的对接接头,宜采用不等间隙,外侧间隙宜为6-7mm;侧间隙宜为 8-12mm; ●中幅板的宽度不得小于1000mm,长度不得小于2000mm; ●底板任意相邻焊逢之间的距离不得小于200mm。 d、中幅板的尺寸允许偏差应符合下表的规定

2、壁板预制 a、壁板预制主要为板料检验、切割下料和滚圆三个过程,进行工厂化施工,壁板预制工艺 流程如下: b、壁板预制前,根据设计要求、施工规及钢板实际到货规格绘制排板图,报设计及监理单 位批准,并应符合下列要求: ●底圈壁板纵缝,宜向同一方向逐圈错开,其间距不得小于500mm; ●底圈壁板纵向焊缝与罐底边缘板的对接缝之间的间距不得小于200mm; ●罐壁开孔接管或开孔接管补强板外缘与罐壁纵向焊缝之间的距离,不得小于200 mm; 与环向焊缝之间的距离,不得小于100 mm; ●包边槽钢对接接头与罐板纵向焊缝之间的距离不得小于200mm; ●壁板宽度为1800mm,长度不得小于6000mm。 ●壁板尺寸的允许偏差应符合下表:

电气焊安全技术措施方案

整体解决方案系列 电气焊安全技术措施(标准、完整、实用、可修改)

编号:FS-QG-87928电气焊安全技术措施 Electrical welding safety technical measures 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 1、电气焊人员必须经过专业培训考试合格,并且持证上岗。 2、电气焊作业人员必须具备一定消防安全知识,能熟练使用消防灭火器材。 3、作业时跟班领导一定要进行现场统一指挥,在现场将措施落实到位,并指定专人在场检查和监督,发现问题及时汇报。 4、焊、割等设备的运输执行有关运输安全规程。氧气瓶、乙炔瓶在装卸、运输时不得同油脂、易燃、易爆物品同车上下,必须轻装轻放、捆绑牢固,防止碰撞、滚动。氧气瓶上应装设防震胶圈,搬运前检查安全阀是否拧紧。 5、工作场所必须选择在安全地点,顶板离层、片帮必须处理彻底,

在支护完好的地方,必要时用不燃性材料设临时支护。 6、电焊、气割等工作地点的前后两端各10m的井巷范围内,应是不燃性材料支护,并应有供水管路,有专人负责喷洒水。工作地点至少备有2个个干粉灭火器和足够数量灭火沙袋。 7、作业之前利用清水对作业地点20米范围内煤尘、浮煤、巷帮、煤壁和底板进行冲洗清理,电焊、气割等工作完毕后,工作地点应再次用水喷洒,并应有专人在工作地点检查1h,发现异状,立即处理。 8、在井口房、井筒和倾斜巷道内进行电焊、气割和焊接等工作时,必须在工作地点的下方用不燃性材料设施接受火星。 9、电焊、气割等工作地点,作业过程中要求安监员和瓦检员在现场监督检查,随身携带光学瓦斯检测仪和便携瓦检仪,要保持常开,并且瓦检员每隔一小时使用光学瓦检仪检测一次瓦斯浓度,作业地点风流中瓦斯浓度大于0.5%时不得作业,只有在检测证明作业地点附近20m范围内巷道顶部及其他边角部位无瓦斯积存时,方可进行作业。

氢气储罐设计说明书

目录 前言 (3) 1 方案确定 (4) 1.1选择容器类型式 (4) 1.1.1 压力容器分类 (4) 1.1.2、封头形式的确定 (5) 1.2 材料的确定 (6) 2 设计计算 (8) 2.1 确定设计参数 (8) 2.1.1 工作压力、设计压力、计算压力 (8) 2.1.2 设计温度 (9) 2.1.3 厚度计算 (9) 2.1.4设计温度下的需用应力 (10) 2.1.5 焊接接头系数 (10) 2.2 容器相关量的确定 (11) 2.2.1 计算过程 (11) 2.2.2 筒体尺寸确定 (12) 2.3 容器强度校核 (13) 2.4 确定各工艺接管的公称通径及位置 (14) 3 结构设计 (17) 3.1 人孔选择 (17) 3.2人孔补强 (17) 3.3 支座的选择及校核 (20) 3.3.1支座的设计要求 (20) 3.3.2支座的选择及校核 (20) 4 总结与体会 (24)

5 谢辞 (25) 6 参考文献 (26)

