迈达斯(midas)计算

迈达斯(midas)计算
迈达斯(midas)计算

潇湘路连续梁门洞调整后支架计算书

1概述

原《潇湘路(32+48+32)m连续梁施工方案》中,门洞条形基础中心间距为7.5米,现根据征迁人员反映,为满足门洞内机动车辆通行需求,需将条形基础中心间距调整至8.5米。

现对门洞结构体系进行计算,调整后门洞横断面如图1-1所示。

图1-1调整后门洞横断面图

门洞纵断面不作改变如图1-2所示。

图1-2门洞总断面图

门洞从上至下依次是:I40工字钢、双拼I40工字钢、Ф426*6钢管(内部灌C20素混凝土),各结构构件纵向布置均与原方案相同。

2主要材料力学性能

(1)钢材为Q235钢,其主要力学性能取值如下:

抗拉、抗压、抗弯强度:

[ =125Mpa

Q235:[σ]=215Mpa, ]

(2)混凝土采用C35混凝土,其主要力学性能取值如下:

弹性模量:E=3.15×104N/mm2。

抗压强度设计值:f c=14.3N/mm2

抗拉强度设计值:f t=1.43N/mm2

(3)承台主筋采用HRB400级螺纹钢筋,其主要力学性能如下:

抗拉强度设计值:f y=360N/mm2。

(4)箍筋采用HPB300级钢筋,其主要力学性能如下:

抗拉强度设计值:f y=270N/mm2

3门洞结构计算

3.1midas整体建模及荷载施加

Midas整体模型如图3.1-1所示。

图3.1-1MIDAS整体模型图

midas荷载加载横断面图如图3.1-2所示。

3.1-2荷载加载横断面图

荷载加载纵断面如图3.1-3所示。

图3.1-3荷载加载纵断面图3.2整体受力分析

整体模型受力分析如图5.2-1~5.2-3所示。

图5.2-1门洞整体位移等值线

图5.2-2门洞整体组合应力云图

图5.2-3门洞整体剪应力云图

由模型分析可得,模型最大位移D=3.2mm<[l/600]=14.1mm,组大组合应力σ=144.2Mpa<[σ]=215Mpa,最大剪应力σ=21.6Mpa<[σ]=125Mpa 门洞整体强度、刚度均满足要求。

3.3细部构件分析

3.3.1I40工字钢计算

I40工字钢位移等值线如图3.3-1所示。

图3.3-1I40工字钢整体位移等值线

I40工字钢位组合应力如图3.3-2所示。

图3.3-2I40工字钢组合应力云图

I40工字钢位剪应力如图3.3-3所示。

图3.3-3I40工字钢剪应力云图

由模型分析可得,I40工字钢最大位移D=3.2mm<[l/600]=14.1mm,组大组合应力σ=111.6Mpa<[σ]=215Mpa,最大剪应力σ=20.4Mpa<[σ]=125Mpa I40工字钢强度刚度均满足要求。

3.3.2双拼I40工字钢计算

双拼I40工字钢位移等值线如图3.3-4所示。

图3.3-4双拼I40工字钢整体位移等值线

双拼I40工字钢位组合应力如图3.3-5所示。

图3.3-5双拼I40工字钢组合应力云图

双拼I40工字钢位剪应力如图3.3-6所示。

图3.3-6双拼I40工字钢剪应力云图

由模型分析可得,模型最大位移D=1.88mm<[l/600]=3.33mm,组大组合应力σ=84.3Mpa<[σ]=215Mpa,最大剪应力σ=21.6Mpa<[σ]=125Mpa 双拼I40工字钢强度刚度均满足要求。

3.3.3Ф426*6钢管计算

钢管立柱承受的支座反力如图3.3-7所表示。

图3.3-7钢管立柱支座反力图

最大立柱受力为368.4KN

用Φ426*6mm 钢管立柱,在其中灌入C20素混凝土。钢管回转半径:i=148.15mm ,截面积A=79.168cm2,立柱最大高度按5.5m 计。长细比:λ=L/i=5500/148.15=37.123<150(柱类受压构件容许长细比为150),满足要求。其中L 为计算长度,查表得轴心受压稳定性系数?=0.836。

[]222/215/65.568.7916836.010004.368mm N mm N mm

A P =<=??==σ?σ 立柱之间加1道Φ426*6mm 平联横撑,立柱受力符合要求。

3.3.4条形基础承载力验算

中间条形基础长度12.6m ,宽1.5m ,高1m ,将上述支座反力加载如条形基础建模计算,每根钢管立柱承受的支座反力如图3.3-8所示。

图5-1钢管立柱支座反力图

从左至右支座反力依次为125.5kN、216.7kN、265.8kN、295.1kN、368.4kN、295.1kN、265.8kN、216.7kN、125.5kN。

