图像配准中的特征分类和评价

图像配准中的特征分类和评价

0 引言

图像配准就是将同一场景(或物体)在不同时刻或视角下,经由相同或者不同成像设备得到的,位于不同坐标系下的图像变换到同一坐标系的过程。目前,基于特征的图像配准的应用范围较广,研究较多。该配准方法主要包含以下几个步骤:特征选择与提取、特征匹配、几何变换模型的选取与参变量的估计、图像重新采样与变换等。这些共同特征主要包括点特征、线段特征、曲线与轮廓特征、封闭区域特征、矩不变特征和混合特征等。与其它方法相比,基于特征的图像配准方法具有计算复杂度低、鲁棒性强、能够适用于部分存在复杂几何变形图像之间的配准等优点。

1 几种常用的图像配准特征

由于图像中的特征丰富多样,因此产生了多种基于不同特征的配准方法,其中经常使用的特征有:点、线、边缘、轮廓、闭合区域、矩不变量、重心等。下面我们对这些特征做一些简要的介绍。1.1 点特征

点特征是图像的一种重要的局部特征之一,其主要采用的是图像中的边缘点、直线的交点、角点、高曲率的点以及极值点等。比较经典的特征点提取算法主要有Harris 角点检测算法、SUSAN 算法和DoG 算法等。

在基于点特征的图像配准方法中,Zhang,H.等将ICP 策略引入到图像配准算法中,通过优化两对特征点集间的距离函数,最终实现特征点集间的匹配。王青松等提出了一种改进的Harris 特征点提取算法,并将其应用于纹理频繁影响区的特征提取。刘冬秋等提出了一种改进的ICP 算法,并将其应用到雕像数

图像配准中的特征分类和评价

赵夫群 咸阳师范学院 陕西咸阳 712000

据的精确配准中。1.2 线段特征

直线段也是图像中的一个显著特征。在文献[3-4]中,作者成功地利用图像中提取直线段,实现了图像间的配准。1.3 曲线与轮廓特征

很多时候,场景图像中都包含有丰富的曲线和轮廓信息,曲线和轮廓相对于其它特征来说对噪声和光线变化的鲁棒性都较高,从匹配曲线和轮廓中计算几何变换参变量的值也比较容易,因此基于曲线和轮廓的图像配准方法在图像配准领域内被广泛使用。

近年来,随着图像分割、特征检测等技术的发展,曲线和轮廓检测技术已逐渐成熟。目前曲线和轮廓的检测算法包括:Canny 边缘提取算子、拉普拉斯一高斯算子(LoG)、基于一阶或二阶差分的曲线检测算法、区域增长、图像分割方法。Govindu 等采用轮廓上点的切线斜率来表示物体轮廓,通过比较轮廓边缘的分布确定变换参数。Li,H.andManjunath 等通过物体的轮廓实现了图像的配准。郭宝云等在常用的多特征提取方法的基础上提出了一种附加约束条件的零件轮廓线的多特征提取方法。

1.4 封闭区域特征

Goshtasby 等人最早应用分割区域方法来配准图像,他们实现配准的控制点是封闭区域的重心。何芳芳等[提出了一种基于图像区域特征的模糊熵差景像匹配新算法。李建更等提出了一种通过提取参考区域光照阴影及其轮廓几何特征的方法,解决了探测器在行星表面精确着陆的问题。1.5 矩不变量特征

矩不变量是从这些区域中计算出的具有对平移、旋转和缩放不变性的描述子。根据不同阶的矩,可以组合出具有不同不变性的各种矩不变量。胡大可等提出了基于矩不变量的二位图像序列动态特征抽取方法,实现了用计算机自动识别人体关节点的目标。黄义仿等提出了一种基于小波分析和矩不变量的量化特征提取新方法,解决了旋转机械智能诊断中缺少量化特征值的问题。1.6 混合特征

通常,在很多图像中往往是同时包含有多种可以利用的特征,利用几种特征的组合,可以有效弥补单一特征的缺点并充分利用它们的长处。结合相似度量函数,图像的灰度信息可以准确无误地验证曲线匹配的正确性,从而

提高基于特征的图像匹配的鲁棒性和稳定性。Johnson 等提出利用特征点和灰度值信息结合进行图像配准的方法。Mista 等提出利用特征点和曲线结合的方法来实现图像配准。

2 特征的评价标准

基于特征的图像配准的关键在于特征的选取,选取特征的好坏也直接决定着图像配准的成败。通过对众多特征检测算法的总结发现,一种好的特征应该具备以下性质:

(1)重复率:重复率是指在不同条件下拍摄的同一目标或者场景的多幅图像中,能够同时被检测到的特征占全部检测出特征的比率。重复率越高,图像配准的鲁棒性和稳定性越高,反之鲁棒性和稳定性就越差。

(2)显著性:也叫独特性,是指所选择的配准特征在基准图像和浮动准图像中应该都是显著的对象,易于检测,并且有稳定可靠的提取算法。

(3)数量性:特征点的数量应该是丰富的,这样有利于根据不同的应用环境对所需的特征点数量进行调整,而且特征点的分布应该能够反映图像的内容,从而能够从它们的对应关系中有效地估算出所选几何变换模型的参数。

(4)准确性:检测到的特征点应该在位置、尺度等方面具有较高的准确性,不同图像对应特征点之间的位置偏差不能太大,这直接关系到利用这些特征计算出的几何变换模型参变量的值的正确性及图像配准所能达到的精度。