前言 随着我国石油化工业的迅速发展,国家对清洁环保型能源越发的重视。化工业接触的都是危险品,因此对这些危险品的控制相当重要。以氢气为例,它就是易燃物质,储存的时候也要确保安全。因此对于氢气储罐有一定的设计要求。 氢气密度低,比容大,只有高压储运才能有效。氢气性质稳定,不容易跟其他物质发生化学反应,所以氢气的腐蚀性较小。但氢气在点燃加热等情况下易发生爆炸燃烧等现象,所以在储运的时候要格外小心对环境条件的控制。 本设计完成了6m3立式氢气储罐的设计,并对氢气储罐在设计、制造安装、使用、维护与定期检验提出了相应的安全技术要求。设计的氢气公称直径为1400mm,壁厚为6mm,对筒体与封头做了水压试验强度校核;对人孔的补强做了计算,计算补强圈的厚度为6mm ;选择了支座类型为A2型耳式支座。 本次设计各项参数均按照相关标准决定,主要有GB150-98《钢制压力容器》,《压力容器安全技术监察规程》,JB/T 4736-2002《补强圈》,HG 20592~20614-97《钢制管法兰、垫片、紧固件》,JB/T 4725-1992《耳式支座》,HG 21520-1995《垂直吊盖带颈平焊法兰人孔》等。 本次设计流程为:首先进行结构设计,确定为立式筒体储罐;然后进行材料选择,为Q345R;再进行设计计算、强度校核与及零部件选型;最后进行开孔补强计算、安全阀的选型与校核。 1 方案确定

储罐焊接方案

储罐焊接方案 珠海恒基达鑫国际仓储有限公司 储罐焊接施工方案 编制:刘体义 审核:杨建满 批准:刘冰 中国化学工程第十一建设公司 2003年7月 审批表 建设单位审批意见: 签章: 年月日监理单位审批意见: 签章: 年月日 珠海恒基达鑫二期工程储罐焊接施工方案中国化学工程第十一建设公司 1 编制说明和依据 1.1 编制说明 3由我公司承建的珠海恒基达鑫二期工程罐制作安装工程共有5万米储罐2台,该罐为内浮顶型式,工作介质为成品油。 由于该储罐制安工作量大、施工工期短(约6个月),而储罐的焊接质量是内在质量的关键,也是影响整个工程的质量和进度的重点。为确保本工程储罐制安的焊接质量和进度,特编制本焊接方案。 本方案经审批通过后,即可用于指导本工程的焊接工作,其所述内容与其它文件不符时,一律以本方案为准,各有关人员要严格依照执行,以确保焊接质量和进度。

在工程实施过程中,将以焊接工艺卡的形式对本方案进行进一步细化,并向工人进行技术交底,用于具体地指导具体部位的焊接施工。 本方案在实施过程中若有不合适之处,也将以焊接工艺卡的形式对之进行修改、补充完善,并下发指导施工。 1.2 编制依据 1)工程施工合同 2)设计施工图纸 3)施工组织设计 4)《立式圆筒形钢制焊接油罐施工及验收规范》 GBJ128-90 5)《现场设备、工业管道焊接工程施工及验收规范》 GB50236-98 6)《钢制压力容器焊接工艺评定》 JB/T4708-2000 7)《钢制压力容器焊接规程》 JB/T4709-2000 8)《锅炉压力容器焊工考试规则》劳人锅[1988]1号 第1页共21页 珠海恒基达鑫二期工程储罐焊接施工方案中国化学工程第十一建设公司 9)《焊接材料质量管理规程》 JB/T3223-96 10)《炼油、化工施工安全规程》 SHJ505/HGJ233-87 11)评定合格的焊接工艺评定 2 工程概况 储罐名称:成品油储罐台数:2 储罐直径:50m 罐壁高度:23.5m 结构形式:内浮盘拱顶罐 罐体详细情况: 厚度板幅序号名称材质备注 mm mm 1 16MnR 34 1980 罐壁第1带板

储罐安装方案

施工方案报审表 注:本表一式三份,建设单位、项目监理机构、承包单位各一份。

太仓中石油润滑油添加剂有限公司建设工程储罐安装技术方案 编制: 审核: 批准: 大庆油田建设集团有限责任公司 二零一四年六月

目录 一、工程概况: (1) 二、编制依据 (1) 三、储罐工程施工方案 (2) 施工作业流程 (2) 储罐预制 (3) 储罐主体安装 (5) 储罐焊接方案 (11) 储罐试压沉降 (13) 储罐罐壁支撑件、三角架劳动保护措施 (15) 四、储罐防腐保温方式 (17) 、储罐防腐施工流程及工艺 (17) 保温施工工艺及流程 (19) 五、质量保证措施 (21) 六、HSE安全技术管理措施 (22) 七、机械设备计划 (23) 八、本工程所必须的工装、卡具制作计划表 (24)