将条形基础按倒梁法计算,则作用在梁上部的均布荷载:

q=F总/1.5=((125.5+216.7+265.8+295.1)*2+368.4)/12.6=172.58kn/m

条形基础最大跨度为2m,按照五跨连续梁,计算最大跨中弯矩和支座剪力:M max=0.105*172.58*22=72.48kn*m,

F=0.5ql=0.5*172.58*2=172.58KN

按照原条形基础配筋,主筋A s=2250mm2,箍筋Ф10@20进行截面校核

ξ=f y A s

a1f c bh0

=(360*2250)/(14.3*1500*9502)=0.000418<ξb=0.517 M u=ξ*(1-ξ)f c bh0=0.000418*(1-0.000418)*14.3*1500*9502=809.6KN*m>M max

故主筋满足要求。

0.7f t bh0=0.7*1.43*1500*950=142.4KN<F=172.58KN

nAsv1

s ≥V?0.7f t bh0

f y h0

=(172.58-142.4)*1000/(270*950)=0.117

采用Ф10双肢箍,S≤2*78.5/0.117=1341mm 即采用Ф10@200mm,满足要求。

故条形基础配筋满足要求。

midas入门教程

目录 建立模型○1 设定操作环境 (2) 定义材料 (4) 输入节点和单元 (5) 输入边界条件 (8) 输入荷载 (9) 运行结构分析 (10) 查看反力 (11) 查看变形和位移 (11) 查看内力 (12) 查看应力 (14) 梁单元细部分析(Beam Detail Analysis) (15) 表格查看结果 (16) 建立模型○2 设定操作环境 (19) 建立悬臂梁 (20) 输入边界条件 (21) 输入荷载 (21) 建立模型○3 建模 (23) 输入边界条件 (24) 输入荷载 (24) 建立模型○4 建立两端固定梁 (26) 输入边界条件 (27) 输入荷载 (28) 建立模型○5○6○7○8

简要 本文来自:中国范文网【https://www.360docs.net/doc/6a13466886.html,/】详细出处参考: https://www.360docs.net/doc/6a13466886.html,/275.html 本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和一些基本功能。包含的主要内容如下。 1. MIDAS/Civil 的构成及运行模式 2. 视图(View Point)和选择(Select)功能 3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等) 4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果) 使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。 图1. 分析模型 ○1 ○2 ○3 ○4 ○5 ○6 ○ 7 ○ 8 6@2 = 12 m 截面 : HM 440×300×11/18 材料 : Grade3 悬臂梁、两端固定梁 简支梁

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导 一.等截面细直梁的横向振动 取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。梁在横向振动时,其挠曲线随时间而变化,可表示为 y=y(x,t) (1) 除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。故可以采用材料力学中的梁弯曲的简化理论。根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为: 22y EI M x ?=? (2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。至于分布载荷集度q 的正向则规定与y 轴相同。在这些规定下,有: M Q Q q x x ??==??, (3) 于是,对方程(2)求偏导,可得: 222222(EI )(EI )y M y Q Q q x x x x x x ??????====??????, (4) 考虑到等截面细直梁的EI 是常量,就有:

3434y y EI Q EI q x x ??==??, (5) 方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。 应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为 22 y q t ρ?=-? (6) 其中ρ代表梁单位长度的质量。假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程: 4242y y EI x t ρ??=--?? (7) 其中2 /a EI ρ=。 为求解上述偏微分方程(7),采用分离变量法。假设方程的解为: y(x,t)=X(x)Y(t) (8) 将式(8)代入(7),得: 22424 1Y a d X Y t X dx ?=-? (9)