(5)高效性:一幅图像的特征数目可能很多,所以更加需要一个高效的描述符,即描述符特征向量的维数应尽可能低,而描述符要有显著的可区分性,特征点检测的时间不能太长,遥尽量满足实时性的要求。

3 总结

针对基于特征的图像配准方法,本文主要综述了点特征、线段特征、曲线与轮廓特征、封闭区域特征、矩不变特征以及混合特征等几种主要特征,对于一些其他的特征还有待进一步的研究和探讨。而且,随着某些具体应用对各种性能指标要求的不断提高,对图像配准技术也提出了新的要求,例如,如何提高图像配准的精度,如何改善图像配准算法的运算效率、稳定性、鲁棒性和可靠性等。有些问题虽然已经有了较多的解决方案,但仍需进一步的发展完善。

基于特征点图像配准方法的应用研究

基于特征点图像配准方法的应用研究 【摘要】针对常用的图像配准技术配准精度不高的问题,本文首先采用RANSAC算法剔除SURF算法初匹配中的误匹配对,再在初次提纯的匹配对中进行欧氏距离排序,提取距离最小的有限匹配对作为最终的匹配结果。通过实验表明该方法配准精度高,效果好,为后续图像的融合拼接打下良好的基础。 【关键词】RANSAC算法;SURF算法;图像配准 引言 随着传感器技术和计算机计算能力的提高,图像处理技术在社会生活中的应用越来越广泛。但是由于客观问题及图像传感器本身的局限性等会造成采集到的图像模糊、不完整等问题,因此采用图像处理技术对图像进行配准拼接处理获取完整的图片或者较宽视觉的图片就非常必要。本文采用基于SURF算法二次匹配法,对图像的特征点进行配准,配准精度得到明显的提高。 1、基于SURF算法初匹配存在问题的分析和解决方法 SURF算法[1]一般用特征矢量间的欧氏距离作为待配准图像的匹配判断矢量。匹配就是对于图像A中某个特征点,找出图像B中与它欧氏距离最近的特征点,简单地说,如果最近的距离小于某个阀值,则认为这两个点被匹配。 令A图像中的特征点描述子集为基准集,B图像中的特征点描述子集为目标集,通过欧式距离相似度判定度量,对每个qj我们在基准集中都能找到与其欧式距离最近的pi,这样qj和pi就构成一个匹配对。虽然匹配对中的两个特征点描述子的欧式距离最近,但这并不意味着它们对应相同的图像区域。在正确的匹配对中的两个特征点描述子的欧式距离会很小,理想状况下为零。但是当qj 与基准集中多个点的欧氏距离相近的时候,在判断时qj与它最近邻构成的匹配对就有可能是错误的匹配。 上述的分析表明,采用SURF算法对图像进行匹配,对于特征丰富的图像,往往得到数以百计的特征点匹配对,而且具有一定的误差性,存在错误的匹配对。因此就需要后续的检验过程,提高配准精度。 配准后的图像要转换到同个坐标下,才能进行拼接融合。这就涉及到图像变换模型。从图像变换模型的要求[2]中,我们知道,只要有3对对应的匹配对,我们就可以计算出两幅图像间的变换关系。在此我们先采用RANSAC算法消除错误匹配提高配准精度,以便得到更加精确的变换参数矩阵,便于后期的融合拼接。 2、基于RANSAC剔除误匹配提高配准精度的实现方法

2D3D医学图像配准研究

分类号:密级: UDC:学号: 010768 东 南 大 学 硕 士 学 位 论 文2D-3D 医学图像配准研究 研究生姓名:梁玮 导师姓名: 鲍旭东 教授 罗立民教授 申请学位级别工学硕士工程领域名称生物医学工程 论文提交日期 2004年 月 日论文答辩日期2004年月日学位授予单位东南大学学位授予日期2004年月日答辩委员会主席评阅人 二〇〇四年六月

2D-3D REGISTRATION OF MEDICAL IMAGE A Dissertation Submitted to Southeast University For the Academic Degree of Master of Engineering BY LIANG Wei Supervised by Prof. BAO Xudong And Prof. LUO Limin Department of Biomedical Engineering Southeast University June 2004

东 南 大 学 学 位 论 文 独 创 性 声 明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得东南大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 研究生签名:日期: 东 南 大 学 学 位 论 文 使 用 授 权 声 明 东南大学、中国科学技术信息研究所、国家图书馆有权保留本人所送交学位论文的复印件和电子文档,可以采用影印、缩印或其他复制手段保存论文。本人电子文档的内容和纸质论文的内容相一致。除在保密期内的保密论文外,允许论文被查阅和借阅,可以公布(包括刊登)论文的全部或部分内容。论文的公布(包括刊登)授权东南大学研究生院办理。 研究生签名: 导师签名:

医学图像配准

《数字医学图像》报告 内容:图像配准专题 专业: 2012级信息管理与信息系统班级:信管一班 小组成员: 20120701020 韩望欣 20120701008 毕卓帅 20120701005 胡庆 指导老师:彭瑜 完成日期: 2015 年 10月 25日