一、工程概况: 太仓中石油润滑油添加剂有限公司建设工程拟建的场地位于江苏省太仓港口开发区内,其场地为空地,地势平坦,开阔,四周均为开发区工业地块,东临随塘河、北临新塘河、南侧紧靠虹桥路,交通十分便利。 本工程共有各类小型储罐制作安装77台,其中301单元润滑油组分罐区储罐60台(其中50m3储罐23台、75m3储罐2台、100m3储罐12台、150m3储罐23台),201单元调合罐区16台(20m3储罐8台、50m3储罐3台、100m3储罐3台、150m3储罐2台),502单元1000m3消防水罐1台。为保证工程质量和工程进度,特对此部分工程编制详尽的施工技术措施以指导施工。 二、编制依据 1.建设单位提供的储罐基础及罐体设计施工图纸及概况说明。 2.招标文件、各类招标答疑会议纪要及其他相关资料。 3.国家和上级单位以及公司有关安全生产,文明施工的法规,规定。 4.施工现场的自然条件和具体情况(水文地质、气象环境、交通运输、供水供电等)。 5.现行的国家有关工程建设强制性标准。 6.省、行业规程、规范;质量验收规范、标准。 7.我国现行的其他有关施工验收规范和操作规程。 8.我公司现有的技术、装备以及多年积累的类似建设工程的施工经验资料。具体规范、标准详表如下:

储罐设计

《化工容器设计》课程设计说明书 题目: 学号: 专业: 姓名: I 目录 1 设计 (1) 1.1工艺参数的设定 (1) 1.1.1设计压力 (1) 1.1.2筒体的选材及结构 (1) 1.1.3封头的结构及选材 (2) 1.2 设计计算 (2) 1.2.1 筒体壁厚计算 (2) 1.2.2 封头壁厚计算 (3)

1.3压力实验 (4) 1.3.1水压试验 (4) 1.3.2水压试验的应力校核: (4) 1.4附件选择 (4) 1.4.1 人孔选择及人孔补强 (4) 2.4.3 进出料接管的选择 (6) 1.4.4 液面计的设计 (8) 1.4.5 安全阀的选择 (8) 1.4.6 排污管的选择 (8) 1.4.7 鞍座的选择 (8) 1.4.8鞍座选取标准 (9) 1.4.9鞍座强度校核 (10) 1.4.10容器部分的焊接 (11) 1.5 筒体和封头的校核计算 (11) 1.5.1 筒体轴向应力校核 (11) 1.5.2 筒体和封头切向应力校核 (13) 2 液氨储罐的泄漏及处理方法............................................................. 错误!未定义书签。 2.1 液氨泄漏的危害 .............................................................................. 错误!未定义书签。 2.2 泄漏的危害 ...................................................................................... 错误!未定义书签。 2.2 .1 生产运行过程中危险性分析······································错误!未定义书签。 2.2.2 设备、设施危险性分析 ············································错误!未定义书签。 2.3液氨储罐泄漏事故的应急处置措施 .............................................. 错误!未定义书签。

工艺管道焊接方案

VCM装置-工艺管道焊接施工方案 1编制说明 本方案针对于新疆圣雄50万吨/年PVC项目(二)-VCM装置工艺管道的焊接。 2编制依据 施工图纸 《工业金属管道工程施工及验收规范》GB50235-2010 《现场设备、工业管道焊接工程施工及验收规范》GB50236-2010 《石油化工剧毒、可燃介质管道工程施工及验收规范》SH3501-2002 《石油化工铬镍奥氏体钢、铁镍合金和镍合金管道焊接规程》SH/T3525-1999 《压力管道安全技术监察规程—工业管道》TGS D0001-2009 3工程概况及焊接特点分析 VCM装置工艺管道主要介质包括乙炔、12度冷冻水回水、7度冷冻水上水、除氧剂、任基苯酚、化学污水、冷冻盐水、冷却循环回水、冷却循环上水、脱盐水、盐酸、超低压蒸汽、低压蒸汽、混合气、氮气、稀碱液、工厂空气、氯乙烯、真空气、放空气等多种介质,其中高温、高压、有毒介质管道对焊接的要求较高,应严格按照焊接工艺施工。 20#、20G、Q235B、L245、16Mn是低碳钢,焊接性能较好,但是容易出结晶裂纹、高温液化裂纹、多边化裂纹,其发生部位大多在(焊缝、HAZ区、多层焊层间)、且还会出现内凹、咬边、气孔等缺陷,焊接过程中应严格按照焊接工艺施焊(工艺参数、接头形式、预热、焊接顺序)。 0Cr18Ni9、00Cr17Ni14Mo2是奥氏体不锈钢,碳当量低,焊接性能良好,但是容易出现晶间裂纹和应力腐蚀裂纹(沿晶开裂和穿晶开裂)、气孔、咬边等缺陷。所以在焊接过程中,除应严格按照焊接工艺施焊外,在焊接过程中还应注意对根部和焊缝的保护。在焊后应对焊缝进行钝化处理。 4焊接材料的选择 母材材质焊条焊丝 烘干温度 (℃) 恒温时间 (分) Q235B、20G、L245、20#J426 J427 HO8Mn2SiA350—40060 16Mn J507HO8Mn2SiA350—40060 0Cr18Ni9A102H0Cr21Ni10150—20060 00Cr17Ni14Mo2A022 H00Cr19Ni12 Mo2 150—20060 若以上烘烤温度与焊条生产厂家的烘烤温度不符,要以焊条生产厂家规定的烘烤温度进行烘烤。 5焊接方法的选择 为保证焊接质量和管内清洁,对接焊缝一律采用氩弧焊打底的焊接方法。 管径≤80mm,壁厚≤6mm的对接焊口采用全氩弧焊接;其它对接焊口采用氩弧焊打底、手工电弧焊填充并盖面的氩电联焊的焊接方法, 角焊缝采用手工电弧焊。 6电焊机选择 采用目前国内较先进的、性能稳定、质量可靠、节能型的ZX7-400ST型逆变直流焊机或者硅整流焊机。 7焊材烘烤、发放及使用管理