钢箱梁桥的有限元分析

钢箱梁桥的有限元分析 1.钢箱梁桥的概述 在大跨度桥梁的设计中,恒载所占的比重远大于活载,随着跨度的增大,这种比例关系也越来越大,极大地影响了跨越能力。因此,从设计的经济角度来说,考虑减轻桥梁结构的自重是很重要的。钢材是一种抗拉、抗压和抗剪强度均很高的匀质材料,并且材料的可焊性好,通过结构的空间立体化,钢桥能够具有很大的跨越能力。 随着高强度材料和焊接技术的发展,以及桥梁设计、计算理论的发展和计算机技术发展,从50年代以来,钢梁桥地建设取得了长足的发展,欧洲相继建造了多座大跨钢桥。从前被认为不可能计算的复杂结构,现在能够通过计算机完成,并且计算结果与实测结果吻合较好。同过去相比,在相同的跨度与宽度的条件下,用钢量可减少15一20 %,工期与工程的造价也都减少很多,因此钢桥在大跨桥梁领域内具有相当强的优势和竞争力。 在构成钢桥的主要构件中,其翼缘和腹板均使用薄板,其厚度与构件的高度和宽度比都比较小,是典型的薄壁构件。它与以平面结构组合为主的桥梁结构分析有一定的区别,它涉及到很多平面结构中不常考虑的扭转问题,所以必须依据薄壁结构理论才能明了其应力和应变状态,其应力及变形应按照薄壁结构的理论进行计算。 由于钢箱梁桥是空间结构,结构在恒载或活载的作用下会发生弯一扭藕合。如果采用传统的计算手段和方法,计算模型要进行必要地简化,为了简化计算,一般的设计规范都要通过构造布置,使实际结构满足简化后的计算理论。实践表明在满足构造要求后,计算的精度能够满足实际地需要。但是这样的计算无法得到结构的一些特定部位的精确解,例如变截面和空间构件交汇的部位等。随着计算机技术和有限元理论的发展和进步,计算机的有限元法己成为现代桥梁的重要计算手段,不但有很高的效率而且可以根据实际的需要进行仿真分析,计算结果经验证与结构的实际结果吻合较好。当前结构的计算机仿真分析已成为一种广为应用的计算手段。 同一座桥梁可以采用不同的施工方法,但是成桥后的最终应力状态会有差异,结构的最终应力状态与安装过程密不可分。例如连续梁可采用满堂支架法和悬臂拼装法,两者成桥后的应力状态却有较大的区别。因此必须针对特定的施工方法,对施工过程中每一个施工阶段的结构应力进行计算,确保各个阶段的应力满足相关规范。 由于在制造和安装等原因,结构的最终状态会与设计状态有一定的差异,各国都通过制订有相关的规范来指导施工和竣工验收的标准。这些标准规是通过长期的实践与试验以及计算分析的基础上得出的,满足这些相关规范的要求一般就可以保证结构的安全性。但是由于实际结构是受力复杂的空间结构,特别是结构的一些局部范围可能在某一工况下处于较高的应力状态,而其他部为却处于相对较低的应力状态,这样不利于充分发挥材料的力学性能。现在可以通过大型通用有限元软件对大桥在使用过程中可能存在的各个工况的受力状态进行仿真分析,确定出结构不利的部位以及富余较大的部位,便于调整设计。 1.1本论文的研究目的 常用的计算机方法是将主梁转换成具有等效截面的梁单元计算,这种方法能够较好的从整体上考虑结构的空间特点,虽然也反映了空间结构的特点,但是它也存在以下明显的不足: 1. 不能准确模拟边界条件。例如支点的约束,梁单元通常只能简化为一点的约束,但是不管什么样的约束实际结构总是以面接触来实现的;

midas软件初级使用教程

m i d a s软件初级使用教 程 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

目录建立模型① 建立模型② 建立模型③ 建立模型④ 建立模型⑤⑥⑦⑧

摘要 本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。包含的主要内容如下。 1. MIDAS/Civil 的构成及运行模式 2. 视图(View Point)和选择(Select)功能 3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等) 4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果) 使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。 图1. 分析模型 悬臂梁、两端固定梁 简支梁 6@2 = 12 m 截面 : HM 440×300×11/18 材料 : Grade3

建立模型① 设定操作环境 首先建立新项目( 新项目),以‘’ 为名保存( 保存)。 文件 / 新项目 文件 / 保存( Cantilever_Simple ) 单位体系是使用tonf(力), m(长度)。 1. 在新项目选择工具>单位体系 ? 2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’ 3. 点击 工具 / 单位体系 长度>m ; 力>tonf ? 本例题将主要使用图标菜单。默认设置中没有包含输入节点和单元所需的图标,用户可根据需要将所需工具条调出,其方法如下。 1. 在主菜单选择工具>用户定制>工具条 2. 在工具条选择栏勾选‘节点’, ‘单元’, ‘特性’ 3. 点击 4. 工具>用户定制>工具条 工具条>节点 (开), 单元 (开), 特性 (开) 图2. 工具条编辑窗口 将调出的工具条参考图3拖放到用户方便的位置。 (a )调整工具条位置之前 (b )调整工具条位置之后 图3. 排列工具条 定义材料 使用Civil 数据库中内含的材料Grade3来定义材料。 1. 点击 材料 ? 2. 点击 3. 确认一般的材料号为‘1’(参考图4) 4. 在类型 栏中选择‘钢材’ 5. 在钢材的规范栏中选择‘GB(S)’ ? 6. 在数据库中选择‘Grade3’ ? 7. 点击 模型/ 材料和截面特性 / 材料 设计类型>钢材 ; 钢材规范>GB(S) ; 数据 库>Grade3 ? 也可使用窗口下端的状态条(图3(b))来转换单位体系。 移动新调出的工具 条时,可通过用鼠标拖动工具条名称(图3(a)的①)来完成。对于已有的工具条则可通过拖动图3(a)的②来移动。 ②轴网 & 捕捉 选 择 激活钝化 缩放 & 移动 视 点 动态视点 单 元 节 点 特 性 状 态 条 也可不使用图标菜单而使用关联菜单的材料和截面特性>材料来输入。关联菜单可通过在模型窗口点击鼠标右键调出。 使用内含的数据库时, 不需另行指定材料的名称,数据库中的名称会被自动输入。