图像配准专题 简介:图像配准是对取自不同时间,不同传感器或不同视角的同一场景的两幅图像或者多幅图像匹配的过程。图像配准广泛用于多模态图像分析,是医学图像处理的一个重要分支,也是遥感图像处理,目标识别,图像重建,机器人视觉等领域中的关键技术之一,也是图像融合中要预处理的问题,待融合图像之间往往存在偏移、旋转、比例等空间变换关系,图像配准就是将这些图像变换到同一坐标系下,以供融合使用。 一:图像配准方法国内外进展情况 图像配准最早在美国七十年代的飞行器辅助导航系统、武器投射系统的末端制导以及寻地等应用研究中提出,并得到军方的大力支持与赞助。经过长达二十多年的研究,最终成功地用于中程导弹及战斧式巡航导弹上,使其弹着点平均圆误差半径不超过十几米,从而大大提高了导弹的命中率。八十年代后,在很多领域都有大量配准技术的应用,如遥感领域,模式识别,自动导航,医学诊断,计算机视觉等。各个领域的配准技术都是对各自具体的应用背景结合实际情况量身订制的技术。但是不同领域的配准技术之间在理论方法上又具有很大的相似性,从而使得在某领域的配准技术很容易移植到其它相关领域。目前国内外研究图像配准技术比较多的应用领域有红外图像处理、遥感图像处理、数字地图定位和医学图像处理等领域。 二、图像配准在医学领域的应用 20世纪以来随着计算机技术的不断发展,医学成像技术得到了快速的发展。尖端的新型医疗影像设备层出不穷,如计算机线摄影、数字减影等等,这些已经成为现代医学诊断必不可少的医学数字成像手段。由于这些医学数字成像设备有不同的灵敏度和分辨率,它们有各自的使用范围和局限性。多种模式图像的结合能充分利用图像自身的特点并做到信息互补。近几十年以来,图像配准在医学上的应用日益受到医学界和工程界的重视,己在世界范围广泛展开,在相关文献中己经提出了很多种医学图像配准的方法,这些研究成果广泛地运用到医学领域中。图像配准在医学中的应用领域主要有以下几方面: ?组织切片图像的处理与显微结构三维重建 ?疾病诊断及其发展和消退的过程检测 ?神经外科手术可视化、神经外科手术一计划及术前评估 ?感觉运动和认知过程的神经功能解剖学研究 ?神经解剖变异性的形态测量分析学 ?放射治疗和立体定向放射外科治疗计划 三、图像配准的定义 对于二维图像配准可定义为两幅图像在空间和灰度上的映射,如果给定尺寸的二维矩阵F 1和F2代表两幅图像F1(X,Y)和F2(X,Y)分别表示相应位置(X,Y)上的灰度值。则图像间的映射可表示为:F (X,Y)=G(F (H(X,Y))),式中H表示一个二维空间坐标变换,即(X’,Y’)=H(X,Y),且G是一维灰度变换。 四、图像配准方法的分类 1、维数 主要是根据待配准图像的空间维数及时间维数来划分的。图像仅含空间维数或者是图像的时间序列中带有空间数,其配准可根据图像的空间维数分2D/2D,2D/3D,3D/3D,4D/4D

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

医学图像配准技术 综述

医学图像配准技术 A Survey of Medical Image Registration 张剑戈综述,潘家普审校 (上海第二医科大学生物医学工程教研室,上海 200025) 利用CT、MRI、SPECT及PET等成像设备能获取人体内部形态和功能的图像信息,为临床诊断和治疗提供了可靠的依据。不同成像模式具有高度的特异性,例如CT通过从多角度的方向上检测X线经过人体后的衰减量,用数学的方法重建出身体的断层图像,清楚地显示出体内脏器、骨骼的解剖结构,但不能显示功能信息。PET是一种无创性的探测生理性放射核素在机体内分布的断层显象技术,是对活机体的生物化学显象,反映了机体的功能信息,但是图像模糊,不能清楚地反映形态结构。将不同模式的图像,通过空间变换映射到同一坐标系中,使相应器官的影像在空间中的位置一致,可以同时反映形态和功能信息。而求解空间变换参数的过程就是图像配准,也是一个多参数优化过程。图像配准在病灶定位、PACS系统、放射治疗计划、指导神经手术以及检查治疗效果上有着重要的应用价值。 图像配准算法 可以从不同的角度对图像配准算法进行分类[1]:同/异模式图像配准,2D/3D图像配准,刚体/非刚体配准。本文根据算法的出发点,将配准算法分为基于图像特征(feature-based)和基于像素密度(intensity-based)两类。 基于特征的配准算法 这类算法利用从待配准图像中提取的特征,计算出空间变换参数。根据特征由人体自身结构中提取或是由外部引入,分为内部特征(internal feature)和外部特征(external feature)。