氢气化学品技术说明书

氢气安全技术说明书 危险性类别:第2.1易燃气体 侵入途径:吸入 健康危害:本品在生理上是惰性气体,仅在高度浓度时,由于空气中氧分压降低才引起窒息。在很高的分压下,氢气可呈现出麻醉作用。 环境危害:该物质对环境无害 爆炸危险:1.与空气混合能形成爆炸性混和物,遇热或明火即会发生爆炸。 2.氢气比空气轻得多,在室内使用和储存时,漏气上升滞留屋顶不易排出,遇火星会引起爆炸。 3.氢气与氟、氯、溴等卤素会剧烈反应 第三部分急救措施 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止立即进行人工呼吸。就医。 第四部分消防措施 危险特性:氢气极易燃烧,燃烧时,其火焰无颜色,肉眼无法看见。与空气或氧气混合能形成爆炸性混合物,遇热或明火即会发生爆炸。与氟、氯、溴等卤素会剧烈反应。氢气瓶或氢气储罐内存在压力,当温度升高时,气瓶或储罐内的压力也随着升高,它们在火灾中存在爆裂的可能性。 灭火剂:雾状水:泡沫、二氧化碳、磷酸铵干粉 氢气储罐/氢气瓶出现火灾时的消防措施:在确保人身安全的情况下,切断气源。疏散人员远离火灾区,并往上风处撤离。对着火区进行隔离,防止人员入内。可能的话,将那些处在火灾区附近、未受火直接影响的氢气瓶转移到安全地段。如氢气无法切断的话,可让气体燃烧,直到气瓶、储罐内的氢气烧完为止。 注意:这种处理方法是假设火势可以控制的前提下采用的,而且,氢气燃烧过程中,应持续用水对气瓶、储罐进行冷却,直到氢气完全烧尽为止,避免气瓶、储罐因过热而发生爆炸事故。如有可能,站在安全位置上进行灭火。并用水对着火的气瓶/储罐、以及着火区附近的所有压力容器进行冷却,直到它们完全冷却为止。不得设法搬动或靠近被火烘热的气瓶/储罐。如果火势很大或者失去控制,应立即向消防队报告,告知对方着火的详细地点以及着火的原因。火灾解除后,不得使用遭受过火灾的氢气瓶,应将它们退还给林德气体公司!禁止使用受到火灾影响的储罐。 第五部分泄漏应急处理 应急处理:首先切断所有的火源,勿使其燃烧,同时关闭阀门等措施,制止泄漏。并用雾状水保护关闭阀门的人员。 第六部分操作处置与储存 操作处置瓶装氢气时应注意的安全事项: a)必须保证工作场所具备良好的通风条件、空气中的氢气含量必须低于1。 b)应妥善保护氢气瓶和附件,防止

储罐施工方案(安装)

目录 1.编制说明 1 2.工程概况 1 3.编制依据 2 4.施工方法 2 5.焊接工艺及主要焊接顺序15 6.质量保证措施21 7.资源配置计划23 8.质量保证措施23 9.HSE施工管理计划26