钢箱梁桥介绍

钢桁梁 由于钢材具有强度高、材质均匀、塑性及韧性良好和可焊性好等诸多优点;因此,用钢材建造的桥梁一一钢桥具有如下特点: (1)跨越能力大。由于钢材的强度高,在相同的承载能力条件下;与钢筋混凝土桥梁相比,钢桥构件的截面较小,所以钢桥的自重较轻, 最适合于建造大跨度的桥梁。 (2)最适合于工业化制造。钢桥构件一般都是在专业化的工厂由专用设备加工制作,不受季节的限制,加工制造速度快、精度高,质量容易得到控制,因而工业化制造程度高。 (3)便于运输。由于钢桥构件的自重较轻,特别是在交通不便的山区便于汽车运输。 (4)安装速度快。钢桥构件便于用悬臂施工法拼装,有成套的设备可用,拼装工艺成熟。 (5)钢桥构件易于修复和更换。 (6)钢材易锈蚀,故钢桥的养护费用高。另外,钢桥须防火,在列车通过时噪音大,故不宜在闹市区建造铁路钢桥。 钢桥可以根据不同的条件要求建成多种形式,其种类比其他材料制造的桥梁更多,主要可分为梁式体系、拱式体系及组合体系。

1. 梁式体系 按力学图式分梁式体系又可分为简支梁、连续梁、悬臂梁;按主梁的构造 形式分有板梁桥、桁梁桥、箱梁桥、结合梁桥。 2. 拱式体系 按力学图式分拱式体系可分为有推力拱和无推力拱;按拱肋的构造形 式分有版式、桁式、箱式。 3. 组合体系 这类桥型包括吊桥和斜拉桥,都是利用高强钢索来承重,吊桥(又称悬索桥)的承重构件是高强度钢索,恒载轻,跨越能力大。斜拉桥的承重构件是斜拉索和梁,其钢梁可以是板式、桁式或箱式,恒载较轻,风动力性能较吊桥好,故发展很快。 钢桥主体结构所用的钢材主要是碳素钢和低合金钢。20世纪50年代我国钢桥主要采用普通碳素钢一A3钢,该钢材由于含碳量较高 (0.14?0.22% ),可焊性差,只能进行铆接连接,如武汉长江大桥的主桥采用A3钢,该桥为连续铆接钢桁梁。用 A3钢建造大跨度桥梁时,构件截面尺寸大,从而增加用钢量并使钢桥的自重加大,因此, 20世纪50年代后期,我国开始研究在钢桥上采用能够焊接的国产高强度低合金钢一16q钢和16Mnq钢,如南京长江大桥采用16Mnq , 屈服点为 340MPa ,它比用A3钢节约钢材约15%。20世纪70年代,我国又成功研制出强度更高的15MnVNq钢,屈服点是420MPa ,又比用16Mnq钢节约钢材10%以上。21世纪,我国研制出另一种新型的桥梁用钢一14MnNbq

5051b入门教程

实战篇 因为经过综合测试,发现VAS5051B较为好用,所以以下操作全部以VAS5051B进行 第一步,运行VAS5051B. 先做一个系统配置,测试一下连线和汽车是否连接正常.要记住汽车点火开关必须在ON的位置,还有连线不要松掉.VAG头插汽车的也要插紧. 点选“扫描全车故障码”按钮. 完了GG可以选这1JVWG/J/BMK4. 结果如下: 奥迪大众VAS-5051B版本:Release311.2-N 底盘类型:1J-VWG/J/BMk4 扫描:01,02,03,08,15,17,19,22,35,46,56 地址01------------------------------------------------------- 控制器:06A906032EQ 组件:1.6l5VMQ200014680 代码:00031 服务站号:WSC00000 VWZ7Z0C7577547 找到1个错误: 18017-碰撞关闭已经激活 P1609-35-00-未定义的故障类型,参考维修手册 就绪状态:00000000 地址03------------------------------------------------------- 控制器:1C0907379L 组件:ABSFRONTMK600101