【作者简介】张剑戈(1972-),男,山东济南人,讲师,硕士 1. 外部特征 在物体表面人为地放置一些可以显像的标记物(外标记,external marker)作为基准,根据同一标记在不同图像空间中的坐标,通过矩阵运算求解出空间变换参数。外标记分为植入性和非植入性[2]:立体框架定位、在颅骨上固定螺栓和在表皮加上可显像的标记。Andre G[3]等将该方法用于机器人辅助手术,对于股骨移植,位移误差小于1.5mm,角度误差小于3°,由于计算量小,可以实现实时配准。但是标记物必须事先被固定好,不能用于回顾性配准,而且该方法只适用刚体配准。 2. 内部特征 从医学影像中可以提取出点、线和面:血管的交点、血管、胸腹之间的横膈膜等,这些特征作为内标记点(internal marker) ,利用其空间位置同样可以求解出空间变换参数。Hill DL[4]用11个形态点对脑部配准,误差<1mm,方差为1.73mm。Meyer CR[5]除了血管树的交点,还使用了左右脑之间的间隔等特征。Maurer CR[6,7]赋予点、线、面等几何特征不同的权重(weighted geometrical features, WGF),进一步改进了算法。内标记点配准是一种交互性的方法,将3D图像配准简化为点、线和面的匹配,可以进行回顾性研究,不会造成患者的不适。但是医生对特征位置的判断影响到配准精度,为了克服人为误差,需要多次重复操作,以平均值作为最终结果。 表面匹配算法也利用了内部特征[8]:进行图像分割,提取出轮廓曲线、物体表面等内部特征,使2D/3D图像配准简化为2D曲线和3D曲面的匹配,不再考虑物体内部像素。典型的应用是刚体配准的“头帽”算法[9],从头部的3D图像中分割出表面轮廓,分别作为头模型和帽模型。配准的目标函数是头表面和帽表面之间的均方距离,该距离是空间变换参数的函数。表面匹配算法是一种自动算法,在物体表面轮廓相似并且清晰的情况下,配准效果很好。其不足之处在于:准确地进行图像分割很困难;不同模式的图像,如CT/PET图像,由于器官的轮廓差异较大,难于精确地匹配。 3. 在非刚体配准中的应用 进行非刚体配准前要确定物理模型,常见有弹性模型、粘稠液体模型、生物力学模型。通过在感兴趣区域中提取参考点、2D或是3D轮廓线,使待配准图像

遥感图像的分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。

图像配准技术方法研究

图像配准技术方法研究 摘要随着信息技术的迅猛发展,图像配准技术已经在军事、遥感、医学、计算机视觉等多个领域得到了广泛的应用。图像配准技术是图像处理的一个基本问题,它是将不同时间、传感器或视角下获取的相同场景的多幅图像进行匹配的图像处理的过程。三类图像配准的方法大致如下:基于灰度的图像配准方法。基于变换域的图像配准方法。基于特征的图像配准方法。本文将应用这三种方法对图像配准进行研究。并重点研究基于特征的图像配准方法。 关键词图像配准,特征点匹配,灰度插值,控制点的提取 Abstract The technology of image registration is being widely used in the military, remote sensing , medical, computer, visual and any other fields with the rapid development of information technology. The technology of image registration is a kind of process to match different pictures getting from different periods and different cameras but a same scene, it is a basic point to handle the pictures. There are three kinds of ways to do the image registration:According to the level of the color of gray getting from the pictures.According to transforming domains.According to the features The three kinds of ways will be used to discuss the image registration in the thesis, and the way according to the features will be discussed more in the thesis.

多模图像配准融合

多模图像配准融合

浅析多模态医学图像的配准与融合技术 来源:本站原创作者:朱俊林发布时间:2009-06-07 1 医学图像的配准技术简介 医学图像的配准技术是90年代才发展起来的医学图像处理一个重要分支, 并且日益受到了医学界和工程界的重视。医学图像的配准是指对于一幅医学图 像寻求一种或者是一系列的空间变换,使两幅图像的对应点达到空间位置和解 剖结构的一致,这种一致是指人体上的同一解剖点在两张匹配的图像上有相同 的空间位置。简单地说医学图像配准就是解决两幅图像的严格对齐问题。配准 的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的解剖点及 手术感兴趣的点都达到匹配。 医学图像的配准按图像来源分为:单模态(mono-modality)与多模态配准(multi-modality)。单模态配准是指对来自同一成像设备的不同时刻或不同角 度的图像进行配准。但在实际临床应用中,单一模态的图像往往不能提供医生 所需要的足够信息,通常需要将不同模态的图像融合在一起得到更丰富的信息 量,从而作出准确的诊断,制订出合适的治疗方案。所谓多模态配准,是将来 自不同形式的医学图像进行空间上的对准,将对应的相同解剖位置标记出来以 实现图像融合和进一步后期处理。多模态图像之间的配准使用最频繁,主要应用在诊断方面,可分为解剖—解剖的配准和解剖—功能的配准两大类,前者将显示组织形态学不同方面的两幅图像混合,后者将组织的新陈代谢与它相对于解剖 结构的空间位置联系起来。目前,主要的研究工作重点是进行CT、MRI以及PET、fMRI等图像的配准。 2 医学图像融合技术简介 医学图像的融合是指将两幅(或两幅以上)来自不同成像设备或不同时刻获 取的已配准图像,采用某种算法,把各个图像的优点或互补性有机结合起来, 获得信息量更为丰富的新图像的技术。医学诊断往往要综合许多不同信息进行, 传统的方法是,临床医生利用灯箱分别观看这些胶片,综合对比,得到结果。 如果能够把这些互补信息以某种方式综合在一起作为一个整体作为医学诊断的 依据,使得临床医生只要在一张综合图像上就能看到不同原始图像的信息,那 么就能提供全方位的信息细节。 3 医学图像配准及融合的关系及意义 医学图像的配准和融合有着非常密切的关系,特别是对于多模态图像而 言,配准和融合是密不可分的。配准是融合的前提,也是决定图像融合技术发 展的关键技术,若事先不对待融合图像进行空间上的对准,那么融合后的图像 也是毫无意义的。融合是配准的目的,通过来自不同影像设备的图像融合,可 以得到更多的信息,提高影像数据的利用率。在多模态医学图像信息融合中, 是要把相对应的组织结构融合在一起,而待融合的图像往往来自不同的成像设 备,它们的成像方位、角度和分辨率等因素都是不同的,所以这些图像中相应 组织的位置、大小等都是有差异的,必须先进行配准处理,才能实现准确地融 合。