1、编制说明 1.1 为了保证产品罐区及中间罐区17台储罐的施工质量,满足设计和生产对工艺的要求,特编制本方案。 1.2本方案经监理审查通过后,即可用于指导储罐的安装工艺作业,其所规定的内容与其它方案不符时,一律以本方案为准。各有关人员要严格依照执行,加强工艺纪律,以确保储罐的质量和进度。 1.3质量目标计划:单位工程检验合格率100%;分部、分项工程交验合格率90%;设备封闭合格率100%;零质量事故。 2、工程概况 2.1本工程为多伦世腾15万吨/年煤制烯烃副产品芳构项目,储罐制作安装工程包括50m3罐4台、100m3罐2台、200m3罐2台、300m3罐1台、330m3罐1台、500m3罐1台、1000m3罐3台以及2000m3罐3台,其中15台罐结构为固定顶圆筒形立式储罐(内设浮盘),2台罐结构为固定顶圆筒形立式储罐(未设浮盘)。罐体安装采用倒装法,焊接采用手工电弧焊。 设备实物量清单 序号设备位 号 设备名称 规格型号 mm 材质重量Kg 单位数量 1 TK-1352A /B 苯产品检验 罐 DN3800X5400 Q245R 9114 台 2 2 TK-1304 抽余油储罐DN3800X5400 Q235B 8638 台 1 3 TK-1101 甲醇储罐DN3800X5400 Q235B8682 台 1 4 TK-1353A /B 甲苯产品检 验罐 DN5200X5250Q235B11513 台 2 5 TK-1351混合芳烃缓 冲罐 DN5500X1026 Q235B16743 台 1 6 TK-1302新鲜溶剂罐DN5500X1026 Q235B16659 台 1 7 V-1807混合芳烃储 罐 DN7750X7130Q235B18004 台 1 8 TK-1303湿溶剂罐DN6600X1065 Q235B24438 台 1

管道焊接技术方案设计

管道焊接技术方案 441焊接程序管道焊接技术方案 4.4.1焊接程序

4.5.2焊接方法的选用 工艺管线采用手工钨极氩弧焊打底、手工电弧焊盖面的方法。 4.5.4焊接工艺评定 我公司已有焊接工艺评定,并依据焊接工艺评定报告,编制焊接工艺指导书。根据业主、监理要求,在现场焊接施工前,对需要重新组织工艺评定的焊材,由焊接责任工程师组织工艺评定试验,经批准后才可进行施焊。 4.5.5焊接人员要求 担任本工程焊接任务的焊工必须是经过焊接基本知识和实际操作技能的培 训,并取得相应的焊工考试合格项目。 4.5.6焊接施工环境要求 环境温度低于0C时,必须采取措施提高环境温度; 手工电弧焊时,风速不得超过8m/s; 手工钨极氩弧焊时,风速不得超过2m/s; 相对湿度不得大于90%雨、雪天必须停止施焊。 4.5.7焊接材料的保管

①焊接材料具有产品质量证明书。并且其检验项目和技术指标必须符合要求。 ②焊接材料必须进行验收。验收合格后,作好标识,入库储存。 ③焊接材料存放于干燥、通风良好、温度大于5C,且相对湿度小于60% 的库房内; ④焊条、焊丝有专人负责保管、烘干和发放,并做好烘干、发放和回收记录,焊条重复烘干不得超过两次; ⑤焊接所用氩气的纯度不低于99.9%。必须加强外送氩气的检测管理。 4.5.8 下料与坡口加工 为保证施工质量,现场制作坡口均采用机械加工的方法,项目部有专用的管 道切断机(ISD-450),和管子坡口机(ISY-351-2、ISY-630-2 ),可以满足本工程不同厚壁管道坡口加工的需要。 坡口加工和检验时,要确保其尺寸和质量符合图纸和规范的要求,坡口应平整,无裂纹、分层和夹渣等缺陷。坡口检查合格,焊前还应用砂轮机和丙酮进行清理,去除油污、毛剌、水分、氧化物等,对于不锈钢和镍基合金母材,坡口打磨时要使用专门的砂轮片,为防止飞溅,坡口两侧各100mm范围内涂刷生石灰水,焊后连同药皮一起清理干净。 ①当壁厚w 17mm寸,开“V”坡口 A管道对接接头坡口型式如下图所示; B壁厚不同的管道组对时,当壁厚差大于2mm寸管道坡口形式如下图:

制氢干燥说明书(中电制氢)

CHE-5000氢气发生器(原料氢气再生) 操作使用手册 编制:-------------- 校核:--------------- 审批:--------------- 扬州中电制氢设备有限公司 2010.04.12