代码:0001025 服务站号:WSC00028 未找到故障码。 正在跳过地址15-气囊 地址17------------------------------------------------------- 控制器:1J5920806B 组件:KOMBI+WEGFAHRSPVDOV19 代码:03604 服务站号:WSC00000 VWZ7Z0C7577547 未找到故障码。 地址19------------------------------------------------------- 控制器:6N0909901 组件:GatewayK<->CAN0001 代码:00006 服务站号:WSC00000 未找到故障码。 地址46------------------------------------------------------- 控制器:1C0959799 组件:1KKomfortger医HLO0002 代码:00259 服务站号:WSC00000 未找到故障码。 地址56-------------------------------------------------------

迈达斯教程及使用手册

01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示预应力钢筋材料定义。 2、通过自定义方式来定义——示混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规→选择相应规数据库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。 钢 材 规 范 混 凝 土 规 范 图1 材料定义对话 框

02-时间依存材料特性定义 我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3); 3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);

图1 收缩徐变函数 图2 强度发展函数

定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施 图3 时间依存材料特性连接 图4 时间依存材料特性值修改

MIDAS钢箱梁计算书

1.1B07~F03 D07~H03 50.5+65+50.5m(桥宽10m)钢箱梁 1.1.1计算参数及参考规范 (1)标准 设计荷载:城-A级; 桥梁安全等级为一级,结构重要性系数1.1; (2)主要材料 钢箱梁采用Q345D 钢材, 桥面板采用C40混凝土。 (3)参考规范 《公路钢结构桥梁设计规范》报批稿, 《公路钢筋混凝土及预应力混凝土桥涵设计规范》。 1.1.2主要计算内容 结构纵向整体应力,即主梁体系,采用三维有限元建模分析,采用梁格模型,计算主梁顶、底板最不利应力。 1.1.3纵向整体计算 1.1.3.1.1计算模型 纵向整体计算采用三维有限元建模分析,采用梁格法模型进行模拟。参照《公路钢结构桥梁设计规范》报批稿进行钢梁有效分布宽度的计算。

根据桥面布置,汽车按最不利情况进行影响线加载。温度考虑整体升降温20度和梯度温度。永久支承按简支支承条件进行约束。 全桥共划分为241个单元,162个节点。结构计算几何模型如下图:

计算几何模型 1.1.3.1.2计算荷载 (1)一期恒载 主梁顶、底和腹板采用实际板厚,钢材重力密度78.5kN/m 3 ,单元重力密度考虑各种加劲肋和焊缝实际重量提高 1.24倍;混凝土桥面板重力密度25kN/m 3。沥青混凝土重力密度24kN/m 3。 (2)二期恒载 1.1.3.1.3计算参数 (1)钢材材料特性如下表: 结构钢材性能表 应用结构 钢箱加劲梁 材质 Q345D 力 学 性 能 弹性模量E(MPa) 210000 剪切模量G(MPa) 81000 泊松比γ 0.3 轴向容许应力[σ] (MPa)200 弯曲容许应力[σw] (MPa)210 容许剪应力[τ] (MPa) 120 屈服应力[σs] (MPa) 345 热膨胀系数(℃) 0.000012 (2)梯度温差:参照混凝土规范规定:升温取T1=14°C,T2=5.5°C,负

迈达斯教程及使用手册

迈达斯教程及使用手册 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。 2、通过自定义方式来定义——示范混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示范钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。 02-时间依存材料特性定义 我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3); 3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4); 钢 材 规范 混凝土规范 图1 材料定义对话框 图1 收缩徐变函数

定义混凝土时间依存材料特性时注 意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。 03-截面定义 截面定义有多种方法,可以采用调用数据库中截面(标准型钢)、用户定义、采用直接输入截面特性值的数值形式、导入其他模型中已有截面(图1~图3)。 图3 时间依存材料特性连接 图4 时间依修

MIDAS CIVIL 最完整教程

第一章“文件”中的常见问题 (2) 1.1 如何方便地实现对施工阶段模型的数据文件的检查? (2) 1.2 如何导入CAD图形文件? (2) 1.3 如何将几个模型文件合并成一个模型文件? (3) 1.4 如何将模型窗口显示的内容保存为图形文件? (5)

第一章“文件”中的常见问题 1.1如何方便地实现对施工阶段模型的数据文件的检查? 具体问题 本模型进行施工阶段分析,在分析第一施工阶段时出现“W ARNING : NODE NO. 7 DX DOF MAY BE SINGULAR”,如下图所示。但程序仍显示计算成功结束,并没有给出警告提示,如何仅导出第一施工阶段的模型进行数据检查? 图1.1.1 施工阶段分析信息窗口警告信息 相关命令 文件〉另存当前施工阶段为... 问题解答 模型在第一施工阶段,除第三跨外,其他各跨结构都属于机动体系(缺少顺桥向约束),因此在进行第一施工阶段分析时,程序提示结构出现奇异;而在第二施工阶段,结构完成体系转换,形成连续梁体系,可以进行正常分析。 在施工阶段信息中选择第一施工阶段并显示,然后在文件中选择“另存当前施工阶段为...”功能将第一施工阶段模型导出,然后对导出的模型进行数据检查即可。 相关知识 施工阶段分析时,对每个阶段的分析信息都会显示在分析信息窗口中,同时保存在同名的*.out文件中,通过用记事本查看*.out文件确认在哪个施工阶段分析发生奇异或错误,然后使用“另存当前施工阶段为...”功能来检查模型。 分析完成后的警告信息只针对成桥阶段,各施工阶段的详细分析信息需要查看信息窗口的显示内容。 1.2如何导入CAD图形文件? 具体问题 弯桥的桥梁中心线已在AutoCAD中做好,如何将其导入到MIDAS中?