图像分类所需知识整理

图像分类 图像分类技术得益于两种技术的发展,一种是数据库技术,另一种是计算机显示技术。从这两种技术角度来看,图像分类技术可以分为基于文本的图像分类系统和基于图像自身内容的分类系统。 基于内容的图像分类系统 为了克服传统图像分类技术的局限性,人们开始寻求新的图像分类检索方法,于是出现了基于内容的图像分类技术,即使用图像本身的颜色、形状、纹理等视觉特征代替传统的手工填加关键字信息进行分类的技术。 基于内容的分类它直接对图像内容进行分析,抽取特征和语义,利用这些特征和语义进行分类并建立索引,进行检索。 人们已经将研究重点转移到从图像的视觉内容中自动提取图像特征用于分类及检索上,并且已经开发了各类基于内容的图像视频分类检索系统。 其中较著名的有QBIC、Photobook、Foureys等。这些系统主要利用了图像的低层次信息,如颜色、形状、布局、纹理等。 近几年来,基于内容的图像分类检索技术有了长足的发展,主要是基于低层次视觉特征的图像分类检索,比较成功的例子有IBM 公司的QBIC系统等。 但是针对高层次语义特征的图像分类检索系统还没有成熟的产品。在基于内容的多媒体信息分类检索技术研究中,基于理解的文本分类检索已经有比较好的研究成果,但基于视觉特征和语义特征的图像、音视频分类检索尚处于研究开始阶段。 目前,在图像分类方面,还没有比较成熟的算法能够对所有的图像类型都进行有效的分类。 因此研究图像分类的有效算法对于图像检索技术发展具有十分重要的意义。 从不同的角度,图像可以分为不同的类别。 本文将图像根据功能不同分为图标类图像和图片类图像。 图片类图像在分类技术上,采用提取图像的颜色数,主体颜色,色彩的饱和度等图像基本特征的方法, 根据图像低层次的可见特征进行分类。这些种类不同的图像在视觉特征上有较大的区别, 结合因特网中网页的相关文本信息可以实现语义级的分类。 图像的合理分类对提高基于内容的图像检索结果的准确性具有十分重要的作用。 万维网上的图像的类别一般如下 照片类图片(Photograph)特点 照片类图片通常指具有纹理或纹理趋势的实物图片或通过某些专门软件(如photoshop、3D Max等)处理产生的图片。 照片类图片包括照片(从自然界采集或通过扫描得到的图片)、类照片(主要指通过某些专门的图片处理软件生成的图片或计算机游戏的屏幕图片)等。 特点为:图片中使用的颜色数多,颜色逼真、鲜艳,颜色层次丰富,并且颜色之间过渡比较缓慢,能够表现出颜色、 阴影的细微层次变化。都有比较明显的纹理或纹理趋势,边缘一般模糊不清晰,且在大小比率(长*高)上差别也较小。 常用来显示真实的场景。 如果从照片内容上分类,照片类图片可以分为自然景物类和人造景物类图片。自然景物类图片一般颜色比较鲜明,但是纹理趋势不明显,而人造景物类图片中一般为城市高楼、宗教庙宇、室内物件之类的图片,图片中包含的线条比较多,有较明显的纹理趋势。 图画类图片(Graphic)特点 图画类图片通常都是具有良好边界的设计图片,它一般是通过绘图软件或是手工绘制而成。 图画类图片主要包括:卡通画、国画、油画、图表、徽标、艺术字等。与照片类图片相比,图画类图片中使用的颜色数较少,但是区域颜色的饱和度通常都比较高,多使用纯色或是饱和度较高的颜色,并且颜色间的过渡也较照片类图片快,颜色层次单薄。图片中纹理趋势不明显,通常有清晰的线条和光滑的边缘。另外图画类图片在大小比率上差别较大。

图像识别匹配技术原理

第1章绪论 1.1研究背景及意义 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以由许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。 图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 目前主要图像配准方法有基于互信息的配准方法,基于相关性的配准方法和基于梯度的配准方法。其中基于梯度的方法基本很少单独使用,而作为一个辅助