1、简述 1.1、氢气的性质和用途: 氢是自然界分布最广的元素之一,它在地球上主要以化合状态存在于化合物中。在大气层中的含量却很低,仅有约1ppm(体积比)。氢是最轻的气体。它的粘度最小,导热系数很高,化学活性、渗透性和扩散性强(扩散系数为0.63cm2/s,约为甲烷的三倍),它是一种强的还原剂,可同许多物质进行不同程度的化学反应,生成各种类型的氢化物。 氢的着火、燃烧、爆炸性能是它的主要特性。氢含量范围在4-75%(空气环境)、4.65-93.9%(氧气环境)时形成可爆燃气体,遇到明火或温度在585℃以上时可引起燃爆。 压力水电解制出的氢气具有压力高(1.6或3.2MPa)便于输送,纯度高(99.8%以上)可直接用于一般场合,还可以通过纯化(纯度提高到99.999%)和干燥(露点提高到-40~-90℃)的后续加工,可以作为燃料、载气、还原或保护气、冷却介质,广泛应用于国民经济的各行各业。 1.2、水电解制氢原理: 利用电能使某电解质溶液分解为其他物质的单元装置称为电解池。 任何物质在电解过程中,在数量上的变化服从法拉第定律。法拉第定律指出:电解时,在电极上析出物质的数量,与通过溶液的电流强度和通电时间成正比;用相同的电量通过不同的电解质溶液时,各种溶液在两极上析出物质量与它的电化当量成正比,而析出1克当量的任何物质都需要1法拉第单位96500库仑(26.8安培小时)的电量。水电解制氢符合法拉第电解定律,即在标准状态下,阴极析出1克分子的氢气,所需电量为53.6A/h。经过换算,生产1m3氢气(副产品0.5m3氧气)所需电量2390Ah,原料水消耗0.9kg。

储罐焊接方案

吉林众鑫化工集团有限公司12万吨/年生物法环氧乙烷装置和动力厂及配套公用工程 乙醇储罐焊接施工方案 1、编制说明 1.1 为了保证储罐焊接工程质量,满足设计和生产对工艺的要求,特编制本方案。 1.2 本方案作为施焊过程中必须遵守的焊接技术文件和合格焊接工艺评定一起作为编制焊接工艺卡的依据。 1.3本方案经监理审查通过后,即可用于指导储罐制作的焊接工作,其所规定的内容与其它方案不符时,一律以本方案为准。各有关人员要严格依照执行,加强工艺纪律,以确保储罐焊接质量和进度。 1.3在储罐安装焊接过程中,将以焊接工艺卡的形式对本方案进行进一步细化,并下发作业班组进行技术交底,用于具体地指导具体部位的焊接施工。 1.4本方案在实施过程中若有设计修改或不合适之处,也将以焊接工艺卡的形式对之进行修改,补充完善,并下发指导施焊。 2、工程概况 2.1本工程为吉林众鑫化工集团有限公司12万吨/年生物法环氧乙烷装置和动力厂及配套公用工程项目。制作安装乙醇储罐2台,外形尺寸为φ21000×18375*14/6,重量为139.47吨、材质为Q245R/Q235B。 2.2设计参数一览表

材质:Q245R/Q235B 3、编制依据 3.1. 设计院设计蓝图。 3.2 相关规范 《立式圆筒形钢制焊接油罐设计规范》GB50341-2003 《立式圆筒形钢制焊接储罐施工及验收规范》GB50128-2005 《压力容器焊接规程》JB/T47019-2011 《承压设备无损检测》JB/T4730-2005 《焊接工艺评定规程》 DL/T 868-2004 3.3企业工艺标准的名称及编号: 《施工技术方案管理规定》 Q/JH223.22101.02-2013 《施工技术通用管理标准》 Q/JH222·21100.01-2013 《施工质量通用管理标准》 Q/JH223·21500.01-2013 《质量、环境、职业安全健康综合管理手册》 Q/JH223·20001.2007 《安全生产责任管理规定》 Q/JH223·21801.01 4、施工方法 4.1施工顺序

焊接技术施工方案

焊接技术施工方案 随着我国经济的持续发展,焊接技术在我国的制造业中应用的越来越频繁,已经逐渐成为我国制造产业中一种不可或缺的技术,并占据着举足轻重的地位,我国早在04年就已经成为了世界上的焊接制造大国,焊接在国民经济建设中正发挥着不可替代的作用,特别是在近十几年来,已经得到了飞速的传播和发展,在我们的日常生活中,接触到的各种产品都需要焊接工艺制造出来,可见其应用的范围是非常广泛的。文章着重介绍下边几种常见的焊接技术施工方案,并浅谈下每种焊接技术的应用。 關键词:焊接技术;施工方案;分析 1 前言 焊接是一种可以将两种材料永久的连接起来的技术,是一种给定功能结构的制造性技术,从几十吨重的巨轮到几克重的微电子芯片,在生产中都会不同程度的涉及到焊接技术,焊接技术已融合进制造业的方方面面中,这会直接影响产品的质量,关乎产品的可靠性能,更是关系到产品使用寿命的长短,同时还会关联生产的成本与市场反应结果。因为焊接结构的产品重量较轻,价格也相对低廉,不仅可以保证质量的可靠稳定,其生产周期也相对较短,效率很高,这些优点促使焊接技术的应用在市场上逐渐增多,早在2004年,我国利用焊接技术所加工的钢材就已经达到了新的突破,一举成为世界上最大的焊接大国,焊接在我国的社会建设中正在发挥着无与伦比的重要性,所以,要想更好的发展我国的制造业就一定要重视焊接技术的发展,努力探究更多更好的焊接技术。 2 薄板焊接变形控制措施 2.1 选择合理的焊缝尺寸 焊缝尺寸增加,变形随之增大,但是过小的焊缝尺寸将降低结构的承载能力,并使焊接接头的冷却速度加快,热影响区硬度增高,容易产生裂纹等缺陷,因此应在满足结构承载能力和保证焊接质量的前提下,随着板的厚度来选取工艺上可能选用的最小的焊缝尺寸。 2.2 尽量减少焊缝数量 适当选择板的厚度,减少肋板数量,从而可减少焊缝和焊接后变形的校正量,如薄板结构件,可用压型结构代替肋板结构,以减少焊缝数量,防止或减少焊后变形。 2.3 合理安排焊缝位置 焊缝对称于焊件截面的中性轴或使焊缝接近中性轴均可减少弯曲变形。