midas_civil简支梁模型计算

第一讲简支梁模型的计算 1.1 工程概况 20 米跨径的简支梁,横截面如图1-1 所示。 1.2 迈达斯建模计算的一般步骤 1.3 第01 步:新建一个文件夹,命名为Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documents and Settings\Administrator\桌面\迈达斯\模型01。 第02 步:启动Midas Civil.exe ,程序界面如图1-2 所示。 理 处 前 第五步:定义荷载工况 第六步:输入荷载 第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元 第一步:建立结点 图 1-1 横截面

图1-2 程序界面 第03 步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3 所示。 图1-3 新建工程 第04 步:选择菜单“文件(F)->保存(S) ”,选择目录C:\Documents and

Settings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb”。如图1-4 所示。 图 1-4 保存工程 第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel 文件,命名为“结点坐标”。在excel 里面输入结点的x,y,z 坐标值。如图1-5 所示。 图 1-5 结点数据 第06 步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6 所示。

图1-6 建立节点 第07 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模 型01,再新建一个excel 文件,命名为“单元”。在excel 里面输入单元结点号。如图1-6 所示。

双简支梁固有频率及振型测量

《振动测试实验》实验报告? 南京航空航天大学 机械结构力学及控制国家重点实验室 二○一一年 ?注:实验报告完成后请以附件形式发送至:wt78@https://www.360docs.net/doc/6a13466886.html, 邮件主题请写明:《振动测试实验报告》,姓名,学号,分班号(三班或四班)

一、实验目的 ?测量双简支梁的固有频率和振型。 ?理解多自由度系统振型的物理概念。 ?掌握多自由度系统固有频率和振型的简单测量方法。 二、实验原理图 简支梁固有频率和振型测试原理图 三、实验过程 1、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”。打开各设备电源。 2、进入“双简支梁固有频率与振型测量”实验操作界面,使信号发生器的输出频率约为 30Hz,输出电压约为 1V 。调节功率放的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(观察并用手触摸)。 3、将信号发生器输出频率由低向高逐步调节,同时观察李萨育图形。当李萨育图为稳定的正椭圆时,信号发生器的频率读数即为第一阶固有频率。继续将

信号发生器的频率向高逐步调节,测出第二阶、第三阶固有频率。 4、再将信号发生器调到第一阶固有频率值,保持功率放大器的输出功率恒定(即:不再改变信号发生器的输出电压和功率放大器的输出功率),保持“参考”传感器的位置不变。将“测量”传感器从双简支梁的右端等距跑点,依次记下“测量”传感器在各个位置时的测量点与参考点传感器输出电压之比(即“测量点/参考点”的显示值)及其正负号。将其归一化即可得到第一阶振型,填“振型数据”表格。点击“振型图”或“振型动画”检验振型数据。 四、实验数据与分析 1、列出固有频率。 双简支梁的3个阶段的固有频率分别为: 一阶: 36.7Hz 二阶: 136.5Hz 三阶: 326.6Hz 一阶振型图

Midas零基础教程

Midas零基础教程

目录 建立模型○1 设定操作环境 (4) 定义材料 (7) 输入节点和单元 (8) 输入边界条件 (11) 输入荷载 (12) 运行结构分析 (13) 查看反力 (14) 查看变形和位移 (14) 查看内力 (15) 查看应力 (18) 梁单元细部分析(Beam Detail Analysis) (19) 表格查看结果 (20) 建立模型○2 设定操作环境 (23) 建立悬臂梁 (24) 输入边界条件 (25) 输入荷载 (25) 建立模型○3 建模 (27) 输入边界条件 (28) 输入荷载 (28) 建立模型○4 建立两端固定梁 (30) 输入边界条件 (31) 输入荷载 (32) 建立模型○5○6○7○8

简要 本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和一些基本功能。包含的主要内容如下。 1. MIDAS/Civil 的构成及运行模式 2. 视图(View Point)和选择(Select)功能 3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等) 4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果) 使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。 图1. 分析模型 ○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 6@2 = 12 m 截面 : HM 440×300×11/18 材料 : Grade3 悬臂梁、两端固定梁 简支梁