基于特征点的最近邻配准算法

第27卷 第2期 许昌学院学报Vol .27.No .2 2008年3月JOURNAL OF XUCHANG UN I V ERSI TY Mar .2008收稿日期:2007-09-29 基金项目:许昌学院青年资金项目(2007040) 作者简介:戚世贵(1973—),男,河南新乡人,讲师,硕士,研究方向:图像处理,虚拟现实. 文章编号:1671-9824(2008)02-0067-05 基于特征点的最近邻配准算法 戚世贵1,戚素娟2 (1.许昌学院计算机科学与技术学院,河南许昌461000;2.中国科学院国家授时中心,陕西临潼710600) 摘 要:利用尺度不变特征点的提取方法提取特征点,并对SI FT 方法提取出的特征点用最近邻算法进行配准,在搜索最近邻特征点和次近邻特征点时使用了在K -D 树搜索算法基础上进行改进的搜索算法BBF (Best B in First )算法.实验证明该算法具有配准精度高,鲁棒性好的特点. 关键词:特征点;图像配准;K -D 树;BBF 中图分类号:TP391 文献标识码:A 0 引言 图像拼接有着广泛的应用前景,如将多幅图像拼接成一幅图像,就要用到图像拼接技术.图像拼接中 最核心技术是图像配准.图像配准技术当前主要有基于块的配准[1,2]、比值配准法[3]、网格配准法[4]、基于 特征的配准法[5,6],每种方法各有优缺点,存在的主要问题是依据何种原则对两幅图像进行精确快速的 配准. 本文采用基于特征的配准算法对SI FT 方法提取出的特征点用最近邻算法进行配准.主要是在尺度不 变特征点(Scale I nvariance Feature Transf or m -SI FT )[7,8]的提取方法提取特征点的基础上,利用特征点的 相关几何信息实现两幅图像的配准.使得在高维空间搜索效率有较大提升.基于特征的配准法一般分为三个过程:①特征提取;②利用一组参数对特征作描述;③利用特征的参数进行特征匹配.在两幅图像中用同一种特征提取法提取出特征点,根据相似性原则对两幅图像中的特征点进行匹配. 1 SI FT 特征点提取 尺度不变特征点(Scale I nvariance Feature Transf or m 2SI FT )是由David Lowe 提出的.利用SI FT 方法从图像中提取出的特征点对图像缩放和旋转保持不变,对光线、噪声、仿射变化具有鲁棒性,特征点描述符具 有很高的独特性.研究表明[9]SI FT 方法相对其他特征点提取方法如Harris 特征点、K LT 特征点等具有优 越性.SI FT 提取过程可以分为4个步骤. 1.1 求取缩放空间中的极值点作为侯选特征点 首先对图像进行必要的预处理,接着对图像用不同的采样距离形成一个金字塔分层结构,即第一次采样时每0.5个像素进行采样,意味着将原来图像放大一倍,第一次采样的图像作为第一组的图像,然后以成倍的采样距离即1、2、4个像素再分别对图像进行采样产生第二、三、四组的图像.这样就形成了一个金字塔形状的分层结构.高斯函数如下: G (x,y,σ)=12 πσ2e -(x 2+y 2)/2σ2(1)对形成的金字塔分层结构用高斯内核函数进行滤波形成高斯金字塔分层结构,对各层图像进行高斯

图像配准的方法

图像配准的方法 迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准 研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围 的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位 系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其 所采用的算法称之为图像相关等等。 图像配准的方式可以概括为相对配准和绝对配准两种:相对配准是指选择 多图像中的一张图像作为参考图像,将其它的相关图像与之配准,其坐标系统 是任意的。绝对配准是指先定义一个控制网格,所有的图像相对于这个网格来 进行配准,也就是分别完成各分量图像的几何校正来实现坐标系的统一。本文 主要研究大幅面多图像的相对配准,因此如何确定多图像之间的配准函数映射 关系是图像配准的关键。通常通过一个适当的多项式来拟合两图像之间的平移、旋转和仿射变换,由此将图像配准函数映射关系转化为如何确定多项式的系数,最终转化为如何确定配准控制点(RCP)。目前,根据如何确定RCP的方法和图像配准中利用的图像信息区别可将图像配准方法分为三个主要类别:基于灰度信 息法、变换域法和基于特征法[25],其中基于特征法又可以根据所用的特征属 性的不同而细分为若干类别。以下将根据这一分类原则来讨论目前已经报道的 各种图像配准方法和原理。 1基于灰度信息的图像配准方法 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而 是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是 实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变 换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多 基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 (1)互相关法

基于特征点的内窥镜图像和CT影像配准方法

基于特征点的内窥镜图像和CT影像配准方法 医学图像配准是目前医学图像处理的关键技术。将病人病灶部位的CT图像和遥操作微创手术机器人所隐含的数据信息结合,根据微创手术机器人系统的特殊要求,提出一种新的基于特征点的快速局部图像配准方法,可实现对特殊组织特征点和一般组织特征点的配准。算法以欧氏距离作为配准相似度度量,用最近点迭代法(ICP)求解配准变换关系。通过对医学图像进行测试,配准结果较好,该算法能实现对图像的整体轮廓及图像中感兴趣的生理解剖位置的配准。 标签: 医学图像配准;特征点;ICP算法 TB 1 引言 医学图像配准是目前医学图像处理的一项关键技术,其目的是建立患者坐标系和术前影像坐标系之间的映射关系,使术前影像和术中内窥镜图像上的几何特征在空间上对应起来,配准的结果使所有的解剖点或者是所有在医学上具有诊断意义的点和手术部位都达到匹配。 根据配准的过程,医学图像配准方法可以分为基于像素相似性和基于形状特征两类。基于像素相似性的方法主要利用灰度值作为配准的准则,不需要对图像进行预处理,配准精确度高,缺点是耗费时间长、效率较低。基于形状特征的配准方法主要是利用图像间的共有几何特征进行配准,常使用的形状特征有点、轮廓等,原理比较简单,应用广泛。基于轮廓的配准方法根据所配准对象的边缘轮廓进行配准,可以快速实现图像的全局配准,对于距离轮廓较远区域的配准能力较差。基于特征点的配准方法通过对特征点插值来计算映射转换关系,能够很好地完成点对之间的配准。这两种方法各有侧重,基于轮廓的方法侧重图像整体的结构特征匹配,而基于特征点的方法能够处理任意点对间的变换和配准。在微创手术过程中,视觉系统给手术医生提供直观的视觉信息反馈,便于手术医生进行手术位置定位以及手术过程中的视觉引导。这里我们要根据从内窥镜得到的二维图像信息,结合遥操作微创手术机器人所隐含的数据信息,以CT图像为浮动图像,快速地建立内窥镜图像信息和CT图像的匹配。 2 特征点的提取 在微创手术机器人系统中,医学图像配准中所需的特征点通常是医生选取的在医学上具有解剖意义的一系列解剖点,而非纯粹的几何意义的点,解剖点大多灰度变换剧烈,或者具有特定的几何意义,例如拐点、高曲率点等。人体器官模