2立方空气储罐设计

目录 任务书 (2) 第一章空气储罐产品概要 (3) 第二章空气储罐材料的选择 (4) 第三章空气储罐的结构设计 (4) 3.1圆筒厚度的设计 (5) 3.2封头厚度的计算 (5) 3.3接管的设计 (5) 3.4支座的设计 (6) 3.4.1支座选型 (6) 3.4.2鞍座定位 (6) 第四章强度计算 (6) 5.1水压试验应力校核 (6) 5.2工作应力计算及校核 (7) 5.2.1圆筒轴向应力计算及校核 (7) 5.2.3周向应力计算及校核 (8) 第五章空气储罐的制造工艺 (10) 5.1空气储罐的制造工艺流程 (10) 5.2空气储罐的焊接工艺 (11) 5.2.1接管焊接 (11) 5.2.2纵缝和环缝焊接 (12)

5.3空气储罐的焊接检验 (13) 5.3.1无损检测 (14) 5.3.2耐压试验 (14) 第六章课程设计心得体会 (15) 参考文献 (16) 任务书 2m3空气储罐的焊接工艺设计 设计参数 序号名称指标 1 设计压力P c(MPa) 1.0 2 设计温度(℃)100 3 最高工作压力(MPa)0.95 4 最高工作温度(℃)95 5 工作介质压缩空气 6 主要受压元件的材料Q235-B 7 焊接接头系数Φ0.9 8 腐蚀裕度C2(mm) 1.2 9 厚度负偏差(C1)0.8 9 全容积() 2.0 10 容器类别第一类 设计要求 (1)更具给定的条件来选定容积的几何尺寸,即确定筒体的内径、长度、封

头类型等,然后确定有关的参数,如容器材料、需用应力、壁厚附加量、焊缝系数等。 (2)设计筒体和封头壁厚;进行强度计算;焊接接头设计;附件设计等。 (3)撰写设计说明书:能以“工程语言和格式”阐明自己的设计观点、设计方案的优劣以及设计数据的合理性;按照设计步骤、进程,科学地编排设计说明书的格式与内容叙述简明。 第一章空气储罐概要 空气储罐的特点 空气储罐主要是指用于储存或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用,如氢气储罐、液化石油气储罐、石油储罐、液氨储罐等。储罐内的压力直接受温度影响,且介质往往易燃、易爆或有毒。储罐的结构形式主要有卧式储罐、立式储罐和球形储罐。 压力容器的外壳由筒体、封头、密封装置、开孔接管、支座及安全附件六大部件组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书

10立方米液氨压力容器储罐设计说明书

目录 第一章工艺设计 任务书*************************************** 储量***************************************** 备的选型及轮廓尺寸*************************** 第二章机械设计 结构设计 2.1.1 筒体及封头设计 材料的选择********************************** 筒体壁厚的设计计算 封头壁厚的设计计算 2.1.2 接管及接管法兰设计 接管尺寸选择********************************* 管口表及连接标准***************************** 接管法兰的选择***************************** 紧固件的选择******************************* 2.1.3 人孔的结构设计 密封面的选择****************************** 人孔的设计******************************** 2.1.4 核算开孔补强**************************** 2.1.5 支座的设计

支座的选择********************************** 支座的位置********************************** 2.1.6液面计及安全阀选择 2.1.7总体布局 2.1.8焊接接头设计 强度校核 小结