简支梁振动系统动态特性综合测试方法

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

midas_civil简支梁模型计算

第一讲简支梁模型的计算 1.1工程概况 20米跨径的简支梁,横截面如图1-1所示。 图1-1横截面 1.2迈达斯建模计算的一般步骤 第一步:建立结点 前第二步:建立单元 处 第三步:定义材料和截面 理 第四步:定义边界条件 第五步:定义荷载工况 第六步:输入荷载 第七步:分析计算 后 处 理 第八步:查看结果 1.3具体建模步骤 第01步:新建一个文件夹,命名为Model01,用于存储工程文件。这里,在桌面的 “迈达斯”文件夹下新建了它,目录为C:\Documentsand 桌面迈达斯模型01。 第02步:启动MidasCivil.exe,程序界面如图1-2所示。

图1-2程序界面 第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。 图1-3新建工程 第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documentsand

桌面迈达斯模型01,输入工程名“简支梁.mcb”。如图1-4所示。 图 1-4保存工程 第05步:打开工程目录C:\Documentsand 桌面迈达斯模型01, 新建一个excel文件,命名为“结点坐标”。在excel里面输入结点的x,y,z坐标 值。如图1-5所示。 图 1-5结点数据 第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6所示。

图1-6建立节点 第07步:打开工程目录桌面迈达斯模型01,再新建一个excel文件,命名为“单元”。在excel里面输入单元结点号。如 图1-6所示。

简支梁自振频率测量(正弦扫频法)实验报告

实验2简支梁自振频率测量(正弦扫频法) 一、实验目的 以简支梁为例,了解和掌握机械振动系统幅频特性曲线的测量方法以如何由幅频特性曲线得到系统的固有频率,了解常用简单振动测试仪器的使用方法。 二、实验内容及原理 简支梁系统在周期干扰力作用下,以干扰力的频率作受迫振动。振幅随着振动频率的改变而变化。由此,通过改变干扰力(激振力)的频率,以其为横坐标,以振幅B为纵坐标,得到的曲线即为幅频特性曲线。 依据共振法测试简支梁的一阶、二阶固有频率,原理同实验三。用跳沙法观察简支梁一阶、二阶振型。 测试简支梁的振型,根据简支梁的长度,划分若干个单元格,依次标号。将信号发生器的频率调整到一阶固有频率处,观察简支梁的振动情况,在该频率下,分别测试每个单元的振幅。依据测得的振幅,通过归一化,绘出简支梁的一阶振型。 三、实验仪器及设备 机械振动综合实验装置(安装简支梁)1套 激振器及功率放大器1套 加速度传感器1只 电荷放大器1台

信号发生器1台 数据采集仪1台 信号分析软件1套 计算机1台 四、实验方法及步骤 1.将激振器通过顶杆连接到简支梁上(注意确保顶杆与激振器的中心线在一直线上),激振点位于简支梁中心偏左50mm处(已有安装螺孔),将信号发生器输出端连接到功率放大器的输入端,并将功率放大器与激振器相连接。 2.用双面胶纸(或传感器磁座)将加速度传感器粘贴在简支梁上(中心偏左50mm)并与电荷放大器连接,将电荷放大器输出端分别与数据采集仪输入端连接。 3.将信号发生器和功率放大器的幅值旋钮调至最小,打开所有仪器电源。设置信号发生器输出频率为10Hz,调节信号发生器的幅值旋钮使其输出电压为2V。调节功率放大器的幅值旋钮,逐渐增大其输出功率直至简支梁有明显的振动(用眼观察或用手触摸)。 4.将信号发生器输出频率由低向高逐步调节,观察简支梁的振动情况,若振动过大则减小功率放大器的输出功率。 5.保持功率放大器的输出功率恒定,将信号发生器的频率重新由抵向高逐步调节,记录调整频率的变化情况,采集各个调整频率下响应信号振动幅值对应的电压数据。 五、实验数据整理与分析

MidasCivil入门教程

第一讲 简支梁模型的计算 1.1 工程概况 20米跨径的简支梁,横截面如图1-1所示。 图1-1 横截面 1.2 迈达斯建模计算的一般步骤 后处理理处 前 第五步:定义荷载工况 第八步:查看结果 第七步:分析计算第六步:输入荷载 第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元第一步:建立结点 1.3 具体建模步骤 第01步:新建一个文件夹,命名为Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documents and Settings\Administrator\桌面\迈达斯\模型01。 第02步:启动Midas Civil.exe ,程序界面如图1-2所示。

第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。 图1-3 新建工程 第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb”。如图1-4所