图像配准技术的应用与研究

图像配准技术的应用与研究 【摘要】数字图像配准技术在当今科学研究的各个领域都显示出了很高的利用价值,伴随着人们对匹配效果的不断增强,图像配准技术也受到人们越来越多的关注。本文主要介绍图像配准在各个领域中的应用以及图像配准算法的研究现状。 1.图像配准技术的应用 目前,在很多领域都运用到了图像配准技术,这些领域分布在很多学科,包括机器视觉、医疗图像鉴定[1]等,另外还有现代汽车工业上运用到的器件完整度检测,当前受到热捧的景物匹配技术也都利用了图像配准技术。图像配准早已是一个非常热点同时也非常前沿的技术,现在图像多源信息融合作为一门强势的基础学科,已被广泛运用于军工、民用、商业等领域[2][3]。 在计算机机器视觉中,图像配准技术也是其他延伸技术的基础,包括指纹识别、运动目标识别、人脸识别等当今非常热门的研究领域。图像配准技术既是基础,也是难点。当前有关视频监控、目标跟踪方面的研究已经很深入,且取得了很多辉煌的成就,但归根到底,所有的视频信息也都是由一帧一帧的图像所构成,因此要解决这类识别问题,同样依赖于图像配准技术的发展。 2.图像配准基本原理 在数字图像配准技术中,灰度相关处理是一种非常重要的算法。这类算法最大的特点就是算法的实现非常容易,但这类算法又有限制其发展的弱点,那就是该类算法的时间复杂度都非常高,计算机在进行处理的时候消耗的时间过长,实时性较差,使得这类算法在运用到实际中的时候,难以得到很好的效果。原因在于这类配准方法在对相似度进行计算时,基本上要对待配准区域的每一个像素点进行计算,这样的大量运算会直接增加配准搜索过程的时间,同时其受到图像尺度变化的影响非常大。还有一种方法是使用图像中的所有像素点的灰度信息来进行配准,再使用一种搜寻的方式把那些属于某一相似度的极值点找到,算法同样利用的是对整幅图像中的所有像素点。因其计算量太大,所以实际使用价值也不高。 图像进行特征提取的时候,使用的方法要根据实际的情况来做出不同的选择,因为不同图像的特征点有其所特有的性质。这些方法广泛的涉及到图形图像形态学,而且无法把这些模型有效的归纳到一起。针对图像的特征点提取,很多方法都运用了图像中那些对图像发生平移、尺度等变换时保持不变性的特征点,甚至某些点还能是在图像发生仿射变换时也保持不变性。通常数字图像中的特征做了图像全局特征和图像局部特征的划分。对于图像的全局特征,由于要考虑图像中所有像素点对当前点的贡献和影响,所以对图像信息的描述是非常复杂的,

基于特征点的图像匹配技术研究及应用

基于特征点的图像匹配技术研究及应用 文献综述 1.图像匹配的概念 图像匹配[1]是指通过一定的匹配算法在两幅或多幅图像之间识别同名点,如二维图像匹配中通过比较目标区和搜索区中相同大小的窗口的相关系数,取搜索区中相关系数最大所对应的窗口中心点作为同名点。其实质是在基元相似性的条件下,运用匹配准则的最佳搜索问题。 图像匹配中事先获得的图像称为基准图像(base image),在匹配过程中在线或者实时获得的图像称为实时图像(real time image)。基准图像可以比实时图像大也可以比实时图像小。当基准图像比实时图像大时,匹配过程就是在基准图像中搜寻实时图像位置的过程;当实时图像比基准图像大时,匹配过程就是在实时图像中寻找作为目标的基准图像的过程。在地图导航系统[2]中,基准图像比实时图像大。如图1.1所示。 M2 图1.1 地图导航系统中的图像匹配示意图 基准图像和实时图像是对同一对象有差别的近似描述,设和分别为基准图像和实时图像的灰度分布,在不考虑关照变换等影响下,两者存在如下关系: 鍏紡 其中是高斯白噪声,可以通过一定的滤波方法滤除。是上的点在X和Y方向上的位置偏差,称为定位噪声。位置偏差往往是因为图像的几何形变造成的。 实际上利用计算机进行处理的并不是连续图像,图像的位置和灰度都被划分为离散的值,常用像素矩阵来表示一副图像。在地图匹配导航中,通常基准图像比实时图像大。直接进行相关匹配的两幅图像应该是大小一样的,为了确定实时图像在基准图像中的位置,就必须在基准图像中提出与实时图像大小相等的基准子图,并逐个与实时图像进行比较,以便找出与实时图像匹配的那个基本子图,从而确定实时图像在基准图像中的位置。所以一般图像匹配的过程就是不断从基准图像中提取基准子图与实时图像进行相关运算的过程,这个过程