课程设计任务书 1.设计目的: 设计目的 1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。 2)掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案的可行性研究和论证。 3)掌握电算设计计算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。 4)掌握工程图纸的计算机绘图。 2.设计内容 1)设备工艺、结构设计; 2)设备强度计算与校核; 3)技术条件编制; 4)绘制设备总装配图; 5)编制设计说明书。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 1)设计说明书:主要内容包括:封面、设计任务书、目录、设计方案的分析和拟定、各部分结构尺寸的设计计算和确定、设计总结、参考文献等; 2)总装配图设计图纸应遵循国家机械制图标准和化工设备图样技术要求有关规定,图面布置要合理,结构表达要清楚、正确,图面要整洁,文字书写采用仿宋体、内容要详尽,图纸采用计算机 绪论 1、任务说明

储罐焊接技术方案要点

一、 工程概况 中国石油长庆石化原油储罐扩建工程储运系统新建3具50000m 3单浮盘原油储罐,油罐内径60m ,罐壁高19.48m ,共8层壁板,第1~6圈材质为16MnR ,第7~8圈材质为Q235-B ,厚度分别为:32,28,24,20,16,12,12,10;(选用规格为2.45×10.5m 的钢板,每圈18张钢板)。包边角钢采用100×10,材质为Q235-A 。罐底:排版型式采用弓型边缘板,罐底板的接头全部采用带垫板的对接组合型式。罐底锥面坡度不小于8.3 ,边缘板材质为SPV490Q ,厚度为18mm ;中副板材质为Q235-A ,厚度为12mm 。 1,焊接管理(1) 焊接工艺评定 储罐施工前,需按照JB4708--2000《钢制压力容器焊接工艺评定》和GBJ128-90的规定进行焊接工艺评定,对接焊缝的试件,除作拉力和横弯试验外,还需作冲击韧性试验。焊接试板及试板性能试验示例如下: (2) 焊工的培训管理 参加储罐主体焊接的焊工必须具有同种位置的焊工合格证。在施工中若焊工的焊接一次合格率低于85%时,或不遵守工艺纪律时,应重新按GBJ128-90的要求进行培训和考试,考试合格后方能重新参与主体焊接。若再有上述现象发生,则取消该焊工的施焊资格。 (3) 焊接材料管理 焊接材料应有质量合格证明。 焊接材料应设专人负责保管,并按规定进行烘干和使用。 焊接材料应按部位领用,焊材管理人员应作好记录。 焊接材料应保管在避风露,通风好,不潮湿的仓库内,湿度不大于60%。 (4) 焊接环境管理

在下列任何一种情况下如不采取有效措施不能进行焊接: 雪天或雨天。 手工焊时,风速超过8m/s;气电气焊时,风速超过2.2m/s。 大气相对湿度超过90%。 焊接环境气温:普通碳素钢低于-20℃时;低合金钢低于0℃时。 5.2 焊接施工 (1) 罐底焊接 由于自动焊焊接电流较大,自动焊直接焊接容易产生焊穿等影响质量的缺陷,因此罐底采用手工焊打底、自动焊填充。 自动焊机采用SW-24型埋弧自动焊机,中幅板焊丝选用Y-C,填充碎焊丝为YK-C,焊剂采用YF-15,收缩缝焊丝选用Y-E,焊剂选用NF-11H。为了控制焊接变形,罐底焊接采用自由收缩法,选用合理的焊接顺序和焊接工艺。 罐底垫板焊接时在走廊板和边缘板处预留收缩缝。 弓形边缘板由多名焊工对称分布采用手工电弧焊同时施焊,焊接前应设置龙门板加固。焊接时先焊外侧600mm范围,焊接时每层错开50-70mm,余下的焊缝在大角缝焊接后、收缩缝焊接前进行焊接。 中幅板焊接采用隔缝施焊法,先焊中幅长板,后焊边缘小板,先焊短焊缝,后焊长焊缝,初层焊道采用手工电弧焊分段退步焊接。手工打底时,采用分段退焊法,隔400mm 焊400mm,厚度5mm。埋弧自动焊前,要清除坡口内所有焊接缺陷及其它杂物,然后填充专用碎焊丝(YK-C),其厚度与坡口相平,最后采用埋弧自动焊机一次焊接成型。焊接时应注意焊丝的对准位置,随时调整,不能焊偏,否则易产生夹渣等缺陷。 收缩缝在罐底与罐壁连接的大角缝焊接完后施焊,采用数名焊工均匀分布同时施焊,初层焊接必须采用分段退焊。 大角缝应先焊内侧初层,再焊外侧焊缝,最后将内侧焊缝焊完。弓形边缘板及大角缝全部焊缝预热至100~150℃。 (2) 浮顶焊接 ★焊接工艺确定 浮顶的焊接工艺应该是最大限度地减小焊后的波浪变形。由于浮顶板薄,焊缝密度大、交叉多,采用自由收缩法工艺,无法控制浮顶焊后波浪变形,焊后变形量非常大,局部凹凸可达300mm。本次施工采用“拘束收缩法”工艺,该工艺主要是将自由收缩

相关文档
最新文档