示。 图1-4 保存工程 第05步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel文件,命名为“结点坐标”。在excel里面输入结点的x,y,z 坐标值。如图1-5所示。 图1-5 结点数据 第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6所示。

图1-6 建立节点 第07步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,再新建一个excel文件,命名为“单元”。在excel里面输入单元结点号。如图 1-6所示。 图1-6 单元节点

MIDASGen入门教程

例题钢筋混凝土静力弹塑性推覆分析 本文来自:中国范文网【https://www.360docs.net/doc/6a13466886.html,/】详细出处参考:https://www.360docs.net/doc/6a13466886.html,/post/216.html相关文章在网站其他栏目里面。 2

例题钢筋混凝土静力弹塑性推覆分析M I D A S/G e n 例题5. 钢筋混凝土静力弹塑性推覆分析概要 此例题介绍使用MIDAS/Gen 的反应谱分析功能来进行组合结构分析的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及设定材料截面 3.用建模助手建立模型 4.建立框架柱及剪力墙 5.楼层复制及生成层数据文件定义组阻尼比 6.定义边界条件 7.输入楼面及梁单元荷载 8.输入风荷载 9.定义质量 2

例题钢筋混凝土静力弹塑性推覆分析 10.运行分析 11.荷载组合 12.一般设计参数 13.钢筋混凝土构件设计参数 14.钢筋混凝土构件设计 15.静力弹塑性分析 1.简要 本例题介绍使用Midas/Gen 的静力弹塑性分析功能来进行抗震设计的方法。例题模型为六层钢筋混凝土框-剪结构。(该例题数据仅供参考) 基本数据如下: 轴网尺寸:见平面图 柱: 500x500 主梁:250x600 混凝土:C30 剪力墙:250 3

例题钢筋混凝土静力弹塑性推覆分析 图2. 分析模型 4

例题 钢筋混凝土静力弹塑性推覆分析 5 2.设定操作环境及定义材料和截面 1 主菜单选择 文件>新项目 文件>保存: 输入文件名并保存 2 主菜单选择 工具>单位体系: 长度 m, 力 kN 图3. 定义单位体系 3 主菜单选择 模型>材料和截面特性>材料: 添加:定义C30混凝土 材料号:1 名称:C30 规范:GB(RC) 混凝土:C30 材料类型:各向同性 注:也可以通 过程序右下角 随时更改单位。

midas软件初级使用教程

北京迈达斯技术有限公司

目录 建立模型① 设定操作环境 (2) 定义材料 (4) 输入节点和单元 (5) 输入边界条件 (8) 输入荷载 (9) 运行结构分析 (10) 查看反力 (11) 查看变形和位移 (11) 查看内力 (12) 查看应力 (14) 梁单元细部分析 (15) 表格查看结果 (16) 建立模型② 设定操作环境 (19) 建立悬臂梁 (20) 输入边界条件 (21) 输入荷载 (21) 建立模型③ 建模 (23) 输入边界条件 (24) 输入荷载 (24) 建立模型④ 建立两端固定梁 (26) 输入边界条件 (27) 输入荷载 (28) 建立模型⑤⑥⑦⑧

摘要 本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。包含的主要内容如下。 1. MIDAS/Civil 的构成及运行模式 2. 视图(View Point)和选择(Select)功能 3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等) 4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果) 使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。 图1. 分析模型 悬臂梁、两端固定梁 简支梁 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 6@2 = 12 m 截面 : HM 440×300×11/18 材料 : Grade3

建立模型① 设定操作环境 首先建立新项目( 新项目),以‘Cantilever_Simple.mcb ’ 为名保存( 保存)。 文件 / 新项目 文件 / 保存( Cantilever_Simple ) 单位体系是使用tonf(力), m(长度)。 1. 在新项目选择工具>单位体系 2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’ 3. 点击 工具 / 单位体系 长度>m ; 力>tonf 本例题将主要使用图标菜单。默认设置中没有包含输入节点和单元所需的图标,用户可根据需要将所需工具条调出,其方法如下。 1. 在主菜单选择工具>用户定制>工具条 2. 在工具条选择栏勾选‘节点’, ‘单元’, ‘特性’ 3. 点击 4. 工具>用户定制>工具条 工具条>节点 (开), 单元 (开), 特性 (开) 图2. 工具条编辑窗口 也可使用窗口下端的状态条(图3(b))来转换单位体系。

迈达斯教程及使用手册

01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。 2、通过自定义方式来定义——示范混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示范钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。 钢 材 规 范 混 凝 土 规 范 图1 材料定义对话 框

02-时间依存材料特性定义 我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3); 3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);

图1 收缩徐变函数 图2 强度发展函数

定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。 图3 时间依存材料特性连接 图4 时间依存材料特性值修改

相关文档
最新文档