浅谈医学图像配准研究

浅谈医学图像配准研究 【摘要】随着现代医学影像技术的快速发展,越来越多的影像设备应用于临床,而不同设备采集的图像参数往往是不一样的,因此,要想将病变部位的各种不同情况在一张图像上体现出来,研究图像配准技术就是相当必要的,它能够将两幅图像中的信息综合起来,非常具有现实意义。本文从医学图像配准的概念、发展现状、分类及应用等方面进行了阐述。 【关键词】医学图像配准;多模态;医学影像技术 1.医学图像配准概述 医学图像配准是指将来自不同形式的探测器(如MRI,CT,PET,SPECT 等)的医学图像,利用计算机技术实现对于一幅医学图像寻求一种或者一系列的空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。通俗地讲,医学图像配准就是对参考图像进行一系列的空间变换,使得参考图像和浮动图像中的对应点在空间位置或者解剖位置上达到一致[1]。主要包含4个模块:几何变换、插值算法、相似性测度和寻优算法。医学图像配准是医学图像处理的一个重要研究领域,被广泛应用于手术导航、病变跟踪以及治疗后期评估等临床诊断治疗中。 2.医学图像配准研究的现实意义 随着新型传感器的不断涌现,人们获取图像的能力迅速提高,不同物理特性的传感器所产生的图像也不断增多。由于成像原理以及成像设备的不同,造成成像模式的不同,按照不同成像模式提供信息的不同,医学图像可以分为解剖结构图像和功能图像两大类。单一模态的图像往往很难提供足够的病理信息,让医生作出病理诊断,常常需要将同一病人的多种成像模式的图片综合起来进行分析,以便获得病人更全面的信息,如X 射线断层扫描(CT,Computed Tomography)对骨骼信息的揭示是其他成像手段所不能比拟的,而要查看软组织结构信息,则会选择核磁共振成像(MRI,Magnatic Resonance Imaging);利用PET、SPECT 获得功能信息,再综合CT、MRI的解剖信息分析。这种把各种成像模式的图像信息融合成一种新的影像模式的技术称为图像融合技术,经过融合后的图像克服了各种单一模式图像信息存在的不足。而在图像融合之前首先要经过图像的配准,配准结果的好坏直接影响图像融合的质量。因此,医生要想全面的了解病变组织的情况,必须准确的对多幅图像进行配准才能融合,进而制定出更加合理的治疗方案。因此,以图像配准技术为基础将多种模态图像信息融合起来,充分利用不同模态图像的优越性,将人体解剖结构信息以及功能代谢信息在同一副图像中表达出来,更有利于医生做出准确、可靠的诊断。 3.医学图像配准的发展现状 图像融合技术诞生于上世纪80年代,是指对多幅源图像的信息进行提取。

总结 图像配准算法

图像配准定义为:对从不同传感器、不同时相、不同角度所获得的两幅或多幅图像进行最佳匹配的处理过程[2]。图像配准需要分析各分量图像上的几何畸变,然后采用一种几何变换将图像归化到统一的坐标系统中。在配准过程中,通常取其中的一幅图像作为配准的标准,称之为参考图像;另一幅图像作为配准图像。 图1-1 图像配准的基本流程 图1-2 图像配准方法分类

根据配准使用的特征,图像配准的方法大致可分为三类: (1)基于图像灰度的配准算法。首先从参考图像中提取目标区作为配准的模板,然后用该模板在待配准图像中滑动,通过相似性度量(如相关系数法、差的平方和法、差的绝对值法、协方差法)来寻找最佳匹配点。 (2)基于图像特征的配准算法。该算法是以图像中某些显著特征(点、线、区域)为配准基元,算法过程分为两步:特征提取和特征匹配。首先从两幅图像中提取灰度变化明显的点、线、区域等特征形成特征集。然后在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。对于非特征像素点利用插值等方法作处理推算出对应匹配关系,从而实现两幅图像之间逐像素的配准。 (3)基于对图像的理解和解释的配准算法。这种配准算法不仅能自动识别相应像点,而且还可以由计算机自动识别各种目标的性质和相互关系,具有极高的可靠性和精度。这种基于理解和解释的图像配准涉及到诸如计算机视觉、模式识别、人工智能等许多领域。不仅依赖于这些领域中理论上的突破,而且有待于高速度并行处理计算机的研制。 从自动化角度来看,可以将配准过程分为自动、半自动和手动配准。 存在问题:如何提高图像的配准速度将是大范围遥感图像自动配准问题的要点;选取何种自动配准方案以保证图像的配准精度将是大范围遥感图像自动配准问题的另一要点。 2(,)[1((, f x y g f h x y 其中,h表示二维空间坐标变换。g表示灰度或辐射变换,描述因传感器类型的不同以及成像时气候等环境的影响所带来的图像灰度的变换。配准问题的实质就是要找到最优的空域变换h和灰度变换g,使得上述的等式成立,从而找到配准变换的参数 特征空间的选择通常要考虑以下几个因素:相似性;空间分布;唯一性。 在自动图像配准中对特征的理解可以分为两类。(1)基于灰度的方法:基于灰度的方法将重点放在特征匹配上,在其过程中并没有真正提取特征。一般所说的模板匹配法就是这种方法的代表。这种方法实际上将图像的灰度分布直接作为特征而构成匹配的基础。(2)基于特征的方法:基于特征的方法需要在图像中提取显著的特征:区域(森林、湖泊、农田等)、线(区域的边界、道路等)和点(区域的角

相关文档
最新